The present invention generally relates to suspended ceiling systems and parts therefore, and more particularly to an attachment device uniquely designed to provide an improved connection between members of the ceiling grid framework and points above the suspended ceiling.
Suspended ceilings, extensively used in commercial buildings, typically employ a rectangular grid system that supports lay-in ceiling panels or tiles. The grid is made up of regularly spaced runners intersecting at right angles. The runners are ordinarily in the form of inverted tees. The tees are normally suspended by wires or other hanging mechanisms, and the ceiling panels or tiles rest on the flanges of the tees.
Typically, long tees also known as main runners are supported by wires, and they help to provide the strength necessary to suspend the ceiling grid system. These main runners are normally installed parallel to each other and spaced apart at equal intervals. Shorter cross tees are connected to these main tees to provide the grid in which ceiling panels are laid.
The suspended ceiling products industry has refined the design and manufacture of grid tees and attachment mechanisms to a degree. The continuous efforts for improvement have contributed to the high acceptance of these ceiling systems in the construction industry. Challenges have remained in creating improvements in performance and strength while reducing the costs of labor in installing the grid systems.
The invention relates to a device that is particularly useful in suspended ceiling systems and can be used to increase the load carrying capacity of the system while providing a simple, quick method of attaching the suspended ceiling grid to the overlying superstructure. More specifically, a clip is provided that engages a ceiling grid tee. In disclosed embodiments, the clip includes a bottom portion that matingly engages the ceiling tee. The bottom portion of the clip preferably engages the lower part of the bulb of the ceiling tee and is configured to provide a simple, quick and extremely secure connection between the clip and the tee.
The clip can be made from a resilient material such as metal or synthetic polymer and is configured so that the clip is self-biasing or pre-loaded and can snap into place around the bulb of the tee. Preferably, the clip has a top portion that is adapted to receive a wire or other hanging mechanism so that the tee can be suspended from the true ceiling above what will be the suspended ceiling. If the hanging mechanism or device is a screw that attaches the tee to a floor/ceiling joist, for instance, many or all of the clips can be attached to the joists first without having to install the ceiling tees at the same time thereby saving some time in the ceiling grid installation process. Moreover, ceiling tees can be removed and replaced more easily when using the attachment device described herein, for instance if a tee is damaged or if a change to a different style of ceiling grid is desired.
In disclosed embodiments, the device includes a reinforcing sleeve configured to matingly engage the clip. The reinforcing sleeve may straddle or rest on top of the clip to provide added lateral strength to the clip/grid tee connection so that the clip is more securely attached to the tee. The reinforcing sleeve may have a slit or aperture on its top portion so that the top of the clip can pass through the top of the sleeve. Alternatively, the sleeve may have a recess or notch on its top portion that is continuous throughout one of its side walls so that the sleeve can more easily be placed over the clip after the clip is attached to the ceiling grid tee or after the clip is attached to overhead structure.
Referring first to
In certain embodiments, the clip 1 includes a bottom portion 3 that matingly engages the ceiling tee 2. The grid tee 2 illustrated in the various embodiments disclosed herein has a conventional reinforcing bulb 5 at its upper region. The bulb 5 is generally rectangular in cross-section, having a top, sides and bottom with a nominal width of ¼″ and a height of ⅜″. The bottom portion 3 of the clip 1 preferably has a protrusion 4 that engages the lower part or bottom wall of the bulb 5 of the ceiling tee 2 to provide better support of the tee 2. As shown in the drawings, the protrusion 4 can be upwardly curled with a lead face inclined upwardly and inwardly to assist in providing the engagement between the clip 1 and the bulb 5.
In some embodiments, the bottom portion 3 of the clip 1 can be symmetrical about a plane corresponding to the plane of a web 26 of the tee 2 and can be made from a resilient material such as metal or synthetic polymer so that the clip 1 is self-biasing or pre-loaded to simultaneously engage both sides of a tee. This means that a ceiling grid installer can position the clip 1 above a tee 2 at a desired location and thrust the clip 1 downward onto the tee 2. The resilient clip 1 snaps into place around the bulb 5 of the tee 2, and the clip 1 exerts a gripping force or inward pressure upon the bulb 5 from both sides of the bulb.
Preferably, the clip 1 has a top portion 6 with a hole 27 that is adapted to receive a wire, screw or other hanging mechanism 7 so that the tee 2 can be suspended from a structure above what will be the suspended ceiling. The structures to which the clips 1 may be attached can be, for example, c-channels or floor/ceiling joists or roof joists among other things. This top portion 6 may be of sufficient length such that when a wire 7 (
In certain embodiments as depicted in
The clips 1 of the embodiments of
In certain embodiments, the device includes a reinforcing sleeve 13 which can be configured to matingly engage the clip 1. It is believed that one benefit of using a sleeve 13 in the attachment device is that thinner gauges of materials can be used to manufacture the clip 1 because the sleeve 13 provides the additional strength necessary that a clip 1 made from a thicker gauge of material would otherwise provide. In addition, alternative compositions of materials that otherwise have insufficient strength or resilience can be used to manufacture the attachment device in embodiments that incorporate the reinforcing sleeve 13.
Preferably, the reinforcing sleeve 13 has a slit or aperture 14 on its upper or top portion 15 so that the top 6 of certain embodiments of the clip 1 can pass through the top of the sleeve. The reinforcing sleeve 13 can rest generally on top of the clip 1 and provide added lateral strength so that the clip 1 remains engaged with the tee 2 to which it is attached. The sleeve 13 can have an inverted U-shape and can be made from a resilient material. It can also be self-biasing or pre-loaded with an interference fit to ensure that there is engagement and inwardly directed lateral force applied by the sides 16 of the sleeve 13 as it straddles the clip 1. Alternatively, the sleeve 13 can be made to be relatively rigid so that it is simply slid over the clip 1 to provide reinforcement without a pre-loaded inwardly directed lateral force.
The vertical height of the side portions or side walls 16 of the sleeve 13 are preferably the same vertical height as corresponding side portions 17 of the clip 1. Moreover, the horizontal lengths of the side walls 16 of the sleeve 13 are preferably approximately the same horizontal lengths as corresponding side walls 17 of the clip 1. However, the dimensions of the sleeve's side walls 16 could be less than the dimensions of the corresponding side walls 17 of the clip 1 if it were desirable to reduce the amount of raw materials used in making the sleeve 13. For instance, the horizontal length of the sleeve side portions 16 may be one half that of the corresponding clip side portions 17. Alternatively, the dimensions of the sleeve side portions 16 may be greater than the corresponding clip side portions 17. In addition, the sleeve 13 can have lower protrusions or lip portions similar to the protrusions 4 of the clip 1 configured in a manner that would allow the sleeve 13 to snap into place on top of the clip 1, similar to the action of the clip 1 when placed on the bulb 5 of the tee 2.
As shown in
It can be appreciated that different versions of the clip 1 can be used with different versions of the sleeve 13 to provide an attachment device that has varying degrees of strength or load carrying capacity. The clips 1 and sleeves 13 can also be manufactured to have locking engagement with each other. For instance, as shown in
It is noted that use of embodiments of the clip 1 that are symmetrical (with the plane of the web 26) and pre-loaded and that engage both sides of the bulb 5 of the tee 2 as shown in
For example, simple pull tests as known in the art were conducted on the clips 1 using a tension testing apparatus. Tension in a wire connected to the clip 1 of an attachment device pulling away from a tee 2 was gradually increased until the attachment device broke free from the tee 2. The tension (in pounds) at which the attachment device broke free was recorded.
Three tests were conducted using an attachment device comprising a two-sided clip 1 and sleeve 13 as depicted in
In the case of the two-sided clip 1, the clip 1 never broke free of the tee 2 during testing. It is noted that the maximum tension that was recorded on all three tests was four hundred ninety pounds of tension because of the limitations of the tension tester, which had a maximum of five hundred pounds tension that could be created. The actual tension that the two-sided clip 1 could sustain may very well be much higher than four hundred ninety pounds. The average tension that could be sustained by the one-sided clip 1 was two hundred ninety seven pounds. Detailed results of the testing are listed in the below Table 1.
While particular embodiments of the present device have been shown and described, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
134756 | Marston | Jan 1873 | A |
172555 | Clark | Jan 1876 | A |
183556 | Fyfe | Oct 1876 | A |
RE9506 | Ellis | Dec 1880 | E |
3436047 | Foltz | Apr 1969 | A |
3598013 | Broberg | Aug 1971 | A |
3599921 | Cumber | Aug 1971 | A |
3608857 | Hibbeler | Sep 1971 | A |
3998020 | Kuhr et al. | Dec 1976 | A |
3998419 | Semmerling | Dec 1976 | A |
4040758 | Sauer | Aug 1977 | A |
4905952 | Pinquist | Mar 1990 | A |
5893250 | Benvenuto et al. | Apr 1999 | A |
7062886 | Auriemma | Jun 2006 | B2 |
7264214 | Oh | Sep 2007 | B2 |
7478787 | Bankston et al. | Jan 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20110011023 A1 | Jan 2011 | US |