This invention generally relates to electronic data storage media such as those used to store music, movies, software (including games), and other valuable electronic data assets distributed through retail and/or rental outlets. More particularly, the invention relates to the manufacture of optical data storage discs for carrying an electronically detectable security tag. The security tag potentially embodies a variety of electronic article surveillance (EAS) technologies including ones that generate specific identification codes for inventory control (e.g., RFID and smart tags) as well as ones that, unless deactivated, resonate at a particular frequency (or range) and activate an alarm when passed through an electronic surveillance gate.
Optical data storage discs are the predominant media for storing music, movies and software (including general PC software as well as video game software played upon game consoles connected to televisions/monitors) distributed via retail outlets. Today, music is encoded on an optical data storage disc using compact disc (CD) technology. Software that is distributed through retail outlets is also typically stored on optical data storage discs embodying the CD technology. Movies and games (executed on game consoles) are encoded on optical data storage discs using digital versatile disc (DVD) technology that holds significantly more data than a CD.
Retail theft of optical data storage discs storing valuable digital data assets has received considerable attention from retailers. Initially, theft was deterred through the use of bulky, six by 12 inch cardboard boxes that were difficult for shoplifters to conceal. Later, equally bulky, plastic frames were placed around the boxes to deter theft. While such packaging was an effective deterrent, it created substantial solid waste. Thus, the bulky boxes were abandoned and today, CDs are generally packaged in the well-known “jewel” case. Similarly, DVDs for movies are generally displayed for retail customers within slightly larger plastic cases including one or more optical data storage discs. On the other hand, retailers have resorted to placing DVDs containing game console software in locked cabinets to deter theft.
In the 1990s electronic security mechanisms replaced bulky packaging as a means for discouraging/controlling retail theft. In particular, electronic surveillance tags are now placed on/within optical disc storage retail packaging. Unless deactivated at the checkout counter, the security tags are sensed by surveillance panels positioned at the entrance/exit of a retail establishment. If not deactivated, sensors within the panels detect the security tag when a person attempts to leave with the case containing the security tag and an alarm is activated. A number of such security tag technologies are well known in the art.
Currently electronic security tags are attached to a case within which a DVD, for a movie or game, is held. If the case is taken from a retail establishment before the security tag is deactivated, then an alarm sounds when the security tag passes through security panels at the door. A shortcoming of attaching security tags to a package/case containing an optical disc is that a shoplifter need only remove the disc from the package (or remove the security tag from the package) to evade detection by security panels placed at a store's exit. As a consequence, retailers continue to maintain their game software within locked cases.
Alternatively, and apparently to address the shortcomings of attaching a security tag to a CD case, attaching a security tag to a CD disc having a single substrate has been proposed a number of times in the prior art. These previous proposed CD structures have yet to be adopted commercially by manufacturers and retailers. Introducing a security tag introduces the possibility that the security tag will interfere with playing the disc by a purchaser of the disc. One problem arising from attaching a security device directly to a disc is the need to maintain balance. Another challenge arising from incorporating a security tag into a disc is the need to provide uniform/conforming surfaces at the hub that facilitate proper engagement of the disc hub and a disc player's drive mechanism. Furthermore, a disc that incorporates a security tag should still meet specified space/dimension standards for the particular optical data storage media. Incorporating the security tag into an optical information storage disc in such a way that minimizes disruption to the manufacturing process is yet another challenge when attempting to provide a practical solution to the need to provide a commercially practicable secure disc technology.
Montbriand et al. U.S. Pat. No. 5,347,508 discloses a single-substrate, compact disc structure including an annular groove defined by a recess on one side including generally perpendicular walls and a flat bottom. However, there is no description regarding how such a structure is fabricated in a reliable and commercially practicable way. For example, the Montbriand '508 patent discloses a channel with vertical walls. However, there is no description of the production line that places a tag within the channel and then seals the surface.
The present invention is directed to a secure disc arrangement and method for manufacturing the secure disc such that a resulting optical disc is produced in a manner: conforming to the space limitations of the optical disc media standards organizations, providing a sufficiently strong signal to ensure detection of a security tag embedded in the hub of the optical disc media, and meeting production throughput/timing requirements of manufacturers—thereby providing both a technological as well as commercially acceptable solution to a need to control theft of movies, programs and games stored upon optically encoded media (e.g., DVDs).
In particular, in accordance with one aspect of the present invention, a secure optical information storage disc having a reflective information layer is disclosed. The disc comprises a first substrate including a recess characterized by a thin portion of the first substrate beginning at a center hole and continuing to a thick portion of the first substrate. The disc also includes a security tag positioned within the recess of the first substrate. The security tag faces outwardly from the first substrate and is covered within the recess by an over-coating.
In accordance with a second aspect, a secure optical information storage disc having a reflective information layer is disclosed. The disc comprises a first substrate including a channel recess characterized by: (1) a full substrate thickness beginning at a center hole, (2) an inclined edge channel wall, (3) an opposite channel wall, and (4) a partial substrate thickness between the inclined edge and opposite channel walls. The first substrate also includes a thick portion of the first substrate corresponding to the information baring region of the disc. The disc furthermore includes a security tag positioned within the channel recess of the first substrate, the security tag facing outwardly from the first substrate and covered within the recess by an over-coating.
The format and layering of the data tracks differs in accordance with various embodiments of the invention.
The present invention is intended to encompass a variety of optically encoded discs carrying a variety of information assets within a reflective/semi-transmissive layer carried on one or more substrates. The invention is embodied, for example, within DVDs that are encoded with movies, videogame console game software, and software in general. Such embedding prevents separation of a disc from its EAS tag and as such provides a significantly higher barrier to circumvention, by would-be shoplifters, than other known arrangements that merely embed the tag within a case. The present invention is intended to be carried out through the use of a variety of thin film EAS technologies arranged in a variety of topologies and circuits. The invention will be described, by way of illustrative examples, further herein below.
While the appended claims set forth the features of the present invention with particularity, the invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
a-2f depict cross-sectional views of various types of secure disc formats;
a-d depict a set of plan views of various security tag coil configurations;
a and 5b summarize exemplary fabrication stages for DVD-5 and DVD-9 discs comprising security tags embedded between two substrates; and
A secure disc, including all formats (e.g., CD, DVD, BLU-RAY/BD, HD etc.), comprises, by way of example and not limitation, a security tag occupying a notched recess within one of potentially multiple substrates of the secure disc (including placing the security tag within a notched recess on a single substrate and covered by a protective layer). An antenna portion of the security tag occupies a portion of the disc such that it does not interfere with the reading of optically encoded/sensed information on the disc. In the case of an optical information disc comprising multiple substrates wherein one of the substrates (e.g. L1) is blank (not stamped), the notched recess is incorporated into the blank substrate. Placing the notched recess on a blank substrate (e.g., L1) joined to a substrate (e.g., L0) through which the optically encoded information is sensed/read enables the dimensions of the security tag to be increased—even to the extent that the security tag's outer perimeter extends into areas/regions of a disc where information is provided on the non-blank substrate (e.g., L0).
In a variation of the groove recess disclosed in Montbriand et al. U.S. Pat. No. 5,347,508, a substrate of the secure disc includes a groove having inner and outer groove walls and a groove bottom surface, wherein at least one of the groove recess walls is substantially non-perpendicular to a bottom surface of the groove. More particularly, at least one wall and the bottom surface meet to form an obtuse angle substantially greater than 90 degrees (e.g. 105 degrees-150 degrees). The one or more non-perpendicular groove recess walls (or alternatively one or more beveled or bull-nose/curved edges on an otherwise perpendicular channel wall) provide a sloped/inclined edge channel wall surface that enhances tolerances for accepting and positioning a security tag at the bottom of the groove during fabrication of a secure disc.
Furthermore, the security tag is substantially balanced with regard to a rotational axis of the secure disc. In an embodiment of the invention the security tag is ring-shaped (i.e., defined by concentric circular inner and outer edges). Thus, when concentrically placed within a notched recess of a substrate of the secure disc, the thin film security tag neither unbalances the disc nor interferes with data acquisition from the disc.
The present invention contemplates a variety of thin film EAS sensor technologies/topologies. In particular embodiments of the invention, the security tag is provided in the form of an insulated thin film resonating device including capacitively coupled coiled circuits, carried by an insulating thin film, constituting an inductor/capacitor (LC), or resonant, circuit. The insulating thin film establishes the capacitive aspect of the LC circuit by slightly offsetting pairs of metallic coils that make up the security tag. The paired coils of the security tag have sufficient surface area to resonate when exposed to electromagnetic energy at a frequency within a particular frequency range. Alternatively, a separate capacitor circuit, separate from the metallic coils, provides at least a portion of the capacitive aspect of the security tag.
The signal generated by the security tag of an optical information storage disc is detected by a receiving antenna thereby making it a viable electronic article surveillance anti-theft device capable of discouraging theft of the optical data storage disc.
Turning to the drawings, and in particular
The notched recess includes a single wall, and the notched recess extends from the single wall to a center hole (0-15 mm) on the secure disc 100. In the case where the secure disc 100 comprises multiple substrates, the notched recess is formed in an outward facing surface (top or bottom) of a substrate. By way of example, and not limitation, the depth of the notched recess is with the approximate range of 0.25 mm and 0.40 mm for the security tag 102. The security tag 102 is thinner than the depth of the notched recess. The security tag 102 is sealed in place by an over-coating (lacquer) having a thickness, for example, between 10 and 30 microns in the area of the disc 100 that does not contain the security tag 102, and is preferably greater than 15 microns in thickness. The thickness of the lacquer coating is greater in the area of the disc 100 containing the recess. Multiple passes (including exposing the lacquer to a UV curing lamp) are potentially required to achieve a desired thickness for the over-coating layer that both seals and levels the surface of the disc 100 containing the security tag 102. The layers of various disc structures including recesses for accommodating a security tag are described herein below with reference to
A print process thereafter applies artwork to the disc. The lacquer over-coating evens the surface within which the notch is formed. Thus, incorporating the security tag 102 does not affect the overall space requirements for an optically encoded information disc.
In embodiments of the invention, the total thickness of the secure disc 100 including the one or more substrates—and layers formed thereon—does not exceed specified standards (e.g., 1.5 mm for a DVD). In the case of DVD and CD discs the total thickness is preferably about 1.2 mm.
In the illustrative embodiment, based upon DVD standard dimensions, the security tag 102 comprises a thin film LC resonating device that resides, by way of example, within a notched recess positioned primarily within an annular clamping area 106 of the secure disc 100 (and centered with regard to the axis of rotation of the disc 100). The clamping area 106 is defined by a ring with an inner diameter of 22.0 mm and an outer radius of 33.0 mm. In the illustrative embodiment the security tag 102 occupies an area from 15.0 mm to 36.0 mm (Oust outside a stacking ring 110, if present, at a diameter of 33.5 mm). A tolerance of 0.5 mm is recommended to ensure that no part of the tag 102 extends into the center hole region, and thus the inner diameter of the tag 102 is 15.5 mm (−0.5 mm tolerance).
The size/dimensions of the security tag 102 are generally limited by the requirement that the security tag 102 does not interfere with reading encoded data. In the case of a CD, this limits the outer diameter of the tag 102 so as not to interfere with the optically encoded information regions of the disc. However, in the case of a single-sided DVD where the security tag is placed within a notched recess formed in a blank L1 substrate (bonded to the stamped L0 substrate), the diameter/outer dimensions of the security tag can potentially extend beyond the clamping area 106 to nearly the outer edge (e.g., 110 mm diameter) of a DVD. As noted above, the tag 102 does not extend over the rim of the center hole having a diameter of 15.0 mm centered on the rotational axis of the disc 100.
As will be evident to those skilled in the art, the above-described exemplary embodiment can be modified in a number of ways, including, without limitation modifying: any of the identified dimensions (including the disc itself), the size of the security tag 102, the type of encoding of data on the disc (e.g., CD, DVD, etc.), the type of information encoded/embodied in the security tag (e.g., an RFID tag providing a value corresponding to the particular disc—as opposed to merely resonating at a particular frequency to which a sensor is tuned), and the type of data on the data tracks of the disk (e.g., movies, games, application programs, music, etc.). Such modifications are intended to fall within the scope of the present invention.
Having described the dimensions of a secure disc including a security tag with reference to various diameters of an optical information disc, various configurations of secure discs are described with regard to the layers of such discs. Turning to
The security tag 202 is fixed within any of a variety of optical information discs, including DVDs, CDs, BDs, etc. conforming to specified standard dimensions for each particular optical disc technology. A DVD disc, by way of example, has an outer diameter of 120.00 mm (+/−0.30 mm), and the center hole has a diameter of 15.00 mm (+0.15 mm/−0.00 mm). The values in parentheses represent tolerances specified by the standard, ECMA-267 3rd Edition, April 2001, for 120 mm DVD read-only discs. In other embodiments, the outer diameter of the disc is substantially less than 120 mm, and in yet other embodiments the substrates/media are non-circular (but balanced in relation to a rotational axis). The above-specified dimensions and tolerances are intended to be exemplary and differ in alternative embodiments of the invention.
By way of example, in the case of DVDs (see,
A bonding layer 208a, approximately 0.1 mm (0.04-0.07 mm recommended), holds/bonds the two substrates together to form a DVD structure. As shown in
With continued reference to
The over-coating 212a is applied prior to printing labels/artwork on the blank/L1 substrate 204a. The over-coating 212a is preferably applied through a silk screen or offset printing process that utilizes a wiper/blade to spread the lacquer onto the surface of the screen, through the screen, and onto the disc 200a. Other dispensing methods can be used. Multiple lacquer application passes (including exposing the lacquer to a UV curing lamp) are potentially required to achieve a desired thickness for the over-coating layer that both seals and levels the surface of the disc 100 containing the security tag 102. Other ways of applying the lacquer are contemplated in alternative embodiments.
Turning to
Having described two exemplary DVD structures, attention is directed to single-substrate secure discs, depicted by way of example in
Referring to
Referring to
In accordance with yet other embodiments, such as the one depicted in
Turning briefly to
Turning to
The sputtered or blank substrate is transferred by the transfer arms 404 and 406 to an indexing carousel 412. In an embodiment of the invention, while the substrate is laying, inside face down, on the indexing carousel 412 at position 414 (before applying a bonding resin and consolidating the two halves to form a single DVD), a tag applicator applies the security tag 202 to the L1 substrate 204a. Thereafter, the DVD halves are transferred by a transfer arm 416 to a consolidating assembly 418. A flipper 420 flips one of the two disc halves in preparation for consolidation while an applicator 422 applies bonding resin to the other half. Thereafter, a consolidator 424 mates the two halves of the disc to render a DVD-5 or DVD-9 disc.
With continued reference to
After accumulating on a set of discs on a spindle, the discs are transferred to a print station. At the print station 436, an over-coating is applied to seal the security tag 202a within the DVD structure (and level the disc surface containing a recess within which the tag 202a resides). Thereafter, any desired artwork is printed over the non-readable surface of the disc (opposite the surface through which a laser beam passes when the DVD disc is played).
Turning to
With reference to
A set of steps for a CD or BD production line is similar to the ones depicted in
Turning to
In view of the many possible embodiments to which the principles of this invention may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of invention. Furthermore, the illustrative steps may be modified, supplemented and/or reordered (at least in part) without deviating from the invention. Therefore, the invention as described herein contemplates all such embodiments as may come within the scope of the following claims and equivalents thereof.
This application claims the priority benefit of Bigley, U.S. Provisional Application Ser. No. 60/775,369 filed on Feb. 21, 2006, entitled “Secure Optical Information Disc Having A Recess For Accommodating a Security Tag,” and co-pending Bigley, U.S. patent application Ser. No. 11/050,296, filed on Feb. 3, 2005, entitled “Secure Optical Information Disc Having a Minimized Metal Layer,” which in turn is a CIP that claims the priority benefit of Bigley, U.S. patent application Ser. No. 10/792,352 (now U.S. Pat. No. 6,947,371), filed on Mar. 3, 2004, entitled “Secure Optical Information Disc,” which in turn claims the priority benefit of Bigley, U.S. Provisional Patent Application Ser. No. 60/455,284, filed on Mar. 17, 2003, the contents of each of these referenced applications are incorporated herein by reference in their entirety, including any references therein.
Number | Date | Country | |
---|---|---|---|
60775369 | Feb 2006 | US | |
60455284 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11050296 | Feb 2005 | US |
Child | 11674462 | Feb 2007 | US |
Parent | 10792352 | Mar 2004 | US |
Child | 11050296 | Feb 2005 | US |