1. Field of the Invention
The invention is directed to a clampable fastening device for mounting fittings or other objects in an opening or recess having opposite edges or walls, such as a rectangular opening or recess in a thin or thick wall such as sheet metal or a wooden board, comprising a head part which is to be arranged on the one, outer side of the thin or thick wall and which covers the outer rim of the opening or recess and from which there proceeds in the mounted position a foot part which penetrates through the opening or which projects into the recess, holding elements which are displaceable relative to one another against or with spring force in a channel formed in the foot part project from the foot part in direction of its outer surface, the free end of the holding elements having an inclined surface for supporting the foot part without play on the rim or edge of the opening of the other, inner side of the thin wall or obliquely arranged points for penetrating into the wall surface of the opening or recess of the thick wall, wherein the foot part and the holding element are two separate parts, wherein the holding elements are displaceable by means of a screw which is preferably conically shaped.
2. Description of Related Art
A clampable fastening device for mounting fittings or other objects in an opening having opposite edges in a thin wall such as sheet metal is already known from WO 2005/083209 A1, FIGS. 26A and 26B and the accompanying description on page 22, paragraph 1. In the known arrangement, two holding elements 736 are pressed apart by a conical screw 98 resulting in a particularly strong holding force. However, the screw head is only accessible from the interior of the cabinet and a blind fastening is therefore out of the question. A similar arrangement is disclosed in WO 2005/071199 A1.
It is the object of the invention to further develop the known fastening device and to make it universally useable.
The object is met in that the holding elements are plates which are arranged next to one another or, alternatively, one behind the other and are elongated in the direction of displacement and which jointly or, alternatively, by themselves form with the channel walls a receiving space for receiving a compression spring, which receiving space extends in the direction of displacement and becomes smaller when the plates are displaced from their rest position and, as a result, compresses the spring, in that the conically shaped screw(s) has (have) a conically shaped foot, and in that the plates have, in the vicinity of one end of their longitudinal extension, first inner inclined surfaces which cooperate with the conical foot of the screw and which are offset with respect to one another in the rest position of the plates but move away from one another when the plates are displaced into the working position.
Due to the fact that the plates which are elongated in the direction of displacement in a thin wall jointly form a receiving space for receiving a spring, which receiving space extends in the direction of displacement and becomes smaller when the plates are displaced from their rest position, thereby compressing the spring, the fastening device can be mounted and removed in a simpler manner because, owing to the spring pressure, the elongated plates automatically retract or advance by loosening the screw without the need for any special steps. Further, the plates combined with the springs can be handled like an individual part which facilitates the mounting of the fastening device as such to form a unit.
Because the conical shape of the screw has a conically shaped foot, the screw is shorter overall and, therefore, the structural height of the clampable fastening device can be reduced.
A particularly stable connection and clamping of the fastening device with the thin or thick wall can be achieved through the force of the screw in that the plates have, in the vicinity of one end of their longitudinal extension, first inner inclined surfaces which cooperate with the conical foot of the screw and which are only slightly offset with respect to one another in the rest position of the plates but move away from one another when the plates are displaced into the working position. The fixed clamping also makes it possible to carry out adjustments in longitudinal direction or, if required, also in transverse direction with respect to the fitting as may be desirable, for example, with hinges. This is not provided in other fastening devices, e.g., those described in the above-cited reference, in which a play-free positive engagement is produced between the foot part and the opening that does not permit adjustability.
Further, the construction according to the invention provides for an arrangement in which blind mounting is possible.
Another advantage consists in that the arrangement according to the invention remains in the open position when, e.g., a plurality of hinges must be moved into the releasing position simultaneously so that the door leaf can be removed from the frame.
Finally, another advantage of the arrangement according to the invention consists in that grounding, i.e., a metal-to-metal connection between the metal hinge or other fitting parts and the metal wall, can be achieved automatically in a simple manner.
In a further development of the fastening device according to the invention in which a thin wall is provided, the plates have, respectively, in the vicinity of the other end of their longitudinal extension, outer inclined surfaces which cooperate with the edge of the opening in the thin wall and which lie within the foot part in the rest position of the plates relative to one another but which move out of the body part and away from one another when displaced into the working position. Alternatively, in case of the thick wall, the plates can have, at the respective other end of the longitudinal extension, outer inclined surfaces or teeth which cooperate with the wall of the opening or recess in the thick wall, and these plates lie inside the foot part when the plates are positioned in the rest position relative to one another but move out of the foot part and away from one another when displaced into the work position.
The plates can form second inner inclined surfaces, respectively, which adjoin the first inner inclined surfaces in such a way that they both form a free space receiving the conical region of the screw. A particularly simple and stable design is made possible in this way.
The screw can be a headless screw, which reduces the space requirement and permits particularly small embodiment forms for the fastening device.
The screw can be arranged in a threaded bore hole formed by the head part. Alternatively, the screw can be arranged in a threaded bore hole formed by the foot part.
According to a further development of the invention, it is advantageous when the end bevels of the holding elements are inclined with respect to the wall plane in such a way that when a force component perpendicular to the wall plane is directed away from the latter the holding elements are displaced against spring force in a direction parallel to the wall plane, in which case the angle is approximately 45 degrees and no self-locking phenomena occur. Alternatively, the end bevels of the holding elements can be inclined with respect to the wall plane in such a way that when a force component perpendicular to the wall plane is directed away from the latter the holding elements cannot be displaced against spring force, in which case the angle is substantially less than 45 degrees and self-locking phenomena play a part.
A rectangular auxiliary plate having a rectangular aperture that is somewhat smaller in longitudinal direction and/or in transverse direction than the aperture in the thin wall can be provided. This offers adjustment possibilities which can be advantageous particularly in hinge applications.
The inclined surfaces of the plates which are displaceable relative to one another, which inclined surfaces cooperate with the conical screw, can be arranged in such a way that when the conical screw is tightened the plates are moved away from one another against spring force, but when the conical screw is loosened the plates are moved toward one another with the spring force. This facilitates mounting and disassembly.
However, the inclined surfaces of the plates which are displaceable relative to one another, which inclined surfaces cooperate with the conical screw, can also be arranged in such a way that when the conical screw is tightened the plates are moved toward one another against spring force, but when the conical screw is loosened the plates are moved away from one another with the spring force. This represents an alternative.
The end bevels of the holding elements in a first region can be inclined with respect to the wall plane in such a way that when a force component perpendicular to the wall plane is directed away from the latter the holding elements are displaced against spring force, in which case no self-locking occurs and the angle is approximately 45 degrees, but in a second region has a smaller angle which leads to self-locking. This again facilitates mounting because it affords a certain possibility of pre-mounting.
It may also be advantageous when the two end bevels of the holding elements with their different inclinations with respect to the wall plane are arranged in such a way that when the foot part is pulled out the region not having self-locking becomes operative first and the self-locking region becomes operative only afterward.
The fastening device can be part of a hinge for a thin-walled door such as a metal door or for a thick-walled door such as a wooden door. Alternatively, the fastening device can be part of a handle for a thin wall such as a metal wall or for a thick wall such as a wooden wall. Finally, it is also conceivable that the fastening device is part of a closure for a thin door such as a metal door or a thick door such as a wooden cabinet door.
Finally, it is possible that the fastening device is part of a device that is provided with a head and used for fastening a first wall to a second, thin (metal) wall or thick (wooden) wall. The bevels for fastening the body part to the thin wall can be roughened, scored or grooved to achieve a partial positive engagement or for purposes of grounding.
According to a further development of the fastening device, the edge of the opening of the thin wall that is struck by the inclined surface of the fastening element is beveled for adapting to the inclination of the inclined surface so as to reduce contact stress.
When the fastening elements are arranged one behind the other, the free space located between them can advantageously be used for arranging the fitting devices such as the actuating shaft of a sash fastener.
With self-locking fastening elements, a procedure is possible in which the screw with conically shaped region is screwed in only to release the fitting. In this case, the screw with conically shaped region can have the shape of a tool such as a simple screwdriver or (if forces are not too large) a screwdriver with a screw fitted thereto.
Instead of a screw with conically shaped region, a simple cylindrical screw can also sometimes be sufficient if the resulting higher contact stress does not interfere.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements which are conventional in this art. Those of ordinary skill in the art will recognize that other elements are desirable for implementing the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
The present invention will now be described in detail on the basis of exemplary embodiments.
The plates have in the vicinity of their respective other end of the longitudinal extension 32 and 132 an outer inclined surface 34 which cooperates with the edge 14 of the thin wall 18. These outer inclined surfaces 34 lie within the channel 26 of the body part 24 (shown in
The plates or holding elements 30, 130 also have a second inner inclined surface 48 and 148 which adjoins the first inner inclined surface 46, 146 in such a way that the two of them form a free space 50, 150 receiving the conical region, in this instance the conical foot 40, 140, of the screw 44, 144. The free space is advisably shaped in such a way that it can receive the cone region 40 of the screw 44 without play. The two openings 38 of the plates 30 lying next to one another are also arranged in such a way that, in the rest position, they leave a small common triangular region 52 for the two triangular notches 50, into which common triangular region 52 the point of the conical screw 40 can penetrate as is shown in
A headless screw, as is designated in the drawings at 130, 30, requires the least space. In the embodiment forms shown in
A blind mounting is possible with this arrangement. If this is not required, the screw can also be arranged in a threaded bore hole formed by the foot part. This possibility is indicated in
The end bevels 34 of the holding elements 30 can be arranged in such a way with respect to the wall plane (see the thin wall 36 and its contact surface) that no self-locking occurs. The end bevels 34 of the holding elements 30 are preferably inclined with respect to the wall plane 18 (see 54 in
In
As can be seen in
In the arrangement shown in
The inclined surfaces 346, 348 (see
In the embodiment form according to
This substantially facilitates mounting when the hinge is mounted in a thin wall, particularly when more than one hinge is mounted along a switch cabinet door where the hinge fittings are initially pre-mounted, i.e., inserted into corresponding openings along the stop edge of the door leaf, whereupon they no longer fall out through the region tending toward self-locking when the door is subsequently inserted into the cabinet frame which already has corresponding hinge parts. After the two hinge parts are connected, a clamping can be carried out subsequently through the penetration of the screw so that the holding elements are suitable for large loads, e.g., loading by an automobile door or the like.
By loosening a hinge through a conical screw according to the embodiment forms shown herein, it is possible for the snap-in elements which are to be retracted to be much narrower than in fastening parts that are opened by means of a key which must be pulled out as in the reference cited above in which a flat key is used. The solution using a flat key leads to appreciably broader plate parts.
The arrangement of a releasing key provided with a toothing has the disadvantage that no self-locking end position is achieved so that it is problematic to mount a plurality of fitting elements simultaneously.
The embodiment form according to
According to a further development of the fastening device shown in
By arranging the fastening elements 530 one behind the other (see
In the case of self-locking fastening elements, as in
On the other hand, a remaining screw 544 serves to prevent fastening elements 530 under pressure by the spring 528 supported at the rear end of the channel 576 from falling out of the channel 526.
In
The invention can also be used in fastening elements which generate a clamping action by means of oblique guidance, e.g., by means of pins which run in oblique grooves in the fastening elements (see FIGS. 36A to 36E of the above-cited WO 2005/071199 A1).
The invention is commercially applicable in switch cabinet construction.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the inventions as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20 2006 002 592.8 | Feb 2006 | DE | national |
The present application claims priority from PCT Patent Application No. PCT/EP2006/011568 filed on Dec. 1, 2006, which claims priority from German Patent Application No. 20 2005 002 592.8 filed on Feb. 18, 2006, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/011568 | 12/1/2006 | WO | 00 | 8/27/2008 |