The present invention relates to secure computation techniques. In particular, it relates to techniques for joining two tables while maintaining confidentiality.
A technique described in Non-patent Literature 1 is known as a technique for joining two tables while maintaining confidentiality.
With the conventional table joining, however, so-called inner join can be performed but so-called outer join cannot be performed.
The present invention is aimed at providing a secure joining system, a method for the same, a secure computing apparatus, and a program that can perform outer join.
A secure joining system according to an aspect of the present invention is a secure joining system including a plurality of secure computing apparatuses, where F, Fk, and Fv are arbitrary rings; [α] is a share generated by secret sharing of α, with α being an arbitrary vector or permutation; in and n are predetermined integers greater than or equal to 1; u is a predetermined value; r∈Fkm is a vector of a key of a first table; d∈Fvm is a vector of an attribute of the first table; there is no overlap of keys in the first table; and x∈Fkn is a vector of a key of a second table. The plurality of secure computing apparatuses include: a plurality of secure strong mapping computation units that use a share [r] of the vector r, a share [x] of the vector x, a share [d] of the vector d, and the u to calculate a share [y] of a vector y which is output when strong mapping that maps a value of each element of the vector r to a value of a corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to the u is applied to the vector x, where the elements of the vector r are a domain of definition and the elements of the vector d are a range; a plurality of second permutation application units that use a share [g] of a vector g∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 and use a share [σ] of a permutation σ for stable sorting of a vector k which is generated by joining the vector x and a same vector as the vector r to generate a share [σ(g)] of a vector σ(g) which is generated by application of the permutation σ to the vector g; a plurality of third vector generation units that use the share [σ(g)] to generate a share [σ(g′)] of a vector σ(g′), each element of which is a sum of elements of the vector σ(g) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of second inverse permutation application units that use the share [σ(g′)] and the share [g′] to generate a share [g′] of a vector g′ which is generated by application of an inverse permutation σ−1 of the permutation σ to the vector σ(g′); a plurality of second vector extraction units that use the share [g′] to generate a share [f1′] of a vector f1′ which is generated by extracting m+1th to m+nth elements of the vector g′; a plurality of modified second table generation units that use the share [f1′] and the share [y] to generate a modified second table by joining the vector f1′, a table having the ith element of the attribute of the second table as uv2 if f1′i=0 with i=1, . . . , n, and the vector y, where uv2 is a predetermined value; a plurality of third permutation application units that use the share [σ] and a share [e] of a vector e∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 to generate a share [σ(e)] of a vector σ(e) which is generated by application of the permutation σ to the vector e; a plurality of fourth vector generation units that use the share [σ(e)] to generate a share [σ(e′)] of a vector σ(e′), each element of which is a sum of elements of the vector σ(e) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of shifting units that use the share [σ(e′)] to generate a share [σ(e″)] of a vector σ(e″) which is generated by shifting elements of the vector σ(e) each by one; a plurality of third inverse permutation application units that use the share [σ(e″)] and the share [σ] to generate a share [e″] of a vector e″ which is generated by application of the inverse permutation σ−1 of the permutation σ to the vector σ(e″); a plurality of bit inversion units that use the share [e″] to generate a share [f] of a vector f which is generated by inverting 0 and 1 of elements of the vector e″; a plurality of third vector extraction units that use the share [f] to generate a share [f′] of a vector f′ which is generated by extracting in elements of the vector f from the left; a plurality of modified first table joining units that use the share [f′], the share [r], and the share [d] to generate a modified first table by joining the vector f′, a table having the ith element of the key of the first table as uk and having the ith element of the attribute of the first table as uv1 if f′i=0 with i=1, . . . , m, and a vector with elements being uv2 as a vector corresponding to the attribute of the second table, where f′i is the ith element of the vector f′, ri is the ith element of the vector r, and uk, uv1, and uv2 are predetermined values; a plurality of first table joining units that generate a joined table by joining the modified second table and the modified first table; and a plurality of first table formatting units that use the joined table and the shares [f1′] and [f′] to generate a formatted joined table by extracting, from the joined table, records for which elements of the vector f1′ and the vector f′ are 1.
A secure joining system according to an aspect of the present invention is a secure joining system including a plurality of secure computing apparatuses, where F, Fk, and Fv are arbitrary rings; [α] is a share generated by secret sharing of α, with α being an arbitrary vector or permutation; in and n are predetermined integers greater than or equal to 1; u is a predetermined value; r∈Fkm is a vector of a key of a first table; d∈Fvm is a vector of an attribute of the first table; there is no overlap of keys in the first table; and x∈Fkn is a vector of a key of a second table. The plurality of secure computing apparatuses include: a plurality of secure strong mapping computation units that use a share [r] of the vector r, a share [x] of the vector x, a share [d] of the vector d, and the u to calculate a share [y] of a vector y which is output when strong mapping that maps a value of each element of the vector r to a value of a corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to the u is applied to the vector x, where the elements of the vector r are a domain of definition and the elements of the vector d are a range; a plurality of second permutation application units that use a share [g] of a vector g∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 and use a share [σ] of a permutation σ for stable sorting of a vector k which is generated by joining the vector x and a same vector as the vector r to generate a share [σ(g)] of a vector σ(g) which is generated by application of the permutation σ to the vector g; a plurality of third vector generation units that use the share [σ(g)] to generate a share [σ(g′)] of a vector σ(g′), each element of which is a sum of elements of the vector σ(g) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of second inverse permutation application units that use the share [σ(g′)] and the share [g′] to generate a share [g′] of a vector g′ which is generated by application of an inverse permutation σ−1 of the permutation σ to the vector σ(g′); a plurality of second vector extraction units that use the share [g′] to generate a share [f1′] of a vector f1′ which is generated by extracting m+1th to m+nth elements of the vector g′; a plurality of modified second table generation units that use the share [f1′] and the share [y] to generate a modified second table by joining the vector f1′, a table having the ith element of the attribute of the second table as uv2 if f1′i=0 with i=1, . . . , n, and the vector y, where uv2 is a predetermined value; a plurality of third permutation application units that use the share [σ] and a share [e] of a vector e∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 to generate a share [σ(e)] of a vector σ(e) which is generated by application of the permutation σ to the vector e; a plurality of fourth vector generation units that use the share [σ(e)] to generate a share [σ(e′)] of a vector σ(e′), each element of which is a sum of elements of the vector σ(e) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of shifting units that use the share [σ(e′)] to generate a share [σ(e″)] of a vector σ(e″) which is generated by shifting elements of the vector σ(e) each by one; a plurality of third inverse permutation application units that use the share [σ(e″)] and the share [σ] to generate a share [e″] of a vector e″ which is generated by application of the inverse permutation σ−1 of the permutation σ to the vector σ(e″); a plurality of bit inversion units that use the share [e″] to generate a share [f] of a vector f which is generated by inverting 0 and 1 of elements of the vector e″; a plurality of third vector extraction units that use the share [f] to generate a share [f′] of a vector f′ which is generated by extracting in elements of the vector f from the left; a plurality of modified first table joining units that use the share [f′], the share [r], and the share [d] to generate a modified first table by joining the vector f′, a table having the ith element of the key of the first table as uk and having the ith element of the attribute of the first table as uv1 if f′i=0 with i=1, . . . , m, and a vector with elements being uv2 as a vector corresponding to the attribute of the second table, where f′i is the ith element of the vector f′, ri is the ith element of the vector r, and uk, uv1, and uv2 are predetermined values; and a plurality of first table joining units that generate a joined table by joining the modified second table and the modified first table, and output a table formed from a portion other than the vector f1′ and the vector f′ in the joined table.
A secure joining system according to an aspect of the present invention is a secure joining system including a plurality of secure computing apparatuses, where F, Fk, and Fv are arbitrary rings; [α] is a share generated by secret sharing of α, with α being an arbitrary vector or permutation; in and n are predetermined integers greater than or equal to 1; u is a predetermined value; r∈Fkm is a vector of a key of a first table; d∈Fvm is a vector of an attribute of the first table; there is no overlap of keys in the first table; and x∈Fkn is a vector of a key of a second table. The plurality of secure computing apparatuses include: a plurality of secure strong mapping computation units that use a share [r] of the vector r, a share [x] of the vector x, a share [d] of the vector d, and the u to calculate a share [y] of a vector y which is output when strong mapping that maps a value of each element of the vector r to a value of a corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to the u is applied to the vector x, where the elements of the vector r are a domain of definition and the elements of the vector d are a range; and a plurality of modified second table generation units that use the share [y] to generate a modified second table by joining the second table and the vector y.
A secure joining system according to an aspect of the present invention is a secure joining system including a plurality of secure computing apparatuses, where F, Fk, and Fv are arbitrary rings; [α] is a share generated by secret sharing of α, with α being an arbitrary vector or permutation; in and n are predetermined integers greater than or equal to 1; u is a predetermined value; r∈Fkm is a vector of a key of a first table; d∈Fvm is a vector of an attribute of the first table; there is no overlap of keys in the first table; and x∈Fkn is a vector of a key of a second table. The plurality of secure computing apparatuses include: a plurality of secure strong mapping computation units that use a share [r] of the vector r, a share [x] of the vector x, a share [d] of the vector d, and the u to calculate a share [y] of a vector y which is output when strong mapping that maps a value of each element of the vector r to a value of a corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to the u is applied to the vector x, where the elements of the vector r are a domain of definition and the elements of the vector d are a range; a plurality of modified second table generation units that use the share [y] to generate a modified second table by joining the second table and the vector y; a plurality of third permutation application units that use a share [e] of a vector e∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 and use a share [σ] of a permutation σ for stable sorting of a vector k which is generated by joining the vector x and a same vector as the vector r to generate a share [σ(e)] of a vector σ(e) which is generated by application of the permutation σ to the vector e; a plurality of fourth vector generation units that use the share [σ(e)] to generate a share [σ(e′)] of a vector σ(e′), each element of which is a sum of elements of the vector σ(e) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of shifting units that use the share [σ(e′)] to generate a share [σ(e″)] of a vector σ(e″) which is generated by shifting elements of the vector σ(e) each by one; a plurality of third inverse permutation application units that use the share [σ(e″)] and the share [σ] to generate a share [e″] of a vector e″ which is generated by application of an inverse permutation σ−1 of the permutation σ to the vector σ(e″); a plurality of bit inversion units that use the share [e″] to generate a share [f] of a vector f which is generated by inverting 0 and 1 of elements of the vector e″; a plurality of third vector extraction units that use the share [f] to generate a share [f′] of a vector f′ which is generated by extracting in elements of the vector f from the left; a plurality of modified first table joining units that use the share [f′], the share [r], and the share [d] to generate a modified first table by joining the vector f′, a table having the ith element of the key of the first table as uk and having the ith element of the attribute of the first table as uv1 if f′i=0 with i=1, . . . , m, and a vector with elements being uv2 as a vector corresponding to the attribute of the second table, where f′i is the ith element of the vector f′, ri is the ith element of the vector r, and uk, uv, and uv2 are predetermined values; a plurality of second table formatting units that use the modified first table and the share [f′] to generate a formatted modified first table by extracting, from the modified first table, records for which elements of the vector f′ are 1; and a plurality of second table joining units that generate a joined table by joining the modified second table and the formatted modified first table.
A secure joining system according to an aspect of the present invention is a secure joining system including a plurality of secure computing apparatuses, where F, Fk, and Fv are arbitrary rings; [α] is a share generated by secret sharing of α, with α being an arbitrary vector or permutation; in and n are predetermined integers greater than or equal to 1; u is a predetermined value; r∈Fkm is a vector of a key of a first table; d∈Fvm is a vector of an attribute of the first table; there is no overlap of keys in the first table; and x∈Fkn is a vector of a key of a second table. The plurality of secure computing apparatuses include: a plurality of secure strong mapping computation units that use a share [r] of the vector r, a share [x] of the vector x, a share [d] of the vector d, and the u to calculate a share [y] of a vector y which is output when strong mapping that maps a value of each element of the vector r to a value of a corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to the u is applied to the vector x, where the elements of the vector r are a domain of definition and the elements of the vector d are a range; a plurality of modified second table generation units that use the share [y] to generate a modified second table by joining the second table and the vector y; a plurality of third permutation application units that use a share [e] of a vector e∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1 and use a share [σ] of a permutation σ for stable sorting of a vector k which is generated by joining the vector x and a same vector as the vector r to generate a share [σ(e)] of a vector σ(e) which is generated by application of the permutation σ to the vector e; a plurality of fourth vector generation units that use the share [σ(e)] to generate a share [σ(e′)] of a vector σ(e′), each element of which is a sum of elements of the vector σ(e) up to an element corresponding to that element, the elements including the element corresponding to that element; a plurality of shifting units that use the share [σ(e′)] to generate a share [σ(e″)] of a vector σ(e″) which is generated by shifting elements of the vector σ(e) each by one; a plurality of third inverse permutation application units that use the share [σ(e″)] and the share [σ] to generate a share [e″] of a vector e″ which is generated by application of an inverse permutation σ−1 of the permutation σ to the vector σ(e″); a plurality of bit inversion units that use the share [e″] to generate a share [f] of a vector f which is generated by inverting 0 and 1 of elements of the vector e″; a plurality of third vector extraction units that use the share [f] to generate a share [f′] of a vector f′ which is generated by extracting in elements of the vector f from the left; a plurality of modified first table joining units that use the share [f′], the share [r], and the share [d] to generate a modified first table by joining the vector f′, a table having the ith element of the key of the first table as uk and having the ith element of the attribute of the first table as uv1 if f′i=0 with i=1, . . . , m, and a vector with elements being uv2 as a vector corresponding to the attribute of the second table, where f′i is the ith element of the vector f′, ri is the ith element of the vector r, and uk, uv1, and uv2 are predetermined values; and a plurality of second table joining units that generate a table that joins the modified second table and a table excluding the vector f′ portion in the modified first table.
Outer join can be performed.
Embodiments of the present invention are described below in detail. In the drawings, components having the same function are given the same reference characters and overlapping description is omitted.
Before describing the embodiments of the secure joining system and method, an embodiment of a secure strong mapping computing system and method which is used in the embodiments of the secure joining system and method is described.
[Secure Strong Mapping Computing System and Method]
Referring to
Referring to
By the components of the secure computing apparatus 1n (1≤n≤N) performing processing at each step described later in cooperation with the components of other secure computing apparatus 1n′ (n′=1, . . . , N; where n≠n′), the secure strong mapping computing method according to the embodiment is implemented.
The processing at each step is performed in secure computation. That is, the secure computing apparatus 1n performs the processing at each step without reconstructing a share, in other words, without knowing the content of the share.
The secure computing apparatus 1n is a special apparatus configured by loading of a special program into a well-known or dedicated computer having a central processing unit (CPU), main storage unit (random access memory: RAM), and the like, for example. The secure computing apparatus 1n executes various kinds of processing under control of the central processing unit, for example. Data input to the secure computing apparatus 1n and data resulting from processing are stored in the main storage unit, for example, and the data stored in the main storage unit is read into the central processing unit as necessary to be used for other processing. The components of the secure computing apparatus 1n may at least partially consist of hardware such as an integrated circuit.
For the following description, [α] is assumed to be a share generated by secret sharing of α, with α being an arbitrary vector or an arbitrary permutation.
Referring to
The secure strong mapping computing system and method are for computing a vector y which is output when a mapping defined by a vector r∈Fkm corresponding to the domain of definition, a vector d∈Fvm corresponding to a range, and an outlier u is applied to a vector x corresponding to input. m and n are predetermined integers greater than or equal to 1, the outlier u is a predetermined value, r∈Fkm is a predetermined vector with elements different from each other, and d∈Fvm and x∈Fkn are predetermined vectors.
When ri is the ith element of the vector r, di is the ith element of the vector d, xi is the ith element of the vector x, and yi is the ith element of the vector y, this mapping is a mapping that assumes yi=d when j with xi=rj exists and assumes yi=u when j with xi=rj does not exist.
For example, in the case of the vector r=(1, 3, 2), the vector d=(2, 5, 1), u=−1, and the vector x=(1, 0, 2, 5, 3), application of the mapping to the vector x=(1, 0, 2, 5, 3) gives a vector: the vector y=(2, −1, 1, −1, 5).
<Step S1>
A share [r] of the vector r and a share [x] of the vector x are input to the first vector joining units 111, . . . , 11N.
The first vector joining units 111, . . . , 11N each generate a share [k] of a vector k∈[Fk]2m+n which is generated by joining the vector r, the vector x, and the same vector as the vector r (step S1).
The generated share [k] is output to the first permutation calculation units 121, . . . , 12N.
For example, assume that the vector r=(1, 3, 2) and the vector x=(1, 0, 2, 5, 3) hold. Then, the vector k=(1, 3, 2, 1, 0, 2, 5, 3, 1, 3, 2) is yielded.
<Step S2>
The share [k] is input to the first permutation calculation units 121, . . . , 12N.
The first permutation calculation units 121, . . . , 12N each use the share [k] to generate a share [σ] of a permutation σ for stable sorting of the vector k (step S2).
The share [σ] is output to the first vector generation units 131, . . . , 13N.
For example, the permutation σ=(4, 0, 3, 8, 2, 5, 10, 1, 7, 9, 6) is yielded when the vector k=(1, 3, 2, 1, 0, 2, 5, 3, 1, 3, 2).
Generation of the share [σ] of the permutation σ for performing a stable sort can be implemented with the approach of Reference Literature 1, for example.
<Step S3>
A share [d] of the vector d and u are input to the first vector generation units 131, . . . , 13N.
The first vector generation units 131, . . . , 13N each use the share [d] and u to generate a share [d′] of a vector d′, which is a vector generated by subtracting u from the respective elements of the vector d (step S3).
The share [d′] is output to the second vector joining units 141, . . . , 14N.
For example, the vector d′=(3, 6, 2) is yielded when the vector d=(2, 5, 1) and u=−1.
<Step S4>
The share [d′] is input to the second vector joining units 141, . . . , 14N.
The second vector joining units 141, . . . , 14N each use the share [d′] to generate a share [v] of a vector v∈[Fv]2m+n which is generated by joining the vector d′, a 0-vector with a number of elements of n, and a vector −d′ which is a vector generated by inverting the signs of the respective elements of the vector d′ (step S4).
The share [v] is output to the first permutation application units 151, . . . , 15N.
For example, the vector v=(3, 6, 2, 0, 0, 0, 0, 0, −3, −6, −2) is yielded when the vector d′=(3, 6, 2) and n=5.
<Step S5>
The share [v] and the share [σ] are input to the first permutation application units 151, . . . , 15N.
The first permutation application units 151, . . . , 15N each use the share [v] and the share [σ] to generate a share [σ(v)] of a vector σ(v) which is generated by application of the permutation σ to the vector v (step S5).
The share [σ(v)] is output to the second vector generation units 161, . . . , 16N.
For example, the vector σ(v)=(0, 3, 0, −3, 2, 0, −2, 6, 0, −6, 0) is yielded when the permutation σ=(4, 0, 3, 8, 2, 5, 10, 1, 7, 9, 6) and the vector v=(3, 6, 2, 0, 0, 0, 0, 0, −3, −6, −2).
<Step S6>
The share [σ(v)] is input to the second vector generation units 161, . . . , 16N.
The second vector generation units 161, . . . , 16N each use the share [σ(v)] to generate a share [σ(y)] of a vector σ(y), each element of which is the sum of u and the sum of the elements of the vector σ(v) up to the element corresponding to that element, the elements including the element corresponding to that element (step S6). In other words, the second vector generation units 161, . . . , 16N calculate the prefix-sum of the vector σ(v) with the initial value being u, as σ(y). When σ(v)i is the ith element of σ(v) and σ(y)i is the ith element of σ(y), σ(y)i=u+Σj=1iσ(v)j is yielded.
The share [σ(y)] is output to the first inverse permutation application units 171, . . . , 17N.
For example, the vector σ(y)=(−1, 2, 2, −1, 1, 1, −1, 5, 5, −1, −1) is yielded when the vector σ(v)=(0, 3, 0, −3, 2, 0, −2, 6, 0, −6, 0).
<Step S7>
The share [σ(y)] and the share [σ] are input to the first inverse permutation application units 171, . . . , 17N.
The first inverse permutation application units 171, . . . , 17N each use the share [σ(y)] and the share [σ] to generate a share [σ−1(σ(y))] of a vector σ−1(σ(y)) which is generated by application of an inverse permutation σ−1 of the permutation σ to the vector σ(y) (step S7).
The share [σ−1(σ(y))] is output to the first vector extraction units 181, . . . , 18N.
For example, the vector σ−1(σ(y))=(2, 5, 1, 2, −1, 1, −1, 5, −1, −1, −1) is yielded when the permutation σ=(4, 0, 3, 8, 2, 5, 10, 1, 7, 9, 6) and the vector σ(y)=(−1, 2, 2, −1, 1, 1, −1, 5, 5, −1, −1).
<Step S8>
The share [σ−1(σ(y))] is input to the first vector extraction units 181, . . . , 18N.
The first vector extraction units 181, . . . , 18N each use the share [σ−1(σ(y))] to obtain a share [y] of the vector y which is generated by extracting the m+1th to the m+nth elements of the vector σ−1(σ(y)) (step S8).
For example, the vector y=(2, −1, 1, −1, 5) is yielded when the vector σ−1(σ(y))=(2, 5, 1, 2, −1, 1, −1, 5, −1, −1, −1).
The vector y=(2, −1, 1, −1, 5) represents a vector that is output when applying the mapping with the vector r=(1, 3, 2), the vector d=(2, 5, 1), u=−1, and the vector x=(1, 0, 2, 5, 3) to the vector x=(1, 0, 2, 5, 3). The first element “1”, the third element “2”, and the fifth element “3” of the vector x=(1, 0, 2, 5, 3) have been mapped to the first element “2”, the third element “1”, and the fifth element “5” of the vector y=(2, −1, 1, −1, 5), respectively, via the mapping. Also, the second element “0” and the fourth element “5” of the vector x=(1, 0, 2, 5, 3) have been mapped to the outlier “−1” via the mapping because they are values that do not exist in the elements of the vector r, which corresponds to the domain of definition.
Note that, when the first vector joining unit 11n, the first permutation calculation unit 12n, the first vector generation unit 13n, the second vector joining unit 14n, the first permutation application unit 15n, the second vector generation unit 16n, the first inverse permutation application unit 17n, and the first vector extraction unit 18n constitute a secure strong mapping computation unit, the multiple secure strong mapping computation units can be said to use the share [r] of the vector r, the share [x] of the vector x, the share [d] of the vector d, and u to calculate the share [y] of the vector y which is output when strong mapping that maps the value of each element of the vector r to the value of the corresponding element of the vector d and maps a value that does not exist in the elements of the vector r to u is applied to the vector x, where the elements of the vector r are the domain of definition and the elements of the vector d are the range.
In this manner, mapping computation can be performed while detecting outliers with the secure strong mapping computing system and method.
[Secure Joining System and Method for Performing Left Outer Join]
Referring to
The secure joining system includes N (≥2) secure computing apparatuses 11, . . . , 1N as with the secure strong mapping computing system. In this embodiment, the secure computing apparatuses 11, . . . , 1N are each connected to the communication network 2. The communication network 2 is a circuit-switched or packet-switched communication network configured to allow communications between connected apparatuses, and can be the Internet, a local area network (LAN), a wide area network (WAN), and the like, for example. The apparatuses do not necessarily be capable of communicating online via the communication network 2. For example, they may be configured such that information entered to the secure computing apparatuses 11, . . . , 1N is stored in a portable recording medium such as magnetic tape or a USB memory and the information is entered offline to the secure computing apparatuses 11, . . . , 1N from the portable recording medium.
Referring to
The first vector joining unit 11n, the first permutation calculation unit 12n, the first vector generation unit 13n, the second vector joining unit 14n, the first permutation application unit 15n, the second vector generation unit 16n, the first inverse permutation application unit 17n, and the first vector extraction unit 18n of the secure computing apparatus 1n, which are enclosed by dashed line in
By the components of the secure computing apparatus 1n (1≤n≤N) performing processing at each step described later in cooperation with the components of other secure computing apparatus 1n′ (n′=1, . . . , N; where n≠n′), a secure joining method according to an embodiment is implemented.
The processing at each step is performed in secure computation. That is, the secure computing apparatus 1n performs the processing at each step without reconstructing a share, in other words, without knowing the content of the share.
The secure computing apparatus 1n is a special apparatus configured by loading of a special program into a well-known or dedicated computer having a central processing unit (CPU), main storage unit (random access memory: RAM), and the like, for example. The secure computing apparatus 1n executes various kinds of processing under control of the central processing unit, for example. Data input to the secure computing apparatus 1n and data resulting from processing are stored in the main storage unit, for example, and the data stored in the main storage unit is read into the central processing unit as necessary to be used for other processing. The components of the secure computing apparatus 1n may at least partially consist of hardware such as an integrated circuit.
Referring to
The secure joining system described below performs left outer join of a first table and a second table. In other words, the secure joining system described below joins records that are common to the first table and the second table with records that exist only in the first table while maintaining confidentiality.
Assume that in, n, L1, and L2 are integers greater than or equal to 1. m, n, L1, and L2 may be the same value or different values.
The first table has in records. Each one of the in records has one key and attribute values of L1 attributes. Let k1∈Fkm be a vector of the keys of the first table. It is assumed that there are no overlapping keys in the first table.
The second table has n records. Each one of the n records has one key and attribute values of L2 attributes. Let k2∈Fkn be a vector of the keys of the second table. It is assumed that overlapping keys are permitted in the second table.
For example, assume that the first table has three records and consists of a vector of keys, k1=(3, 5, 9), and a vector of the attribute values of one attribute v1, v1=(100, 19, 85).
Also assume that the second table has four records and consists of a vector of keys, k2=(3, 7, 9, 9), and a vector of the attribute values of one attribute v2, v2=(water, mix au lait, drug, water).
In a case where the first table contains the attribute values of multiple attributes, v1 may be a vector which is a concatenation of the attribute values of the multiple attributes. For example, assume that the first table has two records and contains the attribute values of two attributes, where the vector of the attribute values of the first attribute is v1,1=(29, 169) and the vector of the attribute values of the second attribute is v1,1=(35, 175). In this case, v1 may be the vector v1=((29, 35), (169, 175)), which is a concatenation of the attribute values of these two attributes.
Similarly, in a case where the second table contains the attribute values of multiple attributes, v2 may be a vector which is a concatenation of the attribute values of the multiple attributes.
Since in general a vector with its elements being rings is also a ring, data formed by arranging the values of the respective attributes contained in a record can be considered to be a vector, that is, a ring.
First, with processing at the <step S1> to <step S8> of the secure strong mapping computing system and method described above, the vector y that is output when a mapping defined by r, d, and u is applied to x is calculated, where the vector corresponding to the domain of definition is the vector r=k1, the vector corresponding to the range is the vector d=v1, and the vector corresponding to input is the vector x=k2. This results in the attribute values of the attribute v1 of the first table that correspond to the records of the second table. An attribute value corresponding to a record which is a record of the second table and which corresponds to a key that does not exist in the first table will be the outlier u.
As the processing at <step S1> to <step S8> is similar to the processing of the processing at <step S1> to <step S8> described in Section [Secure strong mapping computing system and method], overlapping description is not repeated here.
For example, in the case of the vector r=k1=(3, 5, 9), the vector d=v1=(100, 19, 85), u=−1, and x=k2=(3, 7, 9, 9), application of the mapping to the vector x=(3, 7, 9, 9) gives a vector: the vector y=(100, −1, 85, 85). Since the second element “7” of the vector x=k2=(3, 7, 9, 9) does not exist in the elements of the vector r=k1=(3, 5, 9), the second element of the vector y=(100, −1, 85, 85) is the outlier u=−1. In this manner, the vector y is calculated such that an attribute value corresponding to a record which is a record of the second table and which corresponds to a key that does not exist in the first table will be the outlier u.
<Step S9>
To the second permutation application units 191, . . . , 19N, a share [g] of a vector g∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1, and the share [σ] are input. Here, F is an arbitrary ring.
The second permutation application units 191, . . . , 19N each generate a share [σ(g)] of a vector σ(g) which is generated by application of the permutation σ to the vector g, using the share [g] of the vector g E [F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1, and the share [σ] (step S9).
The share [σ(g)] is output to the third vector generation units 1101, . . . , 110N.
For example, for example, g=(1, 1, 1, 0, 0, 0, 0, −1, −1, −1) and σ(g)=(1, 0, −1, 1, −1, 0, 1, 0, 0, −1) are yielded when m=3 and n=4 hold and the permutation σ is a defined by the formula (1) below.
Here, each sequence (i, j)T of the permutation σ means that the ith element of the vector to which the permutation is applied is moved to the jth element.
<Step S10>
The share [σ(g)] is input to the third vector generation units 1101, . . . , 110N.
The third vector generation units 1101, . . . , 110N each use the share [σ(g)] to generate a share [σ(g′)] of a vector σ(g′), each element of which is the sum of the elements of the vector σ(g) up to the element corresponding to that element, the elements including the element corresponding to that element (step S10). In other words, the third vector generation units 1101, . . . , 110N calculate the prefix-sum of σ(g) as σ(g′). When σ(g)i is the ith element of σ(g) and σ(g′)i is the ith element of σ(g′), σ(g′)i=Σj=1iσ(g)j is yielded.
The share [σ(g′)] is output to the second inverse permutation application units 1111, . . . , 111N.
For example, σ(g′)=(1, 1, 0, 1, 0, 0, 1, 1, 1, 0) is yielded when σ(g)=(1, 0, −1, 1, −1, 0, 1, 0, 0, −1).
<Step S11>
The share [σ(g′)] and a share [g′] are input to the second inverse permutation application units 1111, . . . , 111N.
The second inverse permutation application units 1111, . . . , 111N each use the share [σ(g′)] and the share [g′] to generate a share [g′] of a vector g′ which is generated by application of the inverse permutation σ−1 of the permutation σ to the vector σ(g′) (step S11).
The share [g′] is output to the second vector extraction units 1121, . . . , 112N.
For example, g′=(1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0) is yielded when σ(g′)=(1, 1, 0, 1, 0, 0, 1, 1, 1, 0).
<Step S12>
The share [g′] is input to the second vector extraction units 1121, . . . , 112N.
The second vector extraction units 1121, . . . , 112N each use the share [g′] to generate a share [f1′] of a vector f1′ which is generated by extracting the m+1th to m+nth elements of the vector g′ (step S12).
The share [f1′] is output to the modified second table generation units 1131, . . . , 113N.
For example, f1′=(1, 0, 1, 1) is yielded when m=3, n=4, and g′=(1, 1, 1, 1, 0, 1, 1, 0, 0, 0).
<Step S13>
The share [f1′] and the share [y] are input to the modified second table generation units 1131, . . . , 113N.
The modified second table generation units 1131, . . . , 113N each use the share [f1′] and the share [y] to generate a modified second table by joining the vector f1′, a table having the ith element of the attribute of the second table as uv2 if f1′i=0 with i=1, . . . , n, and the vector y (step S13). uv2 is a predetermined value.
The modified second table is output to the first table joining units 1211, . . . , 121N.
For example, in a case where the second table consists of the vector of keys, k2=(3, 7, 9, 9), and the vector of the attribute values of the one attribute v2, v2=(water, mix au lait, drug, water), with f1′=(1, 0, 1, 1) and the vector (100, −1, 85, 85), the modified second table will be the table shown below. In the modified second table below, if f1′i=0 with i=1, . . . , n, the ith element of the key of the second table is turned into u=−1.
<Step S14>
To the third permutation application units 1141, . . . , 114N, a share [e] of a vector e∈[F]2m+n which is generated by joining in elements each being 1, n elements each being 0, and in elements each being −1, and the share [σ] are input.
The third permutation application units 1141, . . . , 114N each use the share [e] of the vector e∈[F]2m+n and the share [σ] to generate a share [σ(e)] of a vector σ(e) which is generated by application of the permutation σ to the vector e (step S14).
The share [σ(e)] is output to the fourth vector generation units 1151, . . . , 115N.
For example, for example, g=(1, 1, 1, 0, 0, 0, 0, −1, −1, −1) and σ(g)=(1, 0, −1, 1, −1, 0, 1, 0, 0, −1) are yielded when m=3 and n=4 hold and the permutation σ is a defined by the formula (1) above.
<Step S15>
The share [σ(e)] is input to the fourth vector generation units 1151, . . . , 115N.
The fourth vector generation units 1151, . . . , 115N each use the share [σ(e)] to generate a share [σ(e′)] of a vector σ(e′), each element of which is the sum of the elements of the vector σ(e) up to the element corresponding to that element, the elements including the element corresponding to that element (step S15). In other words, the fourth vector generation units 1151, . . . , 115N calculate the prefix-sum of σ(e) as σ(e′).
The share [σ(e′)] is output to the shifting units 1161, . . . , 116N.
For example, σ(e′)=(1, 1, 0, 1, 0, 0, 1, 1, 1, 0) is yielded when σ(e)=(1, 0, −1, 1, −1, 0, 1, 0, 0, −1).
<Step S16>
The share [σ(e′)] is input to the shifting units 1161, . . . , 116N.
The shifting units 1161, . . . , 116N each use the share [σ(e′)] to generate a share [σ(e″)] of a vector σ(e″) which is generated by shifting the elements of the vector σ(e) by one (step S16). In the case of shifting the elements of the vector σ(e) each by one forward (to the left), the last element (the rightmost element) of the vector σ(e″) is set to 0, for example. Similarly, in the case of shifting the elements of the vector σ(e) each by one backward (to the right), the first element (the leftmost element) of the vector σ(e″) is set to 0, for example.
The share [σ(e″)] is output to the third inverse permutation application units 1171, . . . , 117N.
For example, the vector σ(e″)=(1, 0, 1, 0, 0, 1, 1, 1, 0, 0) is yielded when σ(e′)=(1, 1, 0, 1, 0, 0, 1, 1, 1, 0) and the elements are shifted forward (to the left) by one.
<Step S17>
The share [σ(e″)] and the share [σ] are input to the third inverse permutation application units 1171, . . . , 117N.
The third inverse permutation application units 1171, . . . , 117N each use the share [σ(e″)] and the share [σ] to generate a share [e″] of a vector e″ which is generated by application of the inverse permutation σ−1 of the permutation σ to the vector σ(e″) (step S17).
The share [e″] is output to the bit inversion units 1181, . . . , 118N.
For example, the vector e″=(1, 0, 1, 0, 1, 1, 0, 1, 0, 0) is yielded when the vector σ(e″)=(1, 0, 1, 0, 0, 1, 1, 1, 0, 0) holds and the permutation σ is a defined by the formula (1) above.
<Step S18>
The share [e″] is input to the bit inversion units 1181, . . . , 118N.
The bit inversion units 1181, . . . , 118N each use the share [e″] to generate a share [f] of a vector f which is generated by inverting 0 and 1 of the elements of the vector e″ (step S18).
The share [f] is output to the third vector extraction units 1191, . . . , 119N.
For example, the vector f=(0, 1, 0, 1, 0, 0, 1, 0, 1, 1) is yielded when the vector e″=(1, 0, 1,0, 1, 1,0, 1, 0, 0).
<Step S19>
The share [f] is input to the third vector extraction units 1191, . . . , 119N.
The third vector extraction units 1191, . . . , 119N each use the share [f] to generate a share [f′] of a vector f′ which is generated by extracting in elements of the vector f from the left (step S19).
The share [f′] is output to the modified first table generation units 1201, . . . , 120N.
For example, the vector f′=(0, 1, 0) is yielded when the vector f=(0, 1, 0, 1, 0, 0, 1, 0, 1, 1).
The vector f′ represents the positions of records that exist only in the first table. For example, the vector f′=(0, 1, 0) means that the second record of the first table exists only in the first table and is absent in the second table.
<Step S20>
The share [f′], the share [r], and the share [d] are input to the modified first table generation units 1201, . . . , 120N.
The modified first table generation units 1201, . . . , 120N each use the share [f′], the share [r], and the share [d] to generate a modified first table by joining the vector f′, a table having the ith element of the key of the first table as uk and having the ith element of the attribute of the first table as uv1 if f′i=0 with i=1, . . . , m, and a vector with elements being a predefined value uv2 indicating null as a vector corresponding to the attribute of the second table, where f′i is the ith element of the vector f′, ri is the ith element of the vector r, and uk and uv1 are predetermined values (step S20).
The modified first table is output to the first table joining units 1211, . . . , 121N.
For example, in a case where uk, uv1=−1 and the vector f′=(0, 1, 0) hold, the first table has three records and consists of the vector of keys, k1=(3, 5, 9), and the vector of the attribute values of the one attribute v1, v1=(100, 19, 85), and r=k1 and d=v1 hold, the modified first table will be the table shown below.
<Step S21>
The modified second table and the modified first table are input to the first table joining units 1211, . . . , 121N.
The first table joining units 1211, . . . , 121N each generate a joined table by joining the modified second table and the modified first table (step S21).
For example, when the modified second table is the one shown in (A) above and the modified first table is the one shown in (B) above, the joined table will be the table shown below. In the joined table below, a vector generated by joining the flag vector f1′ and f′ is represented as f′.
<Step S22>
The shares [f1′] and [f′] are input to the first table formatting units 1221, . . . , 122N.
The first table formatting units 1221, . . . , 122N each use the joined table and the shares [f1′] and [f′] to generate a formatted joined table by extracting, from the joined table, records for which the elements of the vector f1′ and the vector f′ (in other words, the elements of the vector f′ which is generated by joining the vector f1′ and the vector f′) are 1 (step S22).
For example, when the joined table is the joined table (C) above, the formatted joined table will be the table shown below.
Alternatively, the first table formatting units 1221, . . . , 122N may generate the formatted joined table by sorting by the vector f′ which is generated by joining the vector f1′ and the vector f′ and thereafter extracting the records for which the elements of the vector f′ are 1. In this case, the share [f′] of the vector f′ may be released.
This formatted joined table is a left outer join of the first table and the second table.
The first table joining units 1221, . . . , 122N may also output a table formed from the portion other than the vector f1′ and the vector f′ in the joined table (in other words, the portion other than the vector f′). This enables outer join that does not reveal the number of output records. In this case, the secure joining system may omit the first table formatting units 1221, . . . , 122N and the processing at step S22 may not be performed.
When the joined table is the joined table (C) above, a table formed from the portion other than the vector f1′ and the vector f′ in the joined table will be the table shown below.
[Secure Joining System and Method for Performing Right Outer Join]
Referring to
The secure joining system for performing right outer join is similar to the secure joining system for performing left outer join except that it includes a modified second table generation unit 123n, instead of including the second permutation application unit 19n, the third vector extraction unit 110n, the second inverse permutation application unit 111n, the second vector extraction unit 112n, the modified second table generation unit 113n, the third permutation application unit 114n, the fourth vector generation unit 115n, the shifting unit 116n, the third inverse permutation application unit 117n, the bit inversion unit 118n, the third vector extraction unit 119n, the modified first table generation unit 120n, the first table joining unit 121n, and the first table formatting unit 122n.
The secure joining method for performing right outer join is similar to the secure joining method for performing left outer join except that it performs the processing at step S23 instead of performing the processing at step S9 to step S22.
In the following, differences from the secure joining system and method for performing left outer join are described. The same portions as those of the secure joining system and method for performing left outer join are not described again.
As shown in
The first vector joining unit 11n, the first permutation calculation unit 12n, the first vector generation unit 13n, the second vector joining unit 14n, the first permutation application unit 15n, the second vector generation unit 16n, the first inverse permutation application unit 17n, and the first vector extraction unit 18n of the secure computing apparatus 1n, which are enclosed by dashed line in
Referring to
As the processing at <step S1> to <step S8> is similar to the processing at <step S1> to <step S8> described in Section [Secure strong mapping computing system and method], overlapping description is not repeated here.
For example, in the case of the vector r=k1=(3, 5, 9), the vector d=v1=(100, 19, 85), u=−1, and x=k2=(3, 7, 9, 9), application of the mapping to the vector x=(3, 7, 9, 9) gives a vector: the vector y=(100, −1, 85, 85). Since the second element “7” of the vector x=k2=(3, 7, 9, 9) does not exist in the elements of the vector r=k1=(3, 5, 9), the second element of the vector y=(100, −1, 85, 85) is the outlier u=−1. In this manner, the vector y is calculated such that an attribute value corresponding to a record which is a record of the second table and which corresponds to a key that does not exist in the first table will be the outlier u.
<Step S23>
The share [y] is input to the modified second table generation units 1231, . . . , 122N.
The modified second table generation units 1231, . . . , 122N each use the share [y] to generate a modified second table by joining the second table and the vector y (step S23).
For example, in a case where the second table has four records and consists of the vector of keys, k2=(3, 7, 9, 9), and the vector of the attribute values of the one attribute v2, v2=(water, mix au lait, drug, water), with the vector y=(100, −1, 85, 85), the modified second table will be the table shown below.
This modified second table is a right join of the first table and the second table.
[Secure Joining System and Method for Performing Full Outer Join]
Referring to
The secure joining system for performing full outer join is similar to the secure joining system for performing left outer join and the secure joining system for performing right outer join except that it includes a second table formatting unit 124n and a second table joining unit 125n, instead of including the first table joining unit 121n and the first table formatting unit 122n.
The secure joining method for performing full outer join is similar to the secure joining method for performing left outer join and the secure joining method for performing right outer join except that it performs the processing at steps S24 and S25 instead of performing the processing at step S21 and step S22.
In the following, differences from the secure joining system and method for performing left outer join and the secure joining system and method for performing right outer join are described. The same portions as those of the secure joining system and method for performing left outer join and the secure joining system and method for performing right outer join are not described again.
As shown in
The first vector joining unit 11n, the first permutation calculation unit 12n, the first vector generation unit 13n, the second vector joining unit 14k, the first permutation application unit 15n, the second vector generation unit 16n, the first inverse permutation application unit 17n, and the first vector extraction unit 18n of the secure computing apparatus 1n, which are enclosed by dashed line in
Referring to
First, processing at <step S1> to <step S8> is performed. As the processing at <step S1> to <step S8> is similar to the processing at <step S1> to <step S8> described in Section [Secure strong mapping computing system and method], overlapping description is not repeated here.
For example, in the case of the vector r=k1=(3, 5, 9), the vector d=v1=(100, 19, 85), u=−1, and x=k2=(3, 7, 9, 9), application of the mapping to the vector x=(3, 7, 9, 9) gives a vector: the vector y=(100, −1, 85, 85). Since the second element “7” of the vector x=k2=(3, 7, 9, 9) does not exist in the elements of the vector r=k1=(3, 5, 9), the second element of the vector y=(100, −1, 85, 85) is the outlier u=−1. In this manner, the vector y is calculated such that an attribute value corresponding to a record which is a record of the second table and which corresponds to a key that does not exist in the first table will be the outlier u.
Next, the processing at <step S23> is performed. As the processing at <step S23> is similar to the processing at <step S23> described in Section [Secure joining system and method for performing right outer join], overlapping description is not repeated here.
For example, in a case where the second table has four records and consists of the vector of keys, k2=(3, 7, 9, 9), and the vector of the attribute values of the one attribute v2, v2=(water, mix au lait, drug, water), with the vector y=(100, −1, 85, 85), the modified second table will be the table shown below.
Next, processing at <step S9> to <step S20> is performed. As the processing at <step S9> to <step S20> is similar to the processing at <step S9> to <step S20> described in Section [Secure joining system and method for performing left outer join], overlapping description is not repeated here.
Next, processing at <step S24> and <step S25> is performed.
<Step S24>
The share [f′] is input to the second table formatting units 1241, . . . , 124N.
The second table formatting units 1241, . . . , 124N each use the modified first table and the share [f′] to generate a formatted modified first table by extracting, from the modified first table, records for which the elements of the vector f′ are 1 (step S24).
The formatted modified first table is output to the second table joining units 1251, . . . , 125N.
For example, when the modified first table is the table (B) above, the formatted modified first table will be the table shown below.
<Step S25>
The modified second table and the formatted modified first table are input to the second table joining units 1251, . . . , 125N.
The second table joining units 1251, . . . , 125N each generate a joined table by joining the modified second table and the formatted modified first table (step S25).
For example, when the modified second table is the table (D) above and the formatted modified first table is the table (E) above, the joined table will be the table shown below.
This table is a full join of the first table and the second table.
The second table joining units 1251, . . . , 125N may also generate a table that joins the modified second table and a table excluding the vector f′ portion in the modified first table (step S25). This enables outer join that does not reveal the number of output records. In this case, the secure joining system may omit the second table formatting units 1241, . . . , 124N and the processing at step S24 may not be performed. Also, instead of a formatted modified first table, the modified first tables generated by the modified first table generation units 1201, . . . , 120N at step S20 would be input to the second table joining units 1251, . . . , 125N in that case.
When the modified second table is the table (D) above and the modified first table is the table (B) above, a table that joins the modified second table and the table excluding the vector f′ portion in the modified first table will be the table shown below.
[Modifications]
While the embodiments of the present invention have been described, specific configurations are not limited to these embodiments, but design modifications and the like within a range not departing from the spirit of the invention are encompassed in the scope of the invention, of course.
For example, the attribute of a key may be a composite key of z attributes, where z is a positive integer greater than or equal to 2. In this case, the processing at step S1 may be performed in the following manner, for example.
Assume r0, . . . , rz−1 instead of r. Assume x0, . . . , xz−1 instead of x.
In this case, the processing at step S1 joins ri and xi, then again with ri to obtain ki for each i (where i=0, . . . , z−1). Then, each ki is turned into a bit representation by bit decomposition and joined horizontally. For example, when k0=(1, 2, 3, 1, 3, 0, 1, 1, 2, 3)T and k1=(0, 0, 0, 0, 0, 1, 1, 0, 0, 0)T, bit decomposition of k0 results in (k0)0=(1, 0, 1, 1, 1, 0, 1, 1, 0, 1)T and (k0)1=(0, 1, 1, 0, 1, 0, 0, 0, 1, 1)T.
Here, since k0 assumes a value from 1 to 3, each element of k0 can be represented in 2 bits. (k0)0 is the lower bit of k0 upon bit decomposition, and (k0)1 is the upper bit of k0 upon bit decomposition. Since k1 is inherently a 1-bit number in this example, it does not require decomposition and k1=(k1)0 is assumed. Horizontal joining of (k0)0, (k0)1, and (k1)0 gives:
Regarding such an arrangement as a matrix and regarding each row of this matrix as a bit representation of the keys of one record, a vector of bit representations of keys, (1, 2, 3, 1, 3, 4, 5, 1, 2, 3), is obtained. This vector can be k which is used at step S2 and after. In this manner, a case with a composite key can also be addressed.
For a composite key, overlap of keys refers to whether keys overlap in terms of combination of the values of the all key attributes and it is assumed that mere overlapping of the values of individual attributes is not regarded as an overlap. For example, a combination of (1, 0) and (1, 1) is not an overlap.
The various processes described in the embodiments may be executed in parallel or separately depending on the processing ability of an apparatus executing the process or on any necessity, rather than being executed in time series in accordance with the described order.
[Program and Recording Medium]
When various types of processing functions in the apparatuses described above are implemented on a computer, the contents of processing function to be contained in each apparatus is written by a program. With this program executed on the computer, various types of processing functions in the above-described apparatuses are implemented on the computer.
This program in which the contents of processing are written can be recorded in a computer-readable recording medium. The computer-readable recording medium may be any medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory.
Distribution of this program is implemented by sales, transfer, rental, and other transactions of a portable recording medium such as a DVD and a CD-ROM on which the program is recorded, for example. Furthermore, this program may be stored in a storage unit of a server computer and transferred from the server computer to other computers via a network so as to be distributed.
A computer which executes such program first stores the program recorded in a portable recording medium or transferred from a server computer once in a storage unit thereof, for example. When the processing is performed, the computer reads out the program stored in the storage unit thereof and performs processing in accordance with the program thus read out. As another execution form of this program, the computer may directly read out the program from a portable recording medium and perform processing in accordance with the program. Furthermore, each time the program is transferred to the computer from the server computer, the computer may sequentially perform processing in accordance with the received program. Alternatively, a configuration may be adopted in which the transfer of a program to the computer from the server computer is not performed and the above-described processing is executed by so-called application service provider (ASP)-type service by which the processing functions are implemented only by an instruction for execution thereof and result acquisition. It should be noted that a program in this form includes information which is provided for processing performed by electronic calculation equipment and which is equivalent to a program (such as data which is not a direct instruction to the computer but has a property specifying the processing performed by the computer).
In this form, the present apparatus is configured with a predetermined program executed on a computer. However, the present apparatus may be configured with at least part of these processing contents realized in a hardware manner.
Number | Date | Country | Kind |
---|---|---|---|
2018-152412 | Aug 2018 | JP | national |
2018-190869 | Oct 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/031476 | 8/8/2019 | WO | 00 |