The use of blockchain platforms, such as a cryptocurrency platform, may provide a faster, cheaper and more reliable payment system, particularly for economic regions that do not have access to safe, established, reliable banking and financial systems. However, the use of cryptocurrency in transactions is problematic because the transactions can be untraceable, unrecallable and volatile.
It is with respect to these and other considerations that the disclosure made herein is presented.
The disclosed technology is directed toward multisignature smart contract code on a secure blockchain, e.g. the Ethereum blockchain, that provide a traceable, recallable, and non-volatile online payment system. Smart contracts are programs with code that can be executed on a blockchain platform and allow logic to be introduced on top of a transaction.
The disclosed technology is directed toward an intermediary that creates a multisignature blockchain smart contract transaction block for a transaction. Signatures are required from a buyer, a seller, and an intermediary.
In one example, such as an escrow for a transaction, the intermediary holds private keys for release of funds deposited in the blockchain multisignature transaction block by a bidder in the transaction. A multisignature transaction block can include a refund transaction to make a refund to a buyer.
In another example, the disclosed technology is directed toward multisignature transaction blocks utilized to implement an auction approach that secures funds for a bid amount from a bidder and releases the secured funds back to the bidder when a higher bid is submitted by another bidder.
The disclosed technology supports safe, secure, traceable, recallable, and non-volatile online payment using smart contracts on a cryptocurrency blockchain, e.g. the Ethereum blockchain.
It should be appreciated that the above-described subject matter may also be implemented as a computer-controlled apparatus, a computer process, a computing system, or as an article of manufacture such as a computer-readable medium. These and various other features will be apparent from a reading of the following Detailed Description and a review of the associated drawings. This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended that this Summary be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
The Detailed Description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same reference numbers in different figures indicate similar or identical items.
The following Detailed Description describes technologies for the use of a blockchain as an escrow to make secure refund or payment of funds committed to the blockchain through the use of transaction data blocks that must be signed by an intermediary entity in order to release funds committed to the blockchain by a buyer or bidder entity for a transaction.
In one example, a first transaction data block is created and linked to the blockchain that can refund funds to a buyer that the buyer committed to the blockchain for payment in a transaction when the first transaction data block is signed by a seller or an intermediary entity. A second transaction data block is created and linked to the blockchain that can pay the funds committed by the buyer to the seller when the buyer or the intermediary entity sign the second transaction data block.
The use of the blockchain leads to enhanced security of transactions because the hash signatures within the Merkel tree provide a mechanism to inspect the integrity of the data. Still further, the use of keys for signatures within the blockchain provide a technical advantage of verification and security that transaction steps are performed.
In another example, public keys for a buyer, seller and intermediary are utilized to create a multisignature public address for the contract data block for the transaction on the blockchain. Release of funds committed to the blockchain for the transaction require signatures from at least two of the buyer, seller and intermediary.
In still another example, the transaction data blocks pertain to an auction secured on a transaction data blockchain, where each bidder commits funds for a bid amount to the blockchain. If a first bidder is outbid by a second bidder, then an intermediary entity can sign a first transaction data block to release the funds committed by the first bidder back to the first bidder. If the auction finishes, then the intermediary entity can sign a second transaction data block to pay the funds committed by the winning bidder to a seller entity.
In some examples, both a buyer signature and an intermediary signature are required on a payment transaction data block to release the committed funds to a seller. Some examples require both a seller signature and an intermediary signature on a refund transaction data block to release the committed funds to the buyer.
In certain examples, script code for methods for controlling the transaction or the bids is stored in the transaction data blocks on the blockchain. The methods can be executed on a blockchain platform supporting the blockchain. By storing the script code in the blockchain, the integrity of the code is verified as secure.
Technical advantages of use of a blockchain in the disclosed technology includes security of funds committed to the blockchain, transparency of the data (which allows for extensibility tools and uses) and code for the transaction data blocks of the blockchain, and an ability to escrow funds for the transaction and release the escrowed funds to an appropriate entity, e.g. buyer or seller.
These are simplified examples and many factors may be considered in a system for maintaining transaction data and auction transaction data using a blockchain as will be discussed in greater detail below.
As will be described in more detail herein, it can be appreciated that implementations of the techniques and technologies described herein may include the use of solid state circuits, digital logic circuits, computer components, and/or software executing on one or more input devices. Signals described herein may include analog and/or digital signals for communicating a changed state of auction data, release of funds from the blockchain, or other information pertaining to the transaction data blockchain.
While the subject matter described herein is presented in the general context of program modules that execute in conjunction with the execution of an operating system and application programs on a computer system, those skilled in the art will recognize that other implementations may be performed in combination with other types of program modules. Generally, program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the subject matter described herein may be practiced with other computer system configurations, including multiprocessor systems, mainframe computers, microprocessor-based or programmable consumer electronics, minicomputers, hand-held devices, and the like.
By the use of the technologies described herein, a transaction data blockchain is maintained pertaining to smart contracts requiring multiple signatures, including a signature from an intermediary entity, to release funds to either a buyer entity for a refund transaction or a seller entity for a payment transaction. For example, a payment transaction from the blockchain requires both a buyer signature and an intermediary signature to execute the payment transaction and transfer to a seller of funds committed to the blockchain by the buyer. The disclosed technology thus permits a buyer to commit funds to a blockchain while retaining control over disbursement of the funds to a seller. A refund transaction from the blockchain requires both a seller signature and an intermediary signature to execute the refund transaction and return to the buyer the funds committed to the blockchain by the buyer. The transaction data blockchain and the intermediary essentially provide an escrow for the funds.
In addition, in certain examples, the transaction data blockchain can be used in an auction, wherein a bidder for each bid commits funds for the bid to the blockchain, which assures payment of the bid. The blockchain automatically releases the committed bid funds back to the bidder if the bidder is outbid. When the auction ends, the funds committed to the blockchain by the winning bidder are released to a seller for the auction. The transaction data blockchain, in this example, provides a mechanism to secure bid funds that can be released to bidders who are outbid or released to a seller.
Other technical effects other than those mentioned herein can also be realized from implementation of the technologies disclosed herein.
In the following detailed description, references are made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific configurations or examples. Referring now to the drawings, in which like numerals represent like elements throughout the several figures, aspects of a computing system, computer-readable storage medium, and computer-implemented methodologies for transaction data and auction transaction data blockchain ledgers will be described. As will be described in more detail below with respect to the figures, there are a number of applications and services that may embody the functionality and techniques described herein.
Intermediary server 110 initiates transaction data blockchain 140 by creating genesis block 142A. Genesis block 142A can include data identifying a transaction involving multiple client/servers 120. The transaction data blocks 142 generally require a signature from intermediary server 110 to release funds committed to the blockchain 140. In some embodiments, the intermediary server 110 may be replaced by another computing node, such as a computer on blockchain platform network 160, or other computing device.
In the example of
Intermediary server 110 controls the transactions data blocks 142 on transaction data blockchain 140 and controls the creation of transaction data blocks for refund and payment of funds committed to the blockchain 140. A payment transaction data block that pays funds to a seller entity requires a signature from the intermediary server 110 and a buyer entity. A refund transaction data block that returns funds to a buyer entity requires a signature from the intermediary server 110 and a seller entity. Though intermediary server 110 maintains control over release of funds committed to the transaction data blockchain 140, the buyer and seller entities also retain control over release of funds.
By securing commitment of funds for the transaction on the blockchain, this approach ensures that the funds to complete a transaction are committed before the transaction is completed. By providing a mechanism to pay committed funds to a seller entity upon signature of the intermediary and the buyer entity, this approach enables payment of committed funds to the seller entity, but the buyer entity retains control over completion of the transaction and release of the funds. By providing a mechanism to refund committed funds to a buyer upon signature of the intermediary and the seller entity, this approach enables return of committed funds to the buyer entity to, in effect, cancel the transaction. By providing access to the transaction data blockchain 140, this approach can provide full or partial transparency to a transaction maintained on the blockchain.
In outline, a blockchain ledger may be a globally shared transactional database. The blockchain ledger 200 may be arranged as a Merkle tree data structure, as a linked list, or as any similar data structure that allows for cryptographic integrity. The blockchain ledger 200 allows for verification that data has not been corrupted or tampered with because any attempt to tamper will change a Message Authentication Code (or has) of a block, and other blocks pointing to that block will be out of correspondence. In one embodiment of
Each block in the blockchain ledger may optionally contain a proof data field. The proof data field may indicate a reward that is due. The proof may be a proof of work, a proof of stake, a proof of research, or any other data field indicating a reward is due. For example, a proof of work may indicate that computational work was performed. As another example, a proof of stake may indicate that an amount of cryptocurrency has been held for a certain amount of time. For example, if 10 units of cryptocurrency have been held for 10 days, a proof of stake may indicate 10*10=100 time units have accrued. A proof of research may indicate that research has been performed. In one example, a proof of research may indicate that a certain amount of computational work has been performed-such as exploring whether molecules interact a certain way during a computational search for an efficacious drug compound.
The blocks 210 of transaction data blockchain 200 in the example of
To support another transaction on the transaction data blockchain 200, intermediary server 110 creates transaction data block 210B, which supports a second transaction, trans2, and transaction data block 210B is linked to genesis block 210A. The intermediary server 110 signs transaction data block 210B and commits the block to blockchain 200 for verification by the blockchain platform. Similarly, intermediary server 110 creates transaction data block 210C to add a third transaction, trans3, and links transaction data block 210C to transaction data block 210B. Intermediary server 110 creates transaction data block 210D for a fourth transaction, trans4, and links transaction data block 210D to transaction data block 210C. Further, transaction data block 210E is created by intermediary server 110 for a fifth transaction, trans5, which is linked to transaction data block 210D. In this approach, the transactions are secured on transaction data blockchain 200 and the transactions can be made publicly viewable and traceable back to the genesis data block 210A.
In this example, a multisignature contract 222 is created that is owned by an intermediary entity corresponding to intermediary server 110 and includes a public key for the intermediary. Multisignature contract 222 also identifies a client corresponding to a seller, client1, and a send-to public key for the seller, as well as identifying a client corresponding to a buyer, client2, and a send-to public key for the buyer. The contract block 222 also includes a pay to script hash (P2SH) function that ensures that funds are only transferred if two of the three parties (buyer, seller and intermediary) sign a transaction. The contract block 222 further provides for deposit of funds for the transaction amount, such as cryptocurrency value.
In the example of
In addition, a refund transaction data block 224 is created and linked to contract block 222. The refund transaction data block 224 includes a send-to public key for the buyer entity and a transaction amount and requires both SIGNATURE1 from the seller entity and SIGNATURE2 from the intermediary entity in order to release the transaction amount to the buyer.
Further, a payment transaction data block 226 is created and linked to contract block 222. The payment transaction data block 226 includes a send-to public key for the seller entity and a transaction amount and requires both SIGNATURE1 from the buyer entity and SIGNATURE2 from the intermediary entity in order to release the transaction amount to the seller.
In this example, the funds deposited in contract block 222 are committed to the transaction on a transaction data blockchain. The committed funds can be released to either the buyer entity or the seller entity. However, the buyer maintains control over whether the committed funds can be released to the seller. At the same time, the seller maintains control over whether the committed funds can be refunded to the buyer. The requirement for a signature from the intermediary entity enables the intermediary to manage disbursement of the committed funds to one of the buyer or seller and effectively hold the funds in escrow on the transaction data blockchain.
When a bidder submits a bid, a transaction data block representing the bid is created and linked to the blockchain 250 and the blockheight incremented. In this example, auction transaction data block 252B represents a bid of value1 by bidder client2, which commits the funds for value1 to blockchain 250 at the time of bid and blockheight is incremented to 2. Similarly, auction transaction data block 252C represents a bid of value2 by bidder client3, which commits the funds for value2 to blockchain 250 at the time of bid and blockheight is incremented to 3. Auction transaction data block 252D represents a bid of value3 by bidder client4, which commits the funds for value3 to blockchain 250 at the time of bid and blockheight is incremented to 4. Auction transaction data block 252E represents a bid of value4 by bidder client5, which commits the funds for value4 to blockchain 250 at the time of bid and blockheight is incremented to 5. In this example, blockheight(5) equals the AUCTION_STOP_HEIGHT, which causes client4 to be declared the winner and the done flag is set to true.
In this example, buyer client device 120B generates public and private refund keys for a payment transaction. The buyer client device 120B creates a multisignature address using public keys for the buyer, the intermediary and the seller. Multisignature contract block 322 is created having the multisignature address, the buyer's public send-to refund key, public seller send-to address, the intermediary's public address and a P2SH script.
The refund transaction data block 324 and the payment transaction data block 326 are also multisignature transaction blocks that can be generated by the buyer client device 120B or intermediary server 110. In this example, the intermediary server 110 generates refund transaction block 324 with the buyer's public send-to key address and requires the seller's signature, SIGNATURE1 (seller signature), and the intermediary signature, SIGNATURE2 (intermediary signature), in order to send the refund amount, SEND_AMOUNT (transaction amount), to the buyer's public send-to key address.
Intermediary server 110 generates payment transaction block 326 with the seller's public send-to key address and requires the buyer's signature, SIGNATURE1 (buyer signature), and the intermediary signature, SIGNATURE2 (intermediary signature), in order to send the payment amount, SEND AMOUNT(transaction amount), to the seller's public send-to key address. In some examples, a P2SH script in each of the transaction blocks requires an additional signature from the intermediary server before a transfer of funds occurs.
Once the transaction blocks 322, 324 and 326 are created, the buyer deposits funds DEPOSIT (transaction amount), e.g. commits cryptocurrency, into the multisignature address, such as by using a cryptocurrency wallet.
To execute a refund transaction, the seller signs refund transaction block 324, at 316, and the intermediary signs refund transaction block 324, at 304, which causes the transfer, at 312, of SEND_AMOUNT(transaction amount) to the buyer public key address for the buyer. To execute a payment transaction, the buyer signs payment transaction block 326, at 314, and the intermediary signs refund transaction block 326, at 306, which causes the transfer, at 318, of SEND_AMOUNT(transaction amount) to the seller public key address for the seller.
This example demonstrates how the disclosed technology enables a transaction amount to be held in escrow on a blockchain. The disclosed technology permits the escrowed transaction amount to be refunded to the buyer who deposited the transaction amount into the escrow or to be paid to the seller. The buyer retains control over payment of the escrowed funds to the seller and the seller retains control over refund of the escrowed funds to the buyer. The intermediary ensures that the escrowed funds are not paid in the absence of agreement between the parties.
In this example, bid funds are committed to the blockchain to fulfill the bid and held in escrow until a higher bid is made or the auction ends. When a bidder is subsequently outbid, the bid funds committed to the blockchain to fulfill the bid are refunded to the bidder using the refund transaction block. If the auction ends, then the bid funds committed by the winning bidder are transferred to the seller using the payment transaction block.
In the example of
When a bid is submitted, e.g. BID(X) from bidder client 120A, another auction data block 352 similar to the contract block 322 in
In the example of
At 370, a second bidder client 120B, i.e. a client device used by a second bidder, submits a higher bid, BID(Y), and commits the funds for BID(Y) to the auction blockchain 350. An auction data block 352C for BID(Y) is added to the blockchain 350 and linked to the previous auction data block 352B. Refund block 354C is created and linked to auction data block 352C and is configured to transfer the BID(Y) funds back to the second bidder when signed by intermediary server 110. Payment block 356C is created and linked to auction data block 352C and is configured to transfer the BID(Y) funds to the seller when signed by the second bidder client using bidder client 120B and intermediary server 110.
Due to the submittal of a higher bid, at 364, intermediary server 110 signs refund block 354B to return the BID(X) funds to the first bidder, at 366. Thus, the submittal of a higher bid to auction blockchain 350 causes the funds committed by a bidder to the auction blockchain to fulfill a superseded bid to be automatically refunded to that bidder.
In the example of
Methods 386 are provided within the auction data block 380 that can be executed on a blockchain platform used to support the auction blockchain. In this example, a CREATE method can be called by a seller to initiate the auction, provide auction details, e.g. the auction item and associated information, and identify the seller.
A BID method can be called by bidders, the bidders of bidder clients 120A and 120B, to submit bids to the blockchain auction. The value of the bid, numCoins, is compared to the current high bid, auction[id].bid, and, if the new bid is higher, then the funds for the previous bid are refunded to the outbid bidder, e.g. Release(auction[id].bid, auction[id].bidder), the submitted bid is set to the current high bid, auction[id].bid=numCoins, and the submitting bidder is set to the current high bidder, auction[id].bidder-caller.
In this example, intermediary server 110, as the owner of the auction data block, periodically checks the block state of the auction block to determine whether the auction should end, which is determined based on blockheight, e.g. if (caller==owner && blockheight>=AUCTION_STOP_HEIGHT). If the end of the auction is reached, then the seller is notified, Notify(auction[id].seller), the winner is set to the current high bidder, auction[id].winner=auction[id].bidder, and the done flag is set to true, auction[id].done=true.
A PAYMENT method can be called, in this example, by either the owner of the auction, e.g. the intermediary server that owns the auction, or the winning bidder, e.g. auction[id].winner, which results in the current high bid amount being released to the seller, e.g. Release(auction[id].bid, auction[id].seller).
A variety of approaches to the methods and auction state data can be utilized without departing from the disclosed technology.
At 402, a contract block for a transaction or a bid, such as contract block 322 of
At 406, a payment transaction block, such as payment transaction block 326 of
Note that the operations described with regard to process 400 may be performed in different orders and with different specific implementation details without departing from the disclosed technology. For example, different approaches to generating and utilizing signatures from the buyer/bidder, seller and intermediary can be implemented, as is demonstrated in
At 412, a buyer/bidder client, such as bidder client 120B in
At 416, the buyer/bidder client 120B creates a contract block, e.g. contract block 322 in
At 420, buyer/bidder client 120B creates a refund and payment transaction blocks, such as refund block 324 and payment block 326 in
Once the buyer/bidder client deposits funds to the contract block 322, the funds are substantially held in escrow because the release of the funds, either a refund or a payment, is under the control of at least one other party apart from the buyer/bidder. Depending on the implementation, to refund the funds to the buyer/bidder requires either or both the seller's signature and the intermediary's signature. To pay the funds to the seller requires either or both the buyer's signature and the intermediary's signature.
At 440, if the determination is a refund transaction, then control transfers to 442, where the intermediary and/or the seller signs the refund transaction block to release the funds committed to the transaction back to the buyer/bidder. Note that, depending upon the implementation, the refund block can be configured to execute the refund, e.g. execute a transfer script transferring the funds to the buyer/bidder's public send-to address, based on the signature of only the intermediary, only the seller, or both the intermediary and the seller.
If the determination is a payment transaction, then, at 440, control transfers to 444, where the intermediary and/or the buyer signs the payment transaction block to release the funds committed to the transaction back to the seller. Note that, depending upon the implementation, the payment block can be configured to execute the payment, e.g. execute a transfer script transferring the funds to the seller's public send-to address, based on the signature of only the intermediary, only the buyer, or both the intermediary and the buyer.
At 452, a bid is received from a bidder, such as bidder client 120C of
If the auction has not yet ended, then control branches at 456 to 460 to determine whether the new bid exceeds the current high bid, e.g. is numCoins>auction[id].bid. If the bid received at 452 is not greater than the current high bid, then control branches to 458 and the bid is rejected. If the received bid is greater than the current high bid, then control branches to 462 where funds for the superseded bid are released back to the bidder of superseded bid, e.g. Release(auction[id].bid, auction[id].bidder), and the new bid is established as the current high bid, e.g. auction[id].bid=numCoins and auction[id].bidder-caller.
The bid approach of
At 472, intermediary server 472 determines whether the conditions have been met for release of funds and the type of release. The determination can be based on input from the buyer or seller or both. If it is determined that the funds committed to the transaction or bid are to be refunded to the buyer or bidder, then control branches at 480 to 482, where the intermediary server and the seller sign the refund transaction to execute the transfer script, e.g. P2SH script signed by the intermediary and the seller, that transfers the funds to the buyer or bidder. If the release is a payment, then control transfers at 480 to 484, where the intermediary server and the buyer sign the payment transaction to execute the transfer script, e.g. P2SH script signed by the intermediary and the buyer, that transfers the funds to the seller. In this multisignature example, signatures from two out of three of the buyer, seller and intermediary are required for release of the funds.
In the approaches illustrated above, both the transaction information, e.g. the buyer, seller and price, as well as the code for the escrow of the auction can be securely stored and maintained on a blockchain, such as transaction blockchain 140 of
Access to the content of the transaction or auction data blockchains can be handled in a variety of ways. For maximum transparency, the blockchains may be initiated on a public blockchain with the data being available to any person who can access the blockchain. Or the blockchains can be configured to encrypt the data and restrict access so that the data is tightly controlled, e.g. only the intermediary and the seller can view the information stored on the blockchain.
Depending upon the scripting capabilities of the blockchain platform, the data blocks of the blockchains may include more extensive code execution. It should be appreciated that the utilization of blockchain technology, such as scripting technology within smart contracts, in this context provides a high degree of flexibility and variation in the configuration of implementations without departing from the teachings of the present disclosure.
In the example of
In the example of
In
To ensure the smart contracts are secure and generate secure data, the blockchain ledger must be kept up to date. For example, if a smart contract is created, the code associated with a smart contract must be stored in a secure way. Similarly, when smart contract code executes and generates transaction data, the transaction data must be stored in a secure way.
In the example of
Though aspects of the technology disclosed herein resemble a smart contract, in the present techniques, the policy of the contract may determine the way that the blockchain ledger is maintained. For example, the policy may require that the validation or authorization process is determined by a centralized control of a cluster of trusted nodes. In this case, the centralized control may be a trusted node, such as intermediary server 110, authorized to attest and sign the transaction blocks to validate them and validation by miners may not be needed.
Alternatively, the policy may provide for validation process decided by a decentralized cluster of untrusted nodes. In the situation where the blockchain ledger is distributed to a cluster of untrusted nodes, mining of blocks in the chain may be employed to validate the blockchain ledger.
Blockchains may use various time-stamping schemes, such as proof-of-work, to serialize changes. Alternate consensus methods include proof-of-stake, proof-of-burn, proof-of-research may also be utilized to serialize changes.
As noted above, in some examples, a blockchain ledger may be validated by miners to secure the blockchain. In this case, miners may collectively agree on a validation solution to be utilized. However, if a small network is utilized, e.g. private network, then the solution may be a Merkle tree and mining for the validation solution may not be required. When a transaction block is created, e.g. a transaction data block 142 for transaction data blockchain 140 or an auction transaction data block 352 for auction transaction data blockchain 350, the block is an unconfirmed and unidentified entity. To be part of the acknowledged “currency”, it may be added to the blockchain, and therefore relates to the concept of a trusted cluster.
In a trusted cluster, when a transaction data block 142 or auction transaction data block 352 is added, every node competes to acknowledge the next “transaction” (e.g. a change to the transaction data list or another bid transaction). In one example, the nodes compete to mine and get the lowest hash value: min{previous_hash, contents_hash, random_nonce_to_be_guessed}->result. Transaction order is protected by the computational race (faith that no one entity can beat the collective resources of the blockchain network). Mutual authentication parameters are broadcast and acknowledged to prevent double entries in the blockchain.
Alternatively, by broadcasting the meta-data for authenticating a secure ledger across a restricted network, e.g. only the signed hash is broadcast, the blockchain may reduce the risks that come with data being held centrally. Decentralized consensus makes blockchains suitable for the recording of secure transactions or events. The meta-data, which may contain information related to transactions or bid data, may also be ciphered for restricted access so that the meta-data does not disclose information pertaining to the transaction data or the auction transaction data.
The mining process, such as may be used in concert with the validation process 490 of
Note that in a restricted network, stake-holders who are authorized to check or mine for the transaction data or the auction transaction data may or may not access the transaction blocks themselves, but would need to have keys to the meta-data (since they are members of the restricted network, and are trusted) to get the details. As keys are applied on data with different data classifications, the stake-holders can be segmented.
A decentralized blockchain may also use ad-hoc secure message passing and distributed networking. In this example, the transaction data or the auction transaction data blockchain ledgers may be different from a conventional blockchain in that there is a centralized clearing house, e.g. authorized central control for validation. Without the mining process, the trusted cluster can be contained in a centralized blockchain instead of a public or democratic blockchain. One way to view this is that a decentralized portion is as “democratic N honest parties” (multiparty honest party is a cryptography concept), and a centralized portion as a “trusted monarchy for blockchain information correction”. For example, there may be advantages to maintaining the transaction data or the auction transaction data as centrally authorized and kept offline.
In some examples, access to a transaction data blockchain or an auction transaction data blockchain ledger may be restricted by cryptographic means to be only open to authorized servers. Since the blockchain ledgers are distributed, the authorized servers can validate it. A public key may be used as an address on a public blockchain ledger.
Note that growth of a decentralized blockchain may be accompanied by the risk of node centralization because the computer resources required to operate on bigger data become increasingly expensive.
The present techniques may involve operations occurring in one or more machines. As used herein, “machine” means physical data-storage and processing hardware programed with instructions to perform specialized computing operations. It is to be understood that two or more different machines may share hardware components. For example, the same integrated circuit may be part of two or more different machines.
One of ordinary skill in the art will recognize that a wide variety of approaches may be utilized and combined with the present approaches involving controlling a transaction or an auction on a blockchain. The specific examples of different aspects of controlling a transaction or an auction on a blockchain described herein are illustrative and are not intended to limit the scope of the techniques shown.
Smart contracts are defined by code. As described previously, the terms and conditions of the smart contract may be encoded (e.g., by hash) into a block-chain ledger. Specifically, smart contracts may be compiled into a bytecode (if executed in a virtual machine), and then the bytecode may be stored in a block-chain ledger as described previously. Similarly, transaction data executed and generated by smart contracts may be stored in the block-chain ledger in the ways previously described.
Note that at least parts of processes 400, 410, 430, 450 and 470 of
It should be understood that the methods described herein can be ended at any time and need not be performed in their entireties. Some or all operations of the methods described herein, and/or substantially equivalent operations, can be performed by execution of computer-readable instructions included on a computer-storage media, as defined below. The term “computer-readable instructions,” and variants thereof, as used in the description and claims, is used expansively herein to include routines, applications, application modules, program modules, programs, components, data structures, algorithms, and the like. Computer-readable instructions can be implemented on various system configurations, including single-processor or multiprocessor systems, minicomputers, mainframe computers, personal computers, hand-held computing devices, microprocessor-based, programmable consumer electronics, combinations thereof, and the like.
Thus, it should be appreciated that the logical operations described herein are implemented (1) as a sequence of computer implemented acts or program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical operations described herein are referred to variously as states, operations, structural devices, acts, or modules. These operations, structural devices, acts, and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof.
As described herein, in conjunction with the FIGURES described herein, the operations of the routines (e.g. processes 400, 410, 430, 450 and 470 of
For example, the operations of routines are described herein as being implemented, at least in part, by an application, component and/or circuit, which are generically referred to herein as modules. In some configurations, the modules can be a dynamically linked library (DLL), a statically linked library, functionality produced by an application programing interface (API), a compiled program, an interpreted program, a script or any other executable set of instructions. Data and/or modules, such as the data and modules disclosed herein, can be stored in a data structure in one or more memory components. Data can be retrieved from the data structure by addressing links or references to the data structure.
Although the following illustration refers to the components of the FIGURES discussed above, it can be appreciated that the operations of the routines (e.g. processes 400, 410, 430, 450 and 470 of
The computer architecture 700 illustrated in
The mass storage device 712 is connected to the CPU 702 through a mass storage controller (not shown) connected to the bus 710. The mass storage device 712 and its associated computer-readable media provide non-volatile storage for the computer architecture 700. Although the description of computer-readable media contained herein refers to a mass storage device, such as a solid-state drive, a hard disk or CD-ROM drive, it should be appreciated by those skilled in the art that computer-readable media can be any available computer storage media or communication media that can be accessed by the computer architecture 700.
Communication media includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics changed or set in a manner so as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
By way of example, and not limitation, computer storage media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer architecture 700. For purposes the claims, the phrase “computer storage medium,” “computer-readable storage medium” and variations thereof, does not include waves, signals, and/or other transitory and/or intangible communication media, per se.
According to various configurations, the computer architecture 700 may operate in a networked environment using logical connections to remote computers through the network 756 and/or another network (not shown). The computer architecture 700 may connect to the network 756 through a network interface unit 714 connected to the bus 710. It should be appreciated that the network interface unit 714 also may be utilized to connect to other types of networks and remote computer systems. The computer architecture 700 also may include an input/output controller 716 for receiving and processing input from a number of other devices, including a keyboard, mouse, game controller, television remote or electronic stylus (not shown in
It should be appreciated that the software components described herein may, when loaded into the CPU 702 and executed, transform the CPU 702 and the overall computer architecture 700 from a general-purpose computing system into a special-purpose computing system customized to facilitate the functionality presented herein. The CPU 702 may be constructed from any number of transistors or other discrete circuit elements, which may individually or collectively assume any number of states. More specifically, the CPU 702 may operate as a finite-state machine, in response to executable instructions contained within the software modules disclosed herein. These computer-executable instructions may transform the CPU 702 by specifying how the CPU 702 transitions between states, thereby transforming the transistors or other discrete hardware elements constituting the CPU 702.
Encoding the software modules presented herein also may transform the physical structure of the computer-readable media presented herein. The specific transformation of physical structure may depend on various factors, in different implementations of this description. Examples of such factors may include, but are not limited to, the technology used to implement the computer-readable media, whether the computer-readable media is characterized as primary or secondary storage, and the like. For example, if the computer-readable media is implemented as semiconductor-based memory, the software disclosed herein may be encoded on the computer-readable media by transforming the physical state of the semiconductor memory. For example, the software may transform the state of transistors, capacitors, or other discrete circuit elements constituting the semiconductor memory. The software also may transform the physical state of such components in order to store data thereupon.
As another example, the computer-readable media disclosed herein may be implemented using magnetic or optical technology. In such implementations, the software presented herein may transform the physical state of magnetic or optical media, when the software is encoded therein. These transformations may include altering the magnetic characteristics of particular locations within given magnetic media. These transformations also may include altering the physical features or characteristics of particular locations within given optical media, to change the optical characteristics of those locations. Other transformations of physical media are possible without departing from the scope and spirit of the present description, with the foregoing examples provided only to facilitate this discussion.
In light of the above, it should be appreciated that many types of physical transformations take place in the computer architecture 700 in order to store and execute the software components presented herein. It also should be appreciated that the computer architecture 700 may include other types of computing devices, including hand-held computers, embedded computer systems, personal digital assistants, and other types of computing devices known to those skilled in the art. It is also contemplated that the computer architecture 700 may not include all of the components shown in
According to various implementations, the distributed computing environment 800 includes a computing environment 802 operating on, in communication with, or as part of the network 804. The network 804 may be or may include the network 756, described above. The network 804 also can include various access networks. One or more client devices 806A-806N (hereinafter referred to collectively and/or generically as “clients 806”) can communicate with the computing environment 802 via the network 804 and/or other connections (not illustrated in
In the illustrated configuration, the computing environment 802 includes application servers 808, data storage 810, and one or more network interfaces 812. According to various implementations, the functionality of the application servers 808 can be provided by one or more server computers that are executing as part of, or in communication with, the network 804. The application servers 808 can host various services, virtual machines, portals, and/or other resources. In the illustrated configuration, the application servers 808 host one or more virtual machines 814 for hosting applications or other functionality. According to various implementations, the virtual machines 814 host one or more applications and/or software modules for transaction data and auction transaction data blockchain ledgers. It should be understood that this configuration is illustrative only and should not be construed as being limiting in any way.
According to various implementations, the application servers 808 also include one or more transaction management services 818, auction data management services 820, and one or more blockchain services 822. The transaction data management services 818 can include services for managing a transaction data list on a transaction data blockchain, such as transaction data blockchain 140 in
As shown in
As mentioned above, the computing environment 802 can include data storage 810. According to various implementations, the functionality of the data storage 810 is provided by one or more databases or data stores operating on, or in communication with, the network 804. The functionality of the data storage 810 also can be provided by one or more server computers configured to host data for the computing environment 802. The data storage 810 can include, host, or provide one or more real or virtual data stores 826A-826N (hereinafter referred to collectively and/or generically as “datastores 826”). The datastores 826 are configured to host data used or created by the application servers 808 and/or other data. Aspects of the datastores 826 may be associated with services for a transaction data blockchain or an auction transaction data blockchain. Although not illustrated in
The computing environment 802 can communicate with, or be accessed by, the network interfaces 812. The network interfaces 812 can include various types of network hardware and software for supporting communications between two or more computing devices including, but not limited to, the clients 806 and the application servers 808. It should be appreciated that the network interfaces 812 also may be utilized to connect to other types of networks and/or computer systems.
It should be understood that the distributed computing environment 800 described herein can provide any aspects of the software elements described herein with any number of virtual computing resources and/or other distributed computing functionality that can be configured to execute any aspects of the software components disclosed herein. According to various implementations of the concepts and technologies disclosed herein, the distributed computing environment 800 may provide the software functionality described herein as a service to the clients using devices 806. It should be understood that the devices 806 can include real or virtual machines including, but not limited to, server computers, web servers, personal computers, mobile computing devices, smart phones, and/or other devices, which can include user input devices. As such, various configurations of the concepts and technologies disclosed herein enable any device configured to access the distributed computing environment 800 to utilize the functionality described herein for creating and supporting transaction data and auction transaction data blockchain ledgers, among other aspects.
Turning now to
The computing device architecture 900 illustrated in
The processor 902 includes a central processing unit (“CPU”) configured to process data, execute computer-executable instructions of one or more application programs, and communicate with other components of the computing device architecture 900 in order to perform various functionality described herein. The processor 902 may be utilized to execute aspects of the software components presented herein and, particularly, those that utilize, at least in part, secure data.
In some configurations, the processor 902 includes a graphics processing unit (“GPU”) configured to accelerate operations performed by the CPU, including, but not limited to, operations performed by executing secure computing applications, general-purpose scientific and/or engineering computing applications, as well as graphics-intensive computing applications such as high resolution video (e.g., 620P, 1080P, and higher resolution), video games, three-dimensional (“3D”) modeling applications, and the like. In some configurations, the processor 902 is configured to communicate with a discrete GPU (not shown). In any case, the CPU and GPU may be configured in accordance with a co-processing CPU/GPU computing model, wherein a sequential part of an application executes on the CPU and a computationally-intensive part is accelerated by the GPU.
In some configurations, the processor 902 is, or is included in, a system-on-chip (“SoC”) along with one or more of the other components described herein below. For example, the SoC may include the processor 902, a GPU, one or more of the network connectivity components 906, and one or more of the sensor components 908. In some configurations, the processor 902 is fabricated, in part, utilizing a package-on-package (“PoP”) integrated circuit packaging technique. The processor 902 may be a single core or multi-core processor.
The processor 902 may be created in accordance with an ARM architecture, available for license from ARM HOLDINGS of Cambridge, United Kingdom. Alternatively, the processor 902 may be created in accordance with an x86 architecture, such as is available from INTEL CORPORATION of Mountain View, Calif. and others. In some configurations, the processor 902 is a SNAPDRAGON SoC, available from QUALCOMM of San Diego, Calif., a TEGRA SoC, available from NVIDIA of Santa Clara, Calif., a HUMMINGBIRD SoC, available from SAMSUNG of Seoul, South Korea, an Open Multimedia Application Platform (“OMAP”) SoC, available from TEXAS INSTRUMENTS of Dallas, Tex., a customized version of any of the above SoCs, or a proprietary SoC.
The memory components 904 include a random access memory (“RAM”) 914, a read-only memory (“ROM”) 916, an integrated storage memory (“integrated storage”) 918, and a removable storage memory (“removable storage”) 920. In some configurations, the RAM 914 or a portion thereof, the ROM 916 or a portion thereof, and/or some combination of the RAM 914 and the ROM 916 is integrated in the processor 902. In some configurations, the ROM 916 is configured to store a firmware, an operating system or a portion thereof (e.g., operating system kernel), and/or a bootloader to load an operating system kernel from the integrated storage 918 and/or the removable storage 920.
The integrated storage 918 can include a solid-state memory, a hard disk, or a combination of solid-state memory and a hard disk. The integrated storage 918 may be soldered or otherwise connected to a logic board upon which the processor 902 and other components described herein also may be connected. As such, the integrated storage 918 is integrated in the computing device. The integrated storage 918 is configured to store an operating system or portions thereof, application programs, data, and other software components described herein.
The removable storage 920 can include a solid-state memory, a hard disk, or a combination of solid-state memory and a hard disk. In some configurations, the removable storage 920 is provided in lieu of the integrated storage 918. In other configurations, the removable storage 920 is provided as additional optional storage. In some configurations, the removable storage 920 is logically combined with the integrated storage 918 such that the total available storage is made available as a total combined storage capacity. In some configurations, the total combined capacity of the integrated storage 918 and the removable storage 920 is shown to a user instead of separate storage capacities for the integrated storage 918 and the removable storage 920.
The removable storage 920 is configured to be inserted into a removable storage memory slot (not shown) or other mechanism by which the removable storage 920 is inserted and secured to facilitate a connection over which the removable storage 920 can communicate with other components of the computing device, such as the processor 902. The removable storage 920 may be embodied in various memory card formats including, but not limited to, PC card, CompactFlash card, memory stick, secure digital (“SD”), miniSD, microSD, universal integrated circuit card (“UICC”) (e.g., a subscriber identity module (“SIM”) or universal SIM (“USIM”)), a proprietary format, or the like.
It can be understood that one or more of the memory components 904 can store an operating system. According to various configurations, the operating system may include, but is not limited to, server operating systems such as various forms of UNIX certified by The Open Group and LINUX certified by the Free Software Foundation, or aspects of Software-as-a-Service (SaaS) architectures, such as MICROSOFT AZURE from Microsoft Corporation of Redmond, Wash. or AWS from Amazon Corporation of Seattle, Wash. The operating system may also include WINDOWS MOBILE OS from Microsoft Corporation of Redmond, Wash., WINDOWS PHONE OS from Microsoft Corporation, WINDOWS from Microsoft Corporation, PALM WEBOS from Hewlett-Packard Company of Palo Alto, Calif., BLACKBERRY OS from Research In Motion Limited of Waterloo, Ontario, Canada, MAC OS or IOS from Apple Inc. of Cupertino, Calif., and ANDROID OS from Google Inc. of Mountain View, Calif. Other operating systems are contemplated.
The network connectivity components 906 include a wireless wide area network component (“WWAN component”) 922, a wireless local area network component (“WLAN component”) 924, and a wireless personal area network component (“WPAN component”) 926. The network connectivity components 906 facilitate communications to and from the network 956 or another network, which may be a WWAN, a WLAN, or a WPAN. Although only the network 956 is illustrated, the network connectivity components 906 may facilitate simultaneous communication with multiple networks, including the network 956 of
The network 956 may be or may include a WWAN, such as a mobile telecommunications network utilizing one or more mobile telecommunications technologies to provide voice and/or data services to a computing device utilizing the computing device architecture 900 via the WWAN component 922. The mobile telecommunications technologies can include, but are not limited to, Global System for Mobile communications (“GSM”), Code Division Multiple Access (“CDMA”) ONE, CDMA7000, Universal Mobile Telecommunications System (“UMTS”), Long Term Evolution (“LTE”), and Worldwide Interoperability for Microwave Access (“WiMAX”). Moreover, the network 956 may utilize various channel access methods (which may or may not be used by the aforementioned standards) including, but not limited to, Time Division Multiple Access (“TDMA”), Frequency Division Multiple Access (“FDMA”), CDMA, wideband CDMA (“W-CDMA”), Orthogonal Frequency Division Multiplexing (“OFDM”), Space Division Multiple Access (“SDMA”), and the like. Data communications may be provided using General Packet Radio Service (“GPRS”), Enhanced Data rates for Global Evolution (“EDGE”), the High-Speed Packet Access (“HSPA”) protocol family including High-Speed Downlink Packet Access (“HSDPA”), Enhanced Uplink (“EUL”) or otherwise termed High-Speed Uplink Packet Access (“HSUPA”), Evolved HSPA (“HSPA+”), LTE, and various other current and future wireless data access standards. The network 956 may be configured to provide voice and/or data communications with any combination of the above technologies. The network 956 may be configured to or be adapted to provide voice and/or data communications in accordance with future generation technologies.
In some configurations, the WWAN component 922 is configured to provide dual-multi-mode connectivity to the network 956. For example, the WWAN component 922 may be configured to provide connectivity to the network 956, wherein the network 956 provides service via GSM and UMTS technologies, or via some other combination of technologies. Alternatively, multiple WWAN components 922 may be utilized to perform such functionality, and/or provide additional functionality to support other non-compatible technologies (i.e., incapable of being supported by a single WWAN component). The WWAN component 922 may facilitate similar connectivity to multiple networks (e.g., a UMTS network and an LTE network).
The network 956 may be a WLAN operating in accordance with one or more Institute of Electrical and Electronic Engineers (“IEEE”) 802.11 standards, such as IEEE 802.11a, 802.11b, 802.11g, 802.11n, and/or future 802.11 standard (referred to herein collectively as WI-FI). Draft 802.11 standards are also contemplated. In some configurations, the WLAN is implemented utilizing one or more wireless WI-FI access points. In some configurations, one or more of the wireless WI-FI access points are another computing device with connectivity to a WWAN that are functioning as a WI-FI hotspot. The WLAN component 924 is configured to connect to the network 956 via the WI-FI access points. Such connections may be secured via various encryption technologies including, but not limited to, WI-FI Protected Access (“WPA”), WPA2, Wired Equivalent Privacy (“WEP”), and the like.
The network 956 may be a WPAN operating in accordance with Infrared Data Association (“IrDA”), BLUETOOTH, wireless Universal Serial Bus (“USB”), Z-Wave, ZIGBEE, or some other short-range wireless technology. In some configurations, the WPAN component 926 is configured to facilitate communications with other devices, such as peripherals, computers, or other computing devices via the WPAN.
The sensor components 908 include a magnetometer 928, an ambient light sensor 930, a proximity sensor 932, an accelerometer 934, a gyroscope 936, and a Global Positioning System sensor (“GPS sensor”) 938. It is contemplated that other sensors, such as, but not limited to, temperature sensors or shock detection sensors, also may be incorporated in the computing device architecture 900.
The I/O components 910 include a display 940, a touchscreen 942, a data I/O interface component (“data I/O”) 944, an audio I/O interface component (“audio I/O”) 946, a video I/O interface component (“video I/O”) 948, and a camera 950. In some configurations, the display 940 and the touchscreen 942 are combined. In some configurations two or more of the data I/O component 944, the audio I/O component 946, and the video I/O component 948 are combined. The I/O components 910 may include discrete processors configured to support the various interfaces described below or may include processing functionality built-in to the processor 902.
The illustrated power components 912 include one or more batteries 952, which can be connected to a battery gauge 954. The batteries 952 may be rechargeable or disposable. Rechargeable battery types include, but are not limited to, lithium polymer, lithium ion, nickel cadmium, and nickel metal hydride. Each of the batteries 952 may be made of one or more cells.
The power components 912 may also include a power connector, which may be combined with one or more of the aforementioned I/O components 910. The power components 912 may interface with an external power system or charging equipment via an I/O component.
Although the subject matter presented herein has been described in language specific to computer structural features, methodological and transformative acts, specific computing machinery, and computer readable media, it is to be understood that the subject matter set forth in the appended claims is not necessarily limited to the specific features, acts, or media described herein. Rather, the specific features, acts and mediums are disclosed as example forms of implementing the claimed subject matter.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. Various modifications and changes can be made to the subject matter described herein without following the example configurations and applications illustrated and described, and without departing from the scope of the present disclosure, which is set forth in the following claims.
In closing, although the various configurations have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended representations is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed subject matter.
The present disclosure is made in light of the following clauses:
Clause 1: A computer-implemented method for controlling transactions, where the method includes: in response to receiving a first transaction, creating a first contract block on a blockchain, the first contract block storing an identifier of a seller entity, an identifier of a first buyer entity, and an identifier of an intermediary entity; storing funds data to the blockchain, the funds data indicating funds are committed to the first transaction by the first buyer entity; creating a refund code authorized by a first refund transaction block, the refund code configured to refund the committed funds for the first transaction when a seller digital signature or an intermediary digital signature are received; linking the first refund transaction block to the first contract block; creating a payment code authorized by a first payment transaction block, the payment code configured to transfer the committed funds for the first transaction to an account of the seller entity when a first buyer entity digital signature or the intermediary entity digital signature are received; and linking the first payment transaction block to the first contract block.
Clause 2: The computer-implemented method of Clause 1, further comprising verifying that either the seller digital signature or the intermediary digital signature is partially based on data within the first refund transaction block before the refund of the committed funds.
Clause 3: The computer-implemented method of Clause 1, further comprising verifying that either the first buyer digital signature or the intermediary digital signature is partially based on data within the first payment transaction block before the transfer of the committed funds.
Clause 4: The computer-implemented method of Clause 1, where the identifier of the buyer entity is a public key.
Clause 5: The computer-implemented method of Clause 1, where: the identifier of the seller entity is a public key.
Clause 6: The computer-implemented method of Clause 1, where: the method includes creating a multisignature address using a public key for the first buyer entity, a public key for the seller entity, and a public key for the intermediary entity; creating a first contract block on a blockchain for a transaction comprises creating the first contract block on the blockchain with the multisignature address and a transfer script that requires at least two of the public key for the first buyer entity, the public key for the seller entity, and the public key for the intermediary entity to transfer the committed funds for the first transaction; creating a first refund transaction block configured to refund the committed funds for the first transaction to the first buyer entity includes signing the first refund transaction block by the first buyer entity such that the first refund transaction block is configured to transfer the committed funds for the first transaction to the first buyer entity when data in the first refund transaction block is signed by the intermediary entity; and creating a first payment transaction block configured to transfer the committed funds for the first transaction to the seller entity includes signing the first payment transaction block by the first buyer entity such that the first payment transaction block is configured to transfer the committed funds for the first transaction to the seller entity when data in the first payment transaction block is signed by the intermediary entity.
Clause 7: The computer-implemented method of Clause 1, where the method further includes: in response to receiving a second transaction, creating a second contract block on the blockchain, the second contract block storing the identifier of the seller entity, an identifier of a second buyer entity and the identifier of the intermediary entity; storing funds data for the second transaction to the blockchain, the funds data indicating funds are committed to the second transaction by the first buyer entity; creating a second refund transaction block configured to refund the committed funds for the second transaction to the second buyer entity when data of the second refund transaction block is signed by at least one of the seller entity and the intermediary entity and linking the second refund transaction block to the second contract block; creating a second payment transaction block configured to transfer the committed funds for the second transaction to the seller entity when data of the second payment transaction block is signed by at least one of the second buyer entity and the intermediary entity and linking the second payment transaction block to the second contract block; and refunding the committed funds for the first transaction to the first buyer entity by signing the first refund transaction block by at least one of the seller entity and the intermediary entity.
Clause 8: A computer-implemented method for controlling auction transactions on a blockchain, the method comprising: in response to receiving a first bid transaction, creating a first auction transaction data block on a blockchain for the first bid transaction, the first bid transaction block storing an identifier of a seller entity, an identifier of a first bidder entity and an identifier of an intermediary entity; storing first funds data to the blockchain, the first funds data indicating funds are committed to the first bid transaction by the first bidder entity; creating a first refund code authorized by a first refund transaction block, the first refund code configured to refund the committed funds for the first bid transaction to the identifier of the first bidder entity when a seller digital signature or an intermediary digital signature are received; linking the first refund transaction block to the first auction transaction data block; and creating a first payment code authorized by a first payment transaction block, the first payment code configured to transfer the committed funds for the first bid transaction to an account for the seller entity when a first bidder entity digital signature or the intermediary entity digital signature are received; and linking the first payment transaction block to the first auction transaction data block.
Clause 9: The computer-implemented method of Clause 8, where the method includes: in response to receiving a second bid transaction, creating a second auction transaction data block on the blockchain, the second bid transaction block storing the identifier of the seller entity, an identifier of a second bidder entity and the identifier of the intermediary entity; storing second funds data to the blockchain, the second funds data indicating funds are committed to the second bid transaction by the second bidder entity; creating a second refund code authorized by a second refund transaction block, the second refund code configured to refund the committed funds for the second transaction to the identifier of the second bidder entity when the seller digital signature or the intermediary digital signature are received; linking the second refund transaction block to the second auction transaction data block; creating a second payment code authorized by a second payment transaction block, the second payment code configured to transfer the committed funds for the second transaction to the account of the seller entity when a second bidder entity digital signature or the intermediary entity digital signature are received; linking the second payment transaction block to the second auction transaction data block; and refunding the committed funds for the first transaction to the identifier of the first bidder entity by the intermediary digitally signing the first refund transaction block.
Clause 10: The computer-implemented method of Clause 9, where step of refunding the committed funds for the first transaction to identifier of the first bidder entity is performed automatically responsive to receiving the second bid transaction.
Clause 11: The computer-implemented method of Clause 9, where the method includes at least one of the steps of: verifying that either the seller digital signature or the intermediary digital signature is partially based on data within the first refund transaction block before the refund of the committed funds for the first bid transaction to the first buyer entity; verifying that either the seller digital signature or the intermediary digital signature is partially based on data within the second refund transaction block before the refund of the committed funds for the second bid transaction to the second buyer entity; verifying that either the first buyer digital signature or the intermediary digital signature is partially based on data within the first payment transaction block before transferring the committed funds for the first bid transaction to the seller entity; and verifying that either the second buyer digital signature or the intermediary digital signature is partially based on data within the second payment transaction block before transferring the committed funds for the second bid transaction to the seller entity.
Clause 12: The computer-implemented method of Clause 11, where at least one of: the identifier of the first bidder entity comprises a public key for the first bidder entity; the identifier of the second bidder entity comprises a public key for the second bidder entity; the identifier of the seller entity comprises a public key for the seller entity; and the identifier of the intermediary entity comprises a public key for the intermediary entity.
Clause 13: The computer-implemented method of Clause 8, the method including: creating a genesis auction contract data block by the intermediary, the genesis auction contract data block storing the identifier of the seller entity and the identifier of the intermediary entity; the step of creating a first auction transaction data block on a blockchain for a first bid transaction includes linking the first auction transaction data block to the genesis auction contract data block; and the genesis auction contract data block includes code that, when executed by a blockchain platform, perform methods for one or more of the steps of creating a first auction transaction data block on a blockchain for a first bid transaction, creating a first refund transaction block configured to refund the committed funds for the first bid transaction to the first buyer entity, and creating a first payment transaction block configured to transfer the committed funds for the first transaction to the seller entity.
Clause 14: The computer-implemented method of Clause 8, the method including: determining when the auction has ended and identifying a winning bidder; paying funds committed by the winning bidder to the seller entity by signing by at least one of the winning bidder and the intermediary entity a payment transaction block configured to transfer the funds committed by the winning bidder to the seller entity.
Clause 15: Computer storage media having computer executable instructions stored thereon which, when executed by one or more processors, cause the processors to execute a computer-implemented method for controlling transactions, the method comprising: in response to receiving a first transaction, creating a first contract block on a blockchain, the first contract block storing an identifier of a seller entity, an identifier of a first buyer entity, and an identifier of an intermediary entity; storing funds data to the blockchain, the funds data indicating funds are committed to the first transaction by the first buyer entity; creating a refund code authorized by a first refund transaction block, the refund code configured to refund the committed funds for the first transaction when a seller digital signature or an intermediary digital signature are received; linking the first refund transaction block to the first contract block; creating a payment code authorized by a first payment transaction block, the payment code configured to transfer the committed funds for the first transaction to an account of the seller entity when a first buyer entity digital signature or the intermediary entity digital signature are received; and linking the first payment transaction block to the first contract block.
Clause 16: The computer storage media of Clause 15, the method further comprising at least one of: verifying that either the seller digital signature or the intermediary digital signature is partially based on data within the first refund transaction block before the refund of the committed funds; and verifying that either the first buyer digital signature or the intermediary digital signature is partially based on data within the first payment transaction block before the transfer of the committed funds.
Clause 17: The computer storage media of Clause 15, where at least one of: the identifier of the first buyer entity is a public key for the first buyer entity; the identifier of the seller entity is a public key for the seller entity; and the identifier of the intermediary entity is a public key for the intermediary entity.
Clause 18. The computer storage media of Clause 15, where the method includes: transferring the committed funds for the first transaction to the seller entity by signing data in the first payment transaction block by at least one of the first buyer entity and the intermediary entity.
Clause 19: The computer storage media of Clause 15, where: the method includes creating a multisignature address using a public key for the first buyer entity, a public key for the seller entity, and a public key for the intermediary entity; creating a first contract block on a blockchain for a transaction comprises creating the first contract block on the blockchain with the multisignature address and a transfer script that requires at least two of the public key for the first buyer entity, the public key for the seller entity, and the public key for the intermediary entity to transfer the committed funds for the first transaction; creating a first refund transaction block configured to refund the committed funds for the first transaction to the first buyer entity includes signing the first refund transaction block by the first buyer entity such that the first refund transaction block is configured to transfer the committed funds for the first transaction to the first buyer entity when data in the first refund transaction block is signed by the intermediary entity; and creating a first payment transaction block configured to transfer the committed funds for the first transaction to the seller entity includes signing the first payment transaction block by the first buyer entity such that the first payment transaction block is configured to transfer the committed funds for the first transaction to the seller entity when data in the first payment transaction block is signed by the intermediary entity.
Clause 20: The computer storage media of Clause 15, where the method further includes: creating a second contract block on the blockchain for a second transaction, the second contract block storing the identifier of the seller entity, an identifier of a second buyer entity and the identifier of the intermediary entity; committing funds for the second transaction to the blockchain by the second buyer entity; creating a second refund transaction block configured to refund the committed funds for the second transaction to the second buyer entity when data in the second refund transaction block is signed by at least one of the seller entity and the intermediary entity and linking the second refund transaction block to the second contract block; creating a second payment transaction block configured to transfer the committed funds for the second transaction to the seller entity when data in the second payment transaction block is signed by at least one of the second buyer entity and the intermediary entity and linking the second payment transaction block to the second contract block; and refunding the committed funds for the first transaction to the first buyer entity by signing data in the first refund transaction block by at least one of the seller entity and the intermediary entity.
This patent application is a continuation of U.S. patent application Ser. No. 16/041,658, filed Jul. 20, 2018, which claims priority to U.S. Provisional Patent Application No. 62/612,091, filed Dec. 29, 2017. Each of the aforementioned applications is herein incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62612091 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16041658 | Jul 2018 | US |
Child | 18371945 | US |