The present disclosure relates generally to pairing one electronic device with another electronic device, and more specifically to pairing an intelligent input device such as an active stylus with an electronic device such as a tablet computer or smart phone.
A touch controller in combination with a touch screen allows a user to control an electronic device, such as a smart phone or tablet computer, through the touch screen. A user may do so using his or her fingers, and may alternatively utilize an intelligent input device, such as an active stylus. An intelligent input device is a device that includes electronic circuitry for sensing information about the intelligent input device and providing this sensed information in the form of data to the electronic device with which the intelligent input device is paired. An example of an intelligent input device is an active stylus, which typically looks similar to a conventional pen but includes one or more user control components, such as buttons, along with sensors for sensing information, such as motion, orientation, and pressure applied to the stylus by a user. The active stylus communicates sensed information to the electronic device with which the stylus is paired and this information is used to control or provide data to an application that is executing on the electronic device including the touch controller. Prior art systems allow only a single intelligent input device like an active stylus to be coupled to or “paired” with a given touch controller. There is a need for improved methods, circuits, and systems for pairing an intelligent input device and a touch controller.
According to one embodiment of the present disclosure, a method of pairing an intelligent input device with an electronic device includes transmitting a start pairing identifier and receiving a unique identifier that identifies the intelligent input device. The method further includes authenticating the unique identifier using authentication information stored in the electronic device and transmitting a pairing successful identifier responsive to the unique identifier being authenticated to thereby pair the intelligent input device and the electronic device.
In the following description, certain details are set forth in conjunction with the described embodiments to provide a sufficient understanding of the present disclosure. One skilled in the art will appreciate, however, that the other embodiments may be practiced without these particular details. Furthermore, one skilled in the art will appreciate that the example embodiments described below do not limit the scope of the present disclosure, and will also understand that various modifications, equivalents, and combinations of the disclosed embodiments and components of such embodiments are within the scope of the present disclosure. Embodiments including fewer than all the components of any of the respective described embodiments may also be within the scope of the present disclosure although not expressly described in detail below. Finally, the operation of well-known components and/or processes has not been shown or described in detail below to avoid unnecessarily obscuring the salient aspects of the present disclosure.
The touch panel or touch screen 108 includes a touch display 110, such as a liquid crystal display (LCD) and a number of touch sensors 112 positioned on the touch display to detect touch points P (X,Y,Z), with only three touch sensors being shown merely by way of example and to simply the figure. There are typically many more touch sensors 112. These touch sensors 112 are usually contained in a transparent sensor array that is then mounted on a surface of the touch display 110. The number and locations of the sensors 112 can vary as can the particular technology or type of sensor, with typical sensors being resistive, vibration, capacitive, or ultrasonic sensors. In the embodiments described herein, the sensors are considered to be capacitive sensors by way of example.
In operation of the touch screen 108, a user (not shown) generates a touch point P (X,Y,Z) through a suitable interface input, such as a touch event, hover event, or gesture event, using either his or her finger or the intelligent input device 104. Where the intelligent input device 104 is used this operation assumes the intelligent input device has been “paired” with the touch controller 106 according to embodiments of the present disclosure. As a result of this pairing the intelligent input device 104 communicates data to the touch controller 106 through a wireless communications link or channel 114, as will be described in more detail below. The terms touch event, hover event, and gesture event will now be briefly described. A touch event is an interface input where the user's finger or the intelligent input device 104 is actually touching the surface of the touch display 110. In hover and gesture events the user's finger or intelligent input device 104 is within a sensing range SR above the surface of the touch display 110 but is not touching the surface of the display. In a hover event the finger or intelligent input device 104 may be stationary or moving while in a gesture event the finger or intelligent input device is moving in a singular or a plurality of predefined motions or constraints, as will be appreciated by those skilled in the art. The X-axis, Y-axis, and Z-axis are shown in
In response to a touch point P (X,Y,Z), the sensors 112 generate respective signals that are provided to the touch controller 106 which, in turn, processes these signals to generate touch information TI for the corresponding touch point. The touch information TI that the touch controller 106 generates for each touch point P (X,Y,Z) includes location information and event information identifying the type of interface input, namely whether the touch point P (X,Y,Z) corresponds to a touch event, hover event, gesture event, or some other type of event recognized by the touch controller. The location information includes an X-coordinate and a Y-coordinate that together define the XY location of the touch point P (X,Y,Z) on the surface of the touch display 110.
Where the sensors 112 are capacitive sensors, the sensors are typically formed as an array of sensors from transparent patterned orthogonal conductive lines (not shown) formed on the surface, or integrated as part of, the touch display 110. The intersections of the conductive lines form individual sensors or “sensing points,” and the touch controller 106 scans these sensing points and processes the generated signals to identify the location and type of touch point or points P (X,Y,Z). The detailed operation of such an array of capacitive sensors 112 and the touch controller 106 in sensing the location and type of touch point P (X,Y,Z) (i.e., touch event, hover event, or gesture event) will be understood by those skilled in the art, and thus, for the sake of brevity, will not be described in more detail herein.
The electronic device 102 further includes processing circuitry 116 coupled to the touch controller 106 to receive the generated touch information TI, including the location of the touch point P (X,Y,Z) and the corresponding type of detected interface event (touch event, hover event, gesture event) associated with the touch point. The processing circuitry 116 executes applications or “apps” 118 that control the electronic device 102 to implement desired functions or perform desired tasks. These apps 118 executing on the processing circuitry 116 interface with a user of the electronic device 102 through the touch controller 106 and touch screen 108, allowing a user to start execution of or “open” the app and to thereafter interface with the app through the touch display 110. The processing circuitry 116 represents generally the various types of circuitry contained in the electronic device 102 other than the touch screen 108 and touch controller 106. Where the electronic device 102 is a tablet computer, for example, the processing circuitry 116 would typically include a processor, memory, Global Positioning System (GPS) circuitry, Wi-Fi circuitry, Bluetooth circuitry, and so on.
Through the use of the intelligent input device 104, the user can interface with apps 118 running on the processing circuitry 116 in more sophisticated ways than is possible with just a finger or a passive stylus. For example, where the intelligent input device 104 is an active stylus, as shown in the example embodiment of
The touch controller 106 includes a memory 122 that stores pairing information that is utilized in pairing the active stylus 104 with the touch controller 106. The touch controller 106 may also include memory for storing other data, such as memory utilized in processing the sensor signals from the touch sensors 112 and the data from the intelligent input device 104 received via the wireless communications channel 114, but the memory 122 represents the memory or portion of memory that stores information related to pairing intelligent input devices 104 with the touch controller. In one embodiment, the memory 122 stores pairing information including a unique identifier or unique identifiers that is or are associated with intelligent input devices 104 that may be paired with the touch controller 106, as will be explained in more detail below. The is enables a manufacturer of the electronic device 102 to control which intelligent input devices 104 may be paired with the electronic device containing the touch controller 106. Only proprietary active styluses 104 may thus be paired with the touch controller 106. Note in the present description the “pairing” of the intelligent input device 104 may interchangeably be said to be with the touch controller 106 or with the electronic device 102 containing that touch controller. The pairing is technically between the touch controller 106 and the intelligent input device 104 but such pairing is commonly referred to as being between the electronic device 102 containing the touch controller and the intelligent input device itself. For example, a Bluetooth headset is said to be paired with a smart phone and is not typically said to be paired with the integrated circuit in the smart phone that is implementing the Bluetooth protocol, as will be appreciated by those skilled in the art.
In the example embodiment of
Once the communications channel 114 is established, the touch controller 106 starts operation in a pairing mode of operation during which the controller attempts to “pair” the intelligent input device 104 with the controller. In one embodiment, to initiate the pairing mode of operation a user utilizes a corresponding pairing app 118 executing on the processing circuitry 116. The pairing mode is thus, in this embodiment, user initiated. In this user-initiated embodiment, the user would place the touch controller 106 in the paring mode of operation via the pairing app 118 and would also place the active stylus 104 in the pairing mode of operation. The specific way the user places the active stylus 104 in the pairing mode of operation may vary.
In one embodiment, the user presses and holds one of the buttons 120 on the active stylus for at least a certain period of time that is longer than the button is depressed during normal use of the active stylus. Thus, for example, the user may press and hold one of the buttons 120 for ten seconds to place the active stylus in the pairing mode of operation.
When the touch controller 106 is placed in the pairing mode of operation, the touch controller transmits, communicates, or sends a start pairing identifier SPID to the active stylus 104 over the communications channel 114. This transmission of the SPID identifier by the touch controller 106 is represented by the arrow 200 in
Upon receiving the unique identifier UID from the active stylus 104, the touch controller 106 decrypts the unique identifier (if it is encrypted) and compares this decrypted value to the values of permissible unique identifiers PUID stored in the memory 122. These permissible unique identifiers PUID stored in the memory 122 of the touch controller 106 correspond to one type of pairing information stored in the memory. In this way, the manufacturer of the electronic device 102 can store or have stored selected permissible unique identifiers PUID in the memory 122 of the touch controller 106 and then provide these permissible unique identifiers only to the makers of proprietary active styluses 104 with which the electronic device 102 may be paired. Any active stylus 104 not having a unique identifier UID corresponding to one of the stored permissible unique identifiers PUID stored in the memory 122 cannot be paired with the electronic device 102.
In one embodiment, the permissible unique identifiers PUID stored in the memory 122 of the touch controller 106 are stored in the memory during manufacture of the touch controller. The memory 122 in this embodiment corresponds to a locked block of memory in the touch controller 106 that is not accessible except during manufacture of the touch controller. Such a locked portion of memory already exists in typical integrated circuits and includes proprietary information about the integrated circuit, such as identification information for the integrated circuit, the date the integrated circuit was manufactured, calibration data, and so on. Accordingly, in one embodiment the memory 122 corresponds to a portion of this locked block of memory. In this way, the values of the permissible unique identifiers PUID are not accessible to third parties unless they are provided by the manufacturer of the touch controller 106.
Once the touch controller 106 has verified that the unique identifier UID received from the active stylus 104 corresponds to one of the permissible unique identifiers PUID, the touch controller saves the unique identifier UID in memory 122 to indicate that the touch controller 106 is currently paired with the active stylus 104 having this unique identifier. Multiple intelligent input devices 104 may be paired with the touch controller 106 in one embodiment. In this situation, the unique identifier UID for each intelligent input device 104 with which the touch controller 106 is currently paired would be stored in memory 122 to indicate these active pairings.
After having stored the unique identifier UID in memory 122, the touch controller 106 sends an acknowledgement of the successful pairing in the form of a pairing successful identifier PSID to the active stylus 104. This is indicated by the arrow 204 in
The process proceeds from step 306 to step 308 and the touch controller 106 starts sending the start pairing identifier SPID over the communications channel 114. The touch controller 106 actually starts sending the SPID upon entering the pairing mode of operation, and thus step 308 would typically proceed step 306 in time. The steps of the process 300 are merely meant to illustrate individual steps performed by this embodiment of a pairing process and not to mean that these steps are necessarily performed in the exact sequence shown in the flowchart of
After step 308 the process proceeds to step 310 and determines whether the active stylus 104 receives the SPID identifier sent by the touch controller 106. The active stylus 104 will receive the SPID identifier as long as the stylus is within the permissible operating range OPR from the electronic device 102. Thus, if the determination in step 310 is negative the process goes to step 312 and determines the active stylus 104 is not within the operating range. At this point, the process 300 goes from step 312 to step 314 and terminates. This represents the fact that if, for example, the touch controller 106 is placed in the pairing mode of operation and starts sending the SPID identifier, after a certain period of time or certain number of times sending the SPID then the touch controller would exit the pairing mode since no response from the active stylus 104 was received.
Assuming the active stylus 104 is within the operating range OPR, then the determination in step 310 will be positive, meaning the active stylus has received the SPID from the touch controller 106. In this situation, the process proceeds to step 316 and, in response to receiving the SPID via the communications channel 114, the active stylus 104 responds by sending the unique identifier UID associated with the active stylus over the communications channel to the touch controller 106.
The process then goes from step 316 to step 318 and the touch controller authenticates the unique identifier UID received from the active stylus 104. The term authentication here is used to mean the process of determining whether active stylus 104 that provided the UID identifier may be paired with the touch controller 106. As discussed above, a manufacturer of the electronic device 102 may allow only proprietary active styluses 104 to be paired using the pairing process 300. In authenticating the active stylus 104 in step 318, the touch controller 106 decrypts the received unique identifier UID and compares the decrypted value to the values of the permissible unique identifiers PUID stored in the memory 122 of the touch controller. As long as the decrypted value of the unique identifier UID matches one of the permissible unique identifiers PUID then the active stylus 104 is authenticated in step 318.
The process then goes to step 320 and determines whether the active stylus 104 has been authenticated. When this determination is negative, indicating the decrypted value of the unique identifier UID did not match any of the permissible unique identifiers PUID, the process goes to step 314 and terminates. This is true because the unique identifier UID provided by the active stylus 104 indicates that the active stylus is not a proprietary stylus that may be paired with the electronic device 102 containing the touch controller 106. Conversely, when the determination in step 320 is positive this indicates that the unique identifier UID of the active stylus 104 matches one of the permissible unique identifiers PUID stored in the memory 122 of the touch controller 106. In this situation, the active stylus 104 has been authenticated and may be paired with the electronic device 102 and the process proceeds to step 322. In step 322, the touch controller 106 stores the unique identifier UID for the active stylus 104 in the memory 122. This indicates that the touch controller 106 is currently paired with the active stylus 104 associated with the stored unique identifier UID. Moreover, as mentioned above, the touch controller 106 may be paired with multiple intelligent input devices 104. For each intelligent input device 104 with which the touch controller 106 is paired, the unique identifier UID for that intelligent input device is similarly stored in the memory 122 indicating that the touch controller is currently paired with that intelligent input device.
The process then proceeds from step 322 to step 324 and the touch controller 106 sends the pairing successful identifier PSID to the active stylus 104 over the communications channel 114. Upon receiving the pairing successful identifier PSID from the touch controller 106, the active stylus 104 terminates operation in the pairing mode and commences operation in a normal mode. The normal mode corresponds to the mode of operation of the active stylus 104 where a user is utilizing the stylus to interface with the electronic device 102 and the stylus is sending data generated by this use to the touch controller 106 over the communications channel 114, as will now be explained in more detail with reference to
In other embodiments of the present disclosure, the pairing mode of operation could, instead of being user-initiated, be automatically entered by both the active stylus 104 and the touch controller 106 after establishment of the communications channel 114.
From step 408 the process goes to step 410 in which the touch controller 106 receives the normal operational data NOD generated by the active stylus 104 and communicated over the communications channel 114. The touch controller 106 then processes this received operational data NOD to generate touch information TI that is provided to an app 118 running on the processing circuitry 116. The app 118 thereafter utilizes the provided touch information TI to control the operation or functionality of the app. Note this touch information TI would include event information including the location of the active stylus 104 along with other data generated by the stylus such as motion and orientation data, for example.
The process goes from step 410 to step 412 and determines whether the touch controller 106 has not received normal operational data NOD from the active stylus 104 for a specified amount of time. This lack of normal operational data NOD could be the result of the active stylus 104 no longer being within the operating range OPR from the electronic device 102. Alternatively, this lack of normal operational data NOD could be the result of the user no longer actively utilizing the active stylus 104 even though the stylus is still within the operating range OPR. If the determination in step 412 is negative, this indicates that the active stylus 104 is providing data NOD to the touch controller 106 as occurs when the user is actively utilizing the active stylus. Thus, in this situation the process goes back to step 108 and continues operating in the normal mode. When the determination in step 412 is positive, however, this indicates that the active stylus 104 has not provided normal operational data NOD to the touch controller 106 for more than the specified time, which may occur when the the user is no longer actively utilizing the stylus. When the determination in step 412 is positive the process goes to step 414 and the touch controller 106 enters an idle mode of operation, as will described in more detail below with reference to
The flowchart of
From step 506 the process proceeds to step 508 and the touch controller 106 authenticates the unique identifier UID from the active stylus 104. The touch controller 106 does this in the same way as described above with reference to
When the touch controller 106 has authenticated the active stylus 104 in step 510, the determination is positive and the process proceeds to step 512 and the pairing of the touch controller and active stylus is maintained even though the active stylus is not actively sending normal operational data NOD to the touch controller. From step 512 the process goes to step 514 and determines whether the touch controller 106 has received normal operational data NOD from the active stylus 104. When the determination in step 514 is negative the process goes back to step 504 and continues executing the idle mode process. Conversely, when the determination in step 514 is positive this indicates that the active stylus 104 is once again being utilized by the user and is sending normal operational data NOD to the touch controller 106. Accordingly, at this point the touch controller 106 would again commence operation in the normal mode as previously described with reference to
The active stylus 600 further includes a motion sensor 608 that sense the motion and/or orientation of the active stylus and provides corresponding sensor signals to the controller 602. The motion sensor 608 can be an accelerometer, gyroscope, or any other suitable sensor capable of sensing the motion and/or orientation of the active stylus. A contact sensor 610 senses contact of a portion of the active stylus, such as a tip 612 of the stylus, with a surface or proximity of the tip to a surface, and provides corresponding sensor signals to the controller 602. The contact sensor 610 may also sense a pressure applied by the user of the stylus 600, with this sensed pressure then being used by the app 118 (
The intelligent input device 600 may also operate in the idle mode of operation when the touch controller 106 operates in the idle mode. More specifically, the controller 602 may monitor the values of the sensor signals from the motion sensor 608 and contact sensor 610, and when these signals indicate the intelligent input device 600 is not being utilized by a user, the controller may enter the idle mode of operation. For example, the controller 602 may detect the sensor signals and, in response to the sensor signals indicating for an idle time interval that a user is not actively using the intelligent input device, the controller enters the idle mode of operation. In the idle mode the controller 602 may operate the device 600 in a lower power mode to reduce power consumption and thereby increase the life of the battery (not shown) powering the intelligent input device. During the idle mode, the controller 602, in one embodiment, continues to detect and monitor the sensor signals from sensors 608, 610 but less frequently than during the normal mode of operation. Upon detecting a suitable change in the value of or rate of change of one of the sensor signals, the controller 602 once again resumes operation in the normal mode of operation.
Even though various embodiments and advantages of the present disclosure have been set forth in the foregoing description, the present disclosure is illustrative only, and changes may be made in detail and yet remain within the broad principles of the present disclosure. Moreover, the functions performed by various components described above can be combined to be performed by fewer elements, separated and performed by more elements, or combined into different functional blocks depending upon the nature of the electronic system to which the present disclosure is being applied, as will be appreciated by those skilled in the art. At least some of the components described above may be implemented using either digital or analog circuitry, or a combination of both, and also, where appropriate, may be realized through software executing on suitable processing circuitry. It should also be noted that the functions performed by various components discussed above can be combined and performed by fewer elements or separated and performed by additional elements depending on the nature of the electronic system 100. Finally, as already mentioned above, in addition to the active stylus 104 used as an example of the intelligent input device in the embodiment of