The present disclosure relates to security mechanisms for doors, windows, gates, hinges, and the like.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Conventional residential doors typically use wood framing for securing doors. This wood framing can be easily compromised by forces generated by a person kicking or throwing their weight against the door. Methods exist to reinforce the door framing but those can be costly, time consuming, and involved depending on the requirements of the door. Some reinforcements negatively change the appearance of the door.
Accordingly there is a need for a reinforcement for doors which provides increased resistance in the case that a door, window, safe, or gate is being forced open by kicking, prying or by providing a blunt force against the door among other possibilities.
Disclosed embodiments include structures and methods for improving the assembly of doors and hinges.
An illustrative embodiment includes a door lock assembly. The door lock assembly includes a lock bolt. The lock bolt has a lock bolt body and having a bolt security engagement feature formed as part of the lock bolt body. The door lock assembly also includes a receiver. The receiver has a receiving area for receiving at least a portion of the lock bolt and the receiver has a receiver security engagement feature formed as part of the receiver. The receiver security engagement feature is complementary to the lock bolt security engagement feature.
Another illustrative embodiment includes a hinge assembly. The hinge assembly includes a first hinge plate. The hinge assembly also includes a hinge receiver coupled with the first hinge plate and having a hinge receiver security engagement feature formed as part of the hinge receiver. The hinge assembly further includes a second hinge plate coupled to the first hinge plate at a pivot joint. Further still, the hinge assembly includes a hinge bolt, the hinge bolt having a hinge bolt body and having a hinge bolt security engagement feature formed as part of the hinge bolt body, the hinge bolt security engagement feature being complementary to the hinge receiver security engagement feature.
Another illustrative embodiment includes a door lock. The door lock includes a lock bolt, the lock bolt has a lock bolt body and has a bolt security engagement feature formed as part of the lock bolt body. The door lock also includes a receiver, the receiver having a receiving area for receiving at least a portion of the lock bolt and the receiver having a receiver security engagement feature formed as part of the receiver, the receiver security engagement feature being complementary to the lock bolt security engagement feature. Further, the door lock includes a door lock drive coupled with the lock bolt and configured to drive the lock bolt in and out of the receiver.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
Illustrative embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
Like reference symbols in the various drawings generally indicate like elements.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof in the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
Illustrative embodiments are related to a door lock bolt (such as a deadbolt) having teeth cut into it and a receiver of the bolt that is installed in the door frame which has complimentary teeth cut into it. The receiver may have a hole at the back side that allows a suitable screw or other fastener to be installed securing the receiver to the door frame, studs, king stud or masonry block, if that is the building material used. A spring is attached within the receiver (or alternatively, the spring may be on the bolt), to separate the teeth of the bolt and receiver when no force to open the door is being applied. Separation of the teeth from engagement with each other makes it easy to open the door in a typical way. However, if the door were attempted to be forced open by kicking or applying a blunt force to it, the spring separating the teeth would collapse and the teeth would engage. This engagement transfers the force applied upon the door to the screw holding the receiver to the door frame, stud, king stud, or masonry block. By providing the bolt and receiver combinations disclosed herein, greater security for doors may be achieved. Interlocking the securing bolt to the receiver of the bolt and the portion of the hinge attached to the door to the portion of the hinge attached to the door's frame provides for increased reinforcement without changing the look or structure of a conventional door and door frame. Not only does the illustrative bolt receiver combination help prevent forced entry by blunt force to the door such as by kicking, but it also helps prevent forced entry by deforming the door or frame by prying.
Referring now to
Similarly, hinge 110 includes a bolt 150 which has teeth like bolt 120. Hinge 110 also includes a receiver 160 which is configured as a part of a hinge plate 162. Receiver 160 may be formed with hinge plate 162 or may be configured to attach to hinge plate 162 by any of a variety of ways including but not limited to screws. Receiver 160 includes complementary receiver teeth similar to the receiver teeth of deadbolt assembly receiver 140 and with a biasing spring similar to the biasing spring 144 of receiver 140. Hinge 160 works similarly to deadbolt 120, such that when the door is swung shut normally, bolt 150 slides easily into receiver 160 with the spring being biased. If the door is being forced open, the frame or door may be deformed and cause the teeth of bolt 150 to engage teeth 160. Receiver 160 is affixed to door frame and further to king studs or masonry with one or more affixing screws through a hole 165 in receiver 160. Because the fastener hole 165 is in the back of receiver 160, it is closer to the studs and can be used to hold receiver 160 in place during an attempted forceful entry.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
All of the above embodiments may be used with or without biasing springs depending on the application. In some applications the biasing spring may be necessary for proper normal operation while in other applications the biasing spring may not be necessary.
As described above, the illustrative embodiments may be applied to any situation or structure where it is advantageous to provide another level of security to a forceful entry, including but not limited to doors, windows, sliding gates, sliding doors, rolling garage doors, safes, etc.
In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that such terms (e.g. “configured to”) generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context entails otherwise.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, Band C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
While the disclosed subject matter has been described in terms of illustrative embodiments, it will be understood by those skilled in the art that various modifications can be made thereto without departing from the scope of the claimed subject matter as set forth in the claims.
Number | Date | Country | |
---|---|---|---|
Parent | 16874151 | May 2020 | US |
Child | 18175115 | US |