Secure pairing of devices via pairing facilitator-intermediary device

Information

  • Patent Grant
  • 11497070
  • Patent Number
    11,497,070
  • Date Filed
    Wednesday, January 15, 2020
    4 years ago
  • Date Issued
    Tuesday, November 8, 2022
    a year ago
Abstract
The present inventions, in one aspect, are directed to systems and circuitry for and/or methods of establishing communication having one or more pairing facilitator-intermediary devices (for example, a network connected server) to enable or facilitate pairing and/or registering at least two devices (e.g., (i) a portable biometric monitoring device and (ii) a smartphone, laptop and/or tablet) to, for example, recognize, interact and/or enable interoperability between such devices. The pairing facilitator-intermediary device may responsively communicates information to one or more of the devices (to be paired or registered) which, in response, enable or facilitate such devices to pair or register. The present inventions may be advantageous where one or both of the devices to be paired or registered is/are not configured (e.g., include a user interface or certain communication circuitry that is configured or includes functionality) to pair devices without use of a facilitator-intermediary device.
Description
CLAIM OF PRIORITY

An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.


INTRODUCTION

In one aspect, the present inventions relate to systems and circuitry for and/or methods of establishing communication having one or more pairing facilitator-intermediary devices (for example, a network connected server) to enable or facilitate pairing and/or registering two or more devices (for example, (i) a portable biometric monitoring device and (ii) a smartphone, laptop and/or tablet) to, for example, recognize, interact and/or identify such devices and/or enable interoperability between such devices. In one embodiment, the pairing facilitator-intermediary device responsively communicates data and/or instructions to one or more of the devices (to be paired or registered) which, in response, enable or facilitate such devices to pair or register. The present inventions may be advantageous where one or both of the devices to be paired or registered do not include or employ functionality and/or resident circuitry (for example, an interface (for example, a user interface) or resident communication circuitry) that allows, enables or permits a user to pair and/or register the devices. For example, where the device to be paired or registered do not possess a, or employ its user interface and/or communication circuitry which is suitable for selection, entering and/or communicating data to its counterpart device (for example, via communicating out-of-band data).


Notably, pairing or registering devices may be characterized as enabling interoperability between such devices and/or an initialization process which creates a link (for example, a lasting and/or sustainable link) between two or more devices to facilitate, allow and/or make possible future communication between the devices. After the pairing process is complete, one or more of the devices involved in the pairing process may save information about one or more of the other devices so that when a new, subsequent and/or future communication link is to be set-up, little or no user interaction is required to create the connection. Similarly, registering devices with each other or with a third device allows subsequent and/or future communication between two or more of the devices to occur with little or no user interaction.


In one embodiment, one or more of the devices to be paired or registered is/are portable biometric monitoring device(s). Such portable biometric monitoring device(s) may, according to embodiments described herein, have shapes and/or sizes that are/is adapted for coupling to (for example, secured to, worn, carried or borne by, etc.) the body or clothing of a user and, when worn, do not impede motion, activity or the like of the user. Examples of portable biometric monitoring devices are shown in FIGS. 1-5. Some portable biometric monitoring devices such as those in FIGS. 1-2 may have a display and a button. Other portable biometric monitoring devices may have more limited user interfaces such as those shown in FIGS. 4A, 4B and 5. Indeed, some portable biometric monitoring devices may have little or no user interface features such as displays, indicators, or buttons. In one embodiment, the devices collect one or more types of physiological and/or environmental data from embedded sensors and/or external devices and communicate or relay such information to other devices, including devices capable of serving as an Internet-accessible data sources, thus permitting the collected data to be viewed, for example, using a web browser or network-based application. For example, while the user is wearing a biometric monitoring device, the device may calculate and store the user's step count using one or more sensors. The device then transmits data representative of the user's step count to an account on a web service (for example, www.fitbit.com), computer, mobile phone, or health station where the data may be stored, processed, and visualized by the user. Indeed, the device may measure or calculate a plurality of other physiological metrics in addition to, or in place of, the user's step count.


Notably, other physiological metrics include, but are not limited to, energy expenditure (for example, calorie burn), floors climbed and/or descended, heart rate, heart rate variability, heart rate recovery, location and/or heading (for example, through GPS), elevation, ambulatory speed and/or distance traveled, swimming lap count, bicycle distance and/or speed, blood pressure, blood glucose, skin conduction, skin and/or body temperature, electromyography, electroencephalography, weight, body fat, caloric intake, nutritional intake from food, medication intake, sleep periods (i.e., clock time), sleep phases, sleep quality and/or duration, pH levels, hydration levels, and respiration rate. The device may also measure or calculate metrics related to the environment around the user such as barometric pressure, weather conditions (for example, temperature, humidity, pollen count, air quality, rain/snow conditions, wind speed), light exposure (for example, ambient light, UV light exposure, time and/or duration spent in darkness), noise exposure, radiation exposure, and magnetic field.


Furthermore, the device or the system collating the data streams may calculate metrics derived from this data. For example, the device or system may calculate the user's stress and/or relaxation levels through a combination of heart rate variability, skin conduction, noise pollution, and sleep quality. In another example, the device or system may determine the efficacy of a medical intervention (for example, medication) through the combination of medication intake, sleep and/or activity data. In yet another example, the device or system may determine the efficacy of an allergy medication through the combination of pollen data, medication intake, sleep and/or activity data. These examples are provided for illustration only and are not intended to be limiting or exhaustive. Further embodiments and implementations of sensor devices are described and/or illustrated in U.S. patent application Ser. No. 13/156,304, entitled “Portable Biometric Monitoring Devices and Methods of Operating Same” filed Jun. 8, 2011, which is incorporated herein, in its entirety, by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present inventions and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. The various embodiments disclosed herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to the same and/or similar structures/components/features/elements. It is understood that various combinations of the structures, components, features and/or elements, other than those specifically shown, are contemplated and are within the scope of the present inventions.


Moreover, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, certain permutations and combinations are not discussed and/or illustrated separately herein.


The various embodiments disclosed herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 illustrates an example of a portable monitoring device.



FIG. 2 illustrates an example of a portable monitoring device having a button and a dead front display.



FIG. 3 illustrates a user extremity mounted portable monitoring device having a button, display, and a band.



FIG. 4A illustrates a portable monitoring device having multiple LED's to display information to the user.



FIG. 4B illustrates a portable monitoring device having multiple LED's to display information to the user.



FIG. 5 illustrates a band case for a portable biometric monitoring device and a portable biometric monitoring device having multiple LED's to display information to the user.



FIG. 6 is a block diagram of an embodiment of a system in which a first device and a second device directly communicate with each other as well as communicate with a pairing facilitator-intermediary device to enable and implement a pairing or registering process.



FIG. 7 is a block diagram of an embodiment of a system in which the first device bi-directionally communicates with the pairing facilitator-intermediary device and the second device receives data and/or instructions from the pairing facilitator-intermediary device, and the first and second devices communicate with each other to implement the pairing or registering process.



FIG. 8 is a block diagram of an embodiment of a system in which the first device communicates with the pairing facilitator-intermediary device and the second device sends data to the pairing facilitator-intermediary device, and the first and second devices communicate to implement the pairing or registering process.



FIG. 9 is a block diagram of an embodiment of a system in which the first device communicates with the pairing facilitator-intermediary device and the first and second devices communicate to implement the pairing or registering process.



FIG. 10 illustrates, in block diagram form, an embodiment having a first device, second device, third device and facilitator-intermediary device wherein the interaction between the first device and second device with each other and with a pairing facilitator-intermediary device occurs to facilitate pairing or registering processes.



FIG. 11 illustrates, in block diagram form, an embodiment having a first device, second device, third device and facilitator-intermediary device wherein the interaction between the first device and second device with each other and with a pairing facilitator-intermediary device occurs to facilitate pairing or registering processes.



FIG. 12 illustrates, in block diagram form, an embodiment having a first device, second device, third device and facilitator-intermediary device wherein the interaction between the first device and second device with each other and with a pairing facilitator-intermediary device occurs to facilitate pairing or registering processes.



FIG. 13 illustrates, in block diagram form, an embodiment having a first device, second device, third device and facilitator-intermediary device wherein the interaction between the first device and second device with each other and with a pairing facilitator-intermediary device occurs to facilitate pairing or registering processes.



FIG. 14 is a block diagram of an embodiment having a first device, second device and facilitator-intermediary device wherein the interaction between the first device and second device with a pairing facilitator-intermediary device facilitates pairing or registering processes.



FIG. 15A illustrates, in block diagram form, a first and/or second device(s) to be paired, notably, the device may communicate using any technique, protocols and/or circuitry now known or later developed including wireless, wired and optical techniques.



FIG. 15B illustrates, in block diagram form, a first and/or second device(s) having a device to be paired and an interface device.



FIG. 15C illustrates, in block diagram form, first and second devices, according to embodiments of the present inventions, second device uses circuitry in the first device to communicate with the pairing facilitator-intermediary device.



FIG. 16 illustrates, in block diagram form, an embodiment where a first device is already paired to a second device, but is to be paired to a third device.



FIG. 17 illustrates an embodiment where multiple pairing facilitator-intermediary devices in communication with each other may send and/or receive data and/or instructions with a first and/or second device.





DETAILED DESCRIPTION


FIG. 1 illustrates an example of a portable biometric or activity sensor or monitoring device (hereinafter collectively “portable biometric monitoring device”) having a button and a display and including a housing having a physical size and shape that is adapted to couple to the body of the user.



FIG. 2 illustrates an example of a portable biometric monitoring device having a button and a dead front display; notably, in the dead front display, the display is obscured from view when the display is off typically by placing a semi-transparent material in front of the display.



FIG. 3 illustrates a user extremity (for example, wrist or ankle) mounted portable biometric monitoring device having a button, display, and a band (having protrusions and notches/apertures) to secure the portable biometric monitoring device to the wrist or ankle of a user; notably, any mechanism or technique now known or later developed may be employed to physically couple the portable biometric monitoring device to the user.



FIGS. 4A and 4B illustrates a portable biometric monitoring device having multiple LED's to display information to the user; notably, any mechanism or technique now known or later developed may be employed to physically couple or “attach” the portable biometric monitoring device to the user; for example, the sensor case of FIG. 5 may be employed or the portable biometric monitoring device attached to a band (like, for example, an arm or wrist/watch band); indeed, the portable biometric monitoring device need not include any attachment mechanism and may, for example, be physically coupled or “attached” to the user via being disposed in a pocket of clothing, a sock and/or shoe/sneaker of the user.


In one embodiment, an activity monitoring device, as shown in FIG. 4B has a housing defined by a molded structure that is elongated along a dimension that extends between a first end and a second end of the molded structure. The molded structure has an interior space. The activity monitoring device further has a circuit board dimensioned to fit within the interior space. The circuit board has a sensor, an electronics unit, and a memory. The memory is used for storing activity data and the circuit board further has an antenna and at least one light emitting diode. The activity monitoring device has a cap that connects to the second end of the molded structure to enclose the circuit board within the interior space. The activity monitoring device has a communication contact disposed at a surface of the first end of the molded structure. The communication contact provides a contact to charge a battery that is coupled to the circuit board.


In an embodiment, light emitted from the at least one light emitting diode, when active, is viewable from an exterior surface of the molded structure.


In one embodiment, the antenna communicates via radio frequency waves with a computing device to facilitate communication of the activity data or receive instructions from the computing device.


In one embodiment, the molded structure has an opening at the second end to allow entry from and exit of the circuit board with respect to the interior space.


In an embodiment, the interior space is bounded by walls of the molded structure and the opening. The first end includes one of the walls.


In one embodiment, the second end encompasses an opening to allow passage of the circuit board into and out of the opening.


In an embodiment, the cap includes a lip portion that fits within the housing.


In one embodiment, activity data includes an environmental metric or a physiological metric.


In an embodiment, the activity monitoring device includes a transmitter and receiver unit associated with the circuit board and coupled to the antenna to enable communication of the activity data.


In one embodiment, the activity monitoring device includes a transmitter and receiver unit. The electronics unit sends the activity data via the transmitter unit and the antenna to a computing device.


In an embodiment, the computing device includes a portable electronic device.


In one embodiment, the cap detaches from the second end of the molded structure to allow removal of the circuit board from the interior space.


In one embodiment, the molded structure has a substantially tubular shape.


In an embodiment, the substantially tubular shape has rounded edges and substantially straight walls.


In one embodiment, the electronics unit is configured to receive the activity data from the sensor for storage in the memory or for transferring to a computing device via the antenna.


In an embodiment, a method includes generating activity data when a user is performing an activity. The activity data is detected by a sensor of a monitoring device worn by a user. The method further includes accessing the activity data from a memory device of the monitoring device. The memory device is located in an interior space of a housing of the monitoring device. The method includes communicating the activity data from an electronic device located inside the housing via a transmitter and an antenna to a computing device located outside the housing. The antenna and the transmitter are located inside the housing. The housing is enclosed by a cap and includes a battery that is charged via a communication contact. The communication contact is located at a first end of the housing and the antenna located at a second end of the housing.


In an embodiment, the method includes sending pairing information associated with the monitoring device via a computing device to a server. The method includes pairing of the monitoring device with the computing device after the pairing information is received by the computing device from the server.


In one embodiment, the method includes sending the activity data via a computing device to a server.


In an embodiment, the activity includes swimming, bicycling, or sleeping.



FIG. 5 illustrates a band case for a portable biometric monitoring device and a portable biometric monitoring device having multiple LED's to display information to the user, wherein this illustrative example, a sensor case (in which the portable biometric monitoring device may be disposed during operation) is physically coupled to the user via straps/bands having protrusions or posts (or the like) on the first strap/band to engage notches or apertures on the second strap/band to secure the sensor case to the user (for example, to a wrist, arm or leg); notably, any mechanism or technique now known or later developed may be employed to physically couple the sensor case and/or portable biometric monitoring device to the user—for example, the sensor case may be attached to a band (like, for example, an arm or wrist/watch band); indeed, the sensor case and/or portable biometric monitoring device need not include any attachment mechanism and may, for example, be physically coupled or “attached” to the user via being disposed in a pocket of clothing, a sock and/or shoe/sneaker of the user.


In an embodiment, a wearable band includes a strap having a protrusion located along a portion of a length of the strap. The strap has notches located along another portion of the length of the strap. The protrusion engages with a selected one of the notches. The wearable band includes a cavity for holding an activity monitoring device. The activity monitoring device includes a housing defined by a molded structure that is elongated along a dimension that extends between a first end and a second end of the molded structure. The molded structure has an interior space. The activity monitoring device further includes a circuit board dimensioned to fit within the interior space. The circuit board has a sensor, an electronics unit, and a memory. The memory stores activity data. The circuit board has an antenna and at least one light emitting diode. The activity monitoring device has a cap that connects to the second end of the molded structure to enclose the circuit board within the interior space. The activity monitoring device includes a communication contact disposed at a surface of the first end of the molded structure. The communication contact provides a contact to charge a battery that is coupled to the circuit board.


In one embodiment, the strap has a width and a depth and the length is greater than the width and the width is greater than the depth.


In an embodiment, the protrusion extends into and fit with one of the notches.


In an embodiment, one of the notches includes an aperture for surrounding the protrusion when engaged with the protrusion.


In an embodiment, the activity monitoring device includes at one light emitter. Light emitted from the at least one light emitter, when active, is viewable from an exterior surface of the molded structure.


In one embodiment, a method includes generating activity data when a user is performing an activity. The activity data is detected by a sensor of a monitoring device that fits within a pouch of a strap. The strap has a protrusion located along a portion of a length of the strap. The strap has notches located along another portion of the length of the strap. The protrusion engages with a selected one of the notches. The method further includes accessing the activity data from a memory device of the monitoring device. The memory device is located in an interior space of a housing of the monitoring device. The method includes communicating the activity data from an electronic device located inside the housing via an antenna to a computing device located outside the housing. The antenna is located inside the housing, which is enclosed by a cap. The housing includes a battery for being charged via a communication contact, which is located at a first end of the housing. The antenna is located at a second end of the housing.


In an embodiment, the method includes sending pairing information associated with the monitoring device via a computing device to a server. The method further includes pairing with the computing device after the pairing information is received by the computing device from the server.



FIGS. 6-9 illustrate, in block diagram form, embodiments having a first device (for example, a portable biometric monitoring device), second device (for example, a smartphone) and facilitator-intermediary device (for example, a server) wherein interaction between the first device and second device with a pairing facilitator-intermediary device facilitate pairing or registering processes, according to embodiments of the present inventions; in one embodiment, the first and second device directly communicate with each other as well as communicate (for example, send and/or receive data and/or instructions) with the pairing facilitator-intermediary device to enable and/or implement the pairing or registering process (see, for example, FIG. 6); in another embodiment, the first device bi-directionally communicates (for example, sends and/or receives data and/or instructions) with the pairing facilitator-intermediary device, the second device receives data and/or instructions from the pairing facilitator-intermediary device, and the first and second devices communicate to implement the pairing or registering process (see, for example, FIG. 7); in another embodiment, the first device communicates (for example, sends and/or receives data and/or instructions) with the pairing facilitator-intermediary device and the second device sends data to the pairing facilitator-intermediary device, wherein the first and second devices communicate to implement the pairing or registering process (see, for example, FIG. 8); in yet another embodiment, the first device communicates (for example, sends and/or receives data and/or instructions with the pairing facilitator-intermediary device) and the first and second devices communicate to implement the pairing or registering process (see, for example, FIG. 9); notably, the first and second devices may communicate using any technique, protocols and/or circuitry now known or later developed including wireless, wired and optical techniques; moreover, it should be noted that the communication channel between first and second device may be unsecure before pairing is complete whereas the communication channel between the first device and the pairing facilitator-intermediary device (and, in certain embodiments, to the secondary device as well) and/or the communication channel between the second device and the pairing facilitator-intermediary device (and, in certain embodiments, to the first device as well) are trusted or secure communication channel(s) after the first and second device have been paired to the pairing facilitator-intermediary device (see, for example, FIGS. 6-14, 16 and 17).



FIGS. 10-13 illustrate, in block diagram form, embodiments having a first device, second device, third device and facilitator-intermediary device wherein the interaction between the first device and second device with each other and with a pairing facilitator-intermediary device to facilitate pairing or registering processes, according to embodiments of the present inventions; in one embodiment, the first and second device may communicate directly with facilitator-intermediary device and exchange secure data and/or instructions through a third device to enable and/or implement the pairing or registering process; the notably, the embodiment of exchanging secure data and/or instructions through a third device to enable and/or implement the pairing or registering process may be implemented in any of the embodiments hereof, including those of FIGS. 6-9.



FIG. 14 illustrates, in block diagram form, an embodiment having a first device, second device and facilitator-intermediary device wherein the interaction between the first device and second device with a pairing facilitator-intermediary device facilitate pairing or registering processes, according to embodiments of the present inventions, wherein first and second device send and/or receive data, instructions, and/or secure data with the pairing facilitator-intermediary device through one or multiple communication channels.



FIG. 15A illustrates, in block diagram form, a first and/or second device(s) to be paired (for example, a portable biometric monitoring device, laptop, smartphone, desktop computer or server); notably, the device may communicate (for example, data and/or instructions) using any technique, protocols and/or circuitry now known or later developed including wireless, wired and optical techniques.



FIG. 15B illustrates, in block diagram form, a first and/or second device(s) having a device to be paired and an interface device, according to embodiments of the present inventions, wherein the device of FIG. 15B may be implemented in any of the embodiments described and/or illustrated herein, wherein the device to be paired (for example, a portable biometric monitoring device) and/or interface device (for example, a laptop, tablet computer, or smartphone) may send and/or receive data, for example, wirelessly; notably, the device to be paired and/or interface device may communicate with each other through one or multiple techniques, protocols and/or circuitry now known or later developed, including but not limited to wired, wireless, or optical communication.



FIG. 15C illustrates, in block diagram form, first and second devices (i.e., the devices to be paired), according to embodiments of the present inventions, second device uses circuitry in the first device to communicate (for example, send and/or receive data and/or instructions with the pairing facilitator-intermediary device) and, using the data and/or instructions, the first and second devices subsequently communicate to implement the pairing or registering process; notably, the first and second devices may communicate using any technique, protocols and/or circuitry now known or later developed including wireless, wired and optical techniques; moreover, it should be noted that the second device may communicate through a secure communication channel to the pairing facilitator-intermediary device using communication circuitry on the first device to transfer communication from the second device to the pairing facilitator-intermediary device and/or transfer communication from the pairing facilitator-intermediary device to the second device before and/or after pairing using techniques such as encryption, obfuscation, or any other method which makes it impossible or difficult for the first device to intercept, interpret, and/or modify data or instructions sent from the second device to the pairing facilitator-intermediary device and/or data or instructions sent from the pairing facilitator-intermediary device to the second device.



FIG. 16 illustrates, in block diagram form, an embodiment where a first device is already paired to a second device, but is to be paired to a third device, accordingly to an embodiment of the present inventions; here, a pairing facilitator-intermediary device may send and/or receive data and/or instructions from the second and the third device may assist or facilitate and/or automatically implement the pairing process between the first and third device.



FIG. 17 illustrates an embodiment where multiple pairing facilitator-intermediary devices in communication with each other may send and/or receive data and/or instructions with a first and/or second device, according to one or more embodiments of the presented inventions.


Again, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those combinations and permutations are not discussed separately herein.


Moreover, many other aspects, inventions and embodiments, which may be different from and/or similar to, the aspects, inventions and embodiments illustrated in the drawings, will be apparent from the description, illustrations and claims, which follow. In addition, although various features and attributes have been illustrated in the drawings and/or are apparent in light thereof, it should be understood that such features and attributes, and advantages thereof, are not required whether in one, some or all of the embodiments of the present inventions and, indeed, need not be present in any of the embodiments of the present inventions.


At the outset, it should be noted that there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.


Further, in the course of describing and illustrating the present inventions, various circuitry, architectures, structures, components, functions and/or elements, as well as combinations and/or permutations thereof, are set forth. It should be understood that circuitry, architectures, structures, components, functions and/or elements other than those specifically described and illustrated, are contemplated and are within the scope of the present inventions, as well as combinations and/or permutations thereof.


With that in mind, in one aspect, the present inventions are directed to techniques and systems having one or more pairing facilitator-intermediary devices to enable or facilitate pairing and/or registering two or more devices to, for example, recognize, interact and/or identify such devices and/or enable interoperability between such devices. In one embodiment, the pairing facilitator-intermediary device (for example, a server, laptop or desktop computer) responsively communicates data and/or instructions to one or both of the devices which, in response, enable or facilitate the two devices to pair or register. The present inventions may be advantageous where one or both of the devices to be paired or registered do not include or employ functionality and/or resident circuitry (for example, an interface (for example, a user interface) or resident communication circuitry) that allows, enables or permits a user to pair and/or register the one or more devices. For example, where the device to be paired or registered does not possess a, or employ its user interface and/or communication circuitry which is suitable for selection, entering and/or communicating data to its counterpart device (for example, via communicating out-of-band data) which would implement a pairing or registering operation. Such devices may include, but are not limited to portable biometric monitoring devices such as those shown in FIGS. 1-5 which have one or no buttons or the like (other user input mechanism).


With reference to FIGS. 6-14, one or more devices to be paired, identified or registered separately (in the illustrative example, first and second devices) communicate with a pairing facilitator-intermediary device (for example, a computer, computing system, website and/or service (and/or website or service computing host)). The first and second devices to be paired, identified or registered may communicate with the pairing facilitator-intermediary device directly and/or via an interface device (for example, any type of computing or communication device (such as a smart phone, router, and/or computer)). (See, FIGS. 15A and 15B, respectively). The communication with the interface device and the pairing facilitator-intermediary device may be, for example, wired, wireless and/or optical wherein the pairing facilitator-intermediary device provides data and/or instructions to one or both of the first and/or second devices to facilitate or enable the first and second devices to pair, register and/or identify with the other.


In one embodiment, the devices to be paired or registered (for example, automatically and/or in response to a user input) are paired or registered (for example, via the user) with the pairing facilitator-intermediary device. The pairing facilitator-intermediary device may present or offer a user or a system with one or more devices that, for example, are (i) capable of being paired/registered, (ii) available to be paired/registered, (iii) should be paired/registered and/or (iv) currently paired/registered. In response thereto, the user or system may indicate, select and/or identify the devices to be paired/registered with each other. That is, with reference to FIG. 6, the user may indicate that the first and second devices are to be paired or registered to, for example, enable the devices to recognize, interact and/or identify each other and/or enable interoperability there between.


In response to such user or system input, the pairing facilitator-intermediary device provides information (for example, data and/or instructions) to the first and second devices that facilitate or allow such pairing or registering. Here, the pairing facilitator-intermediary may employ an existing secure connection to the first and second devices to provide information of the requested pairing/registering to one or both of the first and second devices. Note that communication between the first device and the pairing facilitator-intermediary device, between the second device and the pairing facilitator-intermediary device and between the first and second device via the pairing facilitator-intermediary device may be secure due to the completion of pairing between the first device and the pairing facilitator and the completion of pairing between the second device and the pairing facilitator. The direct communication between the first and second device may not be considered secure before the first and second devices are paired. The information of the requested pairing/registering may be suitable for the devices to perform a pairing/registering operation with each other. For example, the information may include an identifier for the intended pairing/registering partner, and a secret code, key or data that may be used or communicated as out-of-band-data (for example, via short-range communication—such as a short-range wireless technique) between the first and second device. Notably, out-of-band-data is data which is communicated or transmitted via out-of-band-communication, which may be characterized as communication through a second communication method or channel. Note that out-of-band-data may be data which is communicated though the same electromagnetic frequency band (in the specific case of typical wireless communication) using different methods or protocols than the first “in-band” communication (for example, the communication technique and/or protocol employed by the first and/or second device in conjunction with the facilitator-intermediary device).


The first and second devices, after receipt of the information from the pairing facilitator-intermediary device, may automatically pair, register and/or recognize with each other, for example, via use of the out-of-band secret to authenticate the pairing attempt. Thereafter, the first and second devices are paired or registered to, for example, enable interoperability there between.


Notably, in one embodiment, the first and second devices may employ any communication technique and/or protocol now known or later developed including, for example, short-range (for example, less than 20 feet, and preferably less than 10 feet, and more preferably, less than 5 feet) wireless techniques including, for example, NFC, RFID or Bluetooth protocols and/or techniques. In one embodiment, such short-range communication techniques facilitate private, secret data exchange.


In another embodiment, the present inventions may be implemented where only one of the first and second devices (i.e., the devices to be paired or registered such as a portable biometric monitoring device and a portable computing device (for example, smartphone)) communicates with the pairing facilitator-intermediary device. (See, FIG. 7). In this embodiment, the pairing facilitator-intermediary device provides pairing or registering information (for example, data and/or instructions) to both devices to facilitate or allow pairing or registering. Thereafter, the first and second devices may complete the pairing operation as described above in connection with FIG. 6.


With reference to FIG. 8, in another embodiment, both the first and second devices provide data to the pairing facilitator-intermediary device—however, the pairing facilitator-intermediary device provides pairing or registering information (for example, data and/or instructions) to only one of the first and second devices. In this embodiment, the first and second devices employ such information to pair or register, for example, via the techniques described above. That is, the pairing facilitator-intermediary employs an existing secure connection to the first device to provide such pairing or registering information. The first device may use such information to perform a pairing/registering operation with the second device. For example, the pairing or registering information may include an identifier for the intended pairing/registering partner, and a secret that may be used or communicated as out-of-band-data (for example, via short-range communication—such as a short-range wireless technique). The first device, after receipt of such information from the pairing facilitator-intermediary device, may automatically initiate the pairing or registering operation with the second device, for example, via use of the out-of-band secret to authenticate the pairing attempt. Thereafter, the first and second devices are paired or registered to, for example, enable interoperability there between.


Indeed, in another embodiment, only one of the first and second devices includes any communication with the pairing facilitator-intermediary device. (See, FIG. 9). In this embodiment, the pairing facilitator-intermediary device (such as a web service hosted on an internet connected server) may provide pairing or registering information to the first device (for example, a portable computing device, laptop and/or smartphone) to allow or enable pairing/registering operation with the second device (for example, a portable biometric monitoring device or other device having limited user interface and connectivity). The pairing facilitator-intermediary device may again employ the existing secure connection to the first device to provide such information. In response, the first device may initiate pairing/registering and use the information to perform a pairing/registering operation with the second device. Here again, the information may include an identifier for the intended pairing/registering partner, and a secret (for example, a secret code, key or instruction (which may initiate or implement a certain operation such as, for example, generation of a code) that may be used or communicated as out-of-band-data (for example, via short-range communication—such as a short-range wireless technique). Thereafter, the first and second devices may “complete” the pairing operation as described above.


There are many inventions described and illustrated herein. While certain embodiments, features, attributes and advantages of the inventions have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present inventions, are apparent from the description and illustrations. As such, the embodiments, features, attributes and advantages of the inventions described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, attributes and advantages of the present inventions are within the scope of the present inventions.


For example, although the embodiments described herein employ first and second devices communicating directly after receipt of the pairing or registering information from the pairing facilitator-intermediary device, such communication may be via a third device and/or via the pairing facilitator-intermediary device. As such, in this exemplary embodiment, not only is the communication between the first and second devices indirect—the actual pairing/registering function or interaction may be indirect, for example, via the third device. (See, for example, FIGS. 7-14).


In addition, as noted above, the first and second devices to be paired, identified or registered may communicate with the pairing facilitator-intermediary device directly and/or via an interface device. (See, FIGS. 15A and 15B, respectively). Here, communication between the first and second devices to be paired, identified or registered and the pairing facilitator-intermediary device is enabled or provided through, for example, client programs, which operate or run on the interface device (for example, the computing or communication device (such as a smart phone, router, and/or computer)).


Notably, the present inventions may be advantageous where one or both of the devices to be paired or registered do not include or employ the functionality and/or circuitry that enables or permits pairing and/or registering of the devices. For example, where the device to be paired or registered does not possess a, or employ its user interface and/or communication circuitry which is suitable for selection, entering and/or passing out-of-band data.


In the case where it is desirable to pair a single first device to one or more other devices, (for example, a second and third device as seen in FIG. 16), a pairing facilitator may send and/or receive data and/or instructions from a second device which is already paired to the first device to a pairing facilitator-intermediary device. The pairing facilitator-intermediary device may also send and/or receive data and/or instructions with the third device to facilitate the pairing of the first device to the third device. Notably, the embodiment of FIG. 16 may be employed in connection with other embodiments described and/or illustrated herein (for example, FIGS. 6-14).


It should also be noted that in some embodiments of the present inventions, the pairing facilitator-intermediary device may consist of a chain or network of one or more pairing facilitator-intermediary devices in communication with each other (see FIG. 17). That is, although the pairing facilitator-intermediary device is primarily described and illustrated as one device—the pairing facilitator-intermediary device may include a plurality of interconnected devices—for example, the embodiments of FIGS. 6-14 may be implemented using or with a plurality of pairing facilitator-intermediary devices. For the sake of brevity, those embodiments will not be repeated with a plurality of pairing facilitator-intermediary devices.


Further, in one embodiment, the second device (for example, a portable biometric monitoring device) may employ circuitry in the first device (for example, a smartphone, laptop and/or tablet) to communicate (for example, send and/or receive data and/or instructions) with the pairing facilitator-intermediary device. (See, FIG. 15C). Here, the pairing facilitator-intermediary device may send the information (for example, data and/or instructions (for example, a secret code, data or key)) to the second device via the first device and, using that information (for example, data and/or instructions), the first and second devices may subsequently communicate to implement the pairing or registering process. Thus, the first device (which function or operates as an interface device for the second device) allows, enables or permits the second device to communicate (and, in one embodiment, pair) to the pairing facilitator-intermediary device to subsequently pair and/or register the first and second devices. Note that the second device may communicate through a secure communication channel to the pairing facilitator-intermediary device using communication circuitry on the first device to transfer communication from the second device to the pairing facilitator-intermediary device and/or transfer communication from the pairing facilitator-intermediary device to the second device before and/or after pairing using techniques such as encryption, obfuscation, or any other method which makes it impossible or difficult for the first device to intercept, interpret, and/or modify data or instructions sent from the second device to the pairing facilitator-intermediary device and/or data or instructions sent from the pairing facilitator-intermediary device to the second device.


Notably, in one embodiment, the first device of FIG. 15C may be one or more of the biometric monitoring devices described and/or illustrated in U.S. patent application Ser. No. 13/346,275, entitled “Biometric Monitoring Device having Body Weight Sensor, and Methods of Operating Same”, filed Jan. 9, 2012, Inventor: Yuen et al. (which is incorporated herein, in its entirety, by reference). For example, in one embodiment, a second device, for example, a portable activity monitoring device (for example, a device as or like that illustrated in FIGS. 1-5) communicates with the pairing facilitator-intermediary device via a biometric monitoring device (for example, of the type described and/or illustrated in the '275 application). That is, in one embodiment, the first and/or second devices communicate(s) (for example, pair and/or register) with the facilitator-intermediary device (for example, a server) and receive information such as data and/or instructions (for example, a secret code, data or key) which is to be used in the pairing or registering process between the first and second devices (here, a portable activity monitoring device and a biometric monitoring device having a body weight sensor). The pairing facilitator-intermediary device provides the information to the second device via the first device (for example, using communication circuitry of the first device). Notably, the pairing facilitator-intermediary device may also send information to the first device.


Using the information (for example, a secret code, data or key), the first and second devices may subsequently communicate to pair or register to enable interoperability between the first and second devices and/or an initialization process which creates a link (for example, a lasting and/or sustainable link) between two or more devices to facilitate, allow and/or make possible future communication between the devices. Indeed, after the pairing or registering process is complete, the first and/or second devices may save information about one or more of the other devices so that when a new, subsequent and/or future communication link is to be set-up, little or no user interaction is required to create the connection.


Importantly, the present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof.


Notably, the present inventions may be employed in conjunction with the inventions described and/or illustrated in U.S. patent application Ser. No. 13/785,904, which is hereby incorporated by reference. For example, after pairing of the first and second devices using any of the embodiments described and/or illustrated herein, such first and second devices may communicate using the circuitry, architectures and/or techniques described and/or illustrated in U.S. patent application Ser. No. 13/785,904 (Entitled “Near Field Communication System, and Method of Operating Same”, Inventor: Park, Filed on Mar. 15, 2013). For the sake of brevity, such combinations will not be set forth in detail herein—except by reference.


It should be noted that the devices, circuitry, architectures and/or structures disclosed herein (circuitry of the processing device, sensor device and/or proxy device) may be described using computer aided design tools and expressed (or represented), as data and/or instructions embodied in various computer-readable media, in terms of their behavioral, register transfer, logic component, transistor, layout geometries, and/or other characteristics. Formats of files and other objects in which such structure expressions may be implemented include, but are not limited to, formats supporting behavioral languages such as C, Verilog, and HLDL, formats supporting register level description languages like RTL, and formats supporting geometry description languages such as GDSII, GDSIII, GDSIV, CIF, MEBES and any other suitable formats and languages. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (for example, optical, magnetic or semiconductor storage media) and carrier waves that may be used to transfer such formatted data and/or instructions through wireless, optical, or wired signaling media or any combination thereof. Examples of transfers of such formatted data and/or instructions by carrier waves include, but are not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other computer networks via one or more data transfer protocols (for example, HTTP, FTP, SMTP, etc.).


Indeed, when received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the circuitry of the processing device, sensor device and/or proxy device within the computer system in conjunction with execution of one or more other computer programs including, without limitation, net-list generation programs, place and route programs and the like, to generate a representation or image of a physical manifestation of such structures. Such representation or image may thereafter be used in device fabrication, for example, by enabling generation of one or more masks that are used to form various components of the structures in a device fabrication process.


Moreover, the various devices, circuitry, architectures and/or structures disclosed herein may be represented via simulations using computer aided design and/or testing tools. The simulation of the circuitry of the processing device, sensor device and/or proxy device, and/or characteristics or operations thereof, may be implemented by a computer system wherein characteristics and operations of such structures, and techniques implemented thereby, are imitated, replicated and/or predicted via a computer system. The present inventions are also directed to such simulations of the inventive structures, and/or techniques implemented thereby, and, as such, are intended to fall within the scope of the present inventions. The computer-readable media corresponding to such simulations and/or testing tools are also intended to fall within the scope of the present inventions.


The term “non-pairable user interface” if/when used in the claims means, among other things, a user interface that is not configured, enabled or suitable to pair and/or register an associated device, for example, by selecting or entering data or commands to a device to which it is to be paired (for example, via communicating data or commands using an out-of-band protocol/technique (relative to communication protocol/technique in connection with the pairing to the facilitator-intermediary device).


Further, in the claims, the phrase “in response to pairing to the facilitator-intermediary device” has no express or implied immediate temporal component, implication or inference and, as such, an operation or action “in response to pairing to the facilitator-intermediary device” may be immediately after pairing or anytime thereafter.


Notably, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Moreover, in the claims, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims
  • 1. A method for pairing a portable monitoring device with a first computing device, the method comprising: the first computing device: sending, to a server, an instruction to facilitate pairing of the portable monitoring device with the first computing device;receiving, from the server, first pairing information including an identifier of a second computing device previously paired with the portable monitoring device and a secret used for authenticating a communication link between the first computing device and the portable monitoring device;sending the first pairing information to the portable monitoring device, wherein the secret is communicated as out-of-band data to the portable monitoring device;receiving second pairing information from the portable monitoring device, the second pairing information being obtained by the portable monitoring device from the server via the second computing device using the identifier of the first pairing information; andpairing the first computing device with the portable monitoring device based on the first pairing information and the second pairing information, wherein pairing the first computing device with the portable monitoring device comprises creating the communication link between the first computing device and the portable monitoring device.
  • 2. The method of claim 1, wherein: the pairing is configured to facilitate a transfer of activity data from the portable monitoring device to the first computing device,the method further comprises: receiving by the first computing device the activity data from the portable monitoring device via the link, andthe activity data is representative of a physiological metric collected by one or more sensors embedded in the portable monitoring device.
  • 3. The method of claim 2, further comprising: providing access to a user account on a display device of the first computing device via a web service; anddisplaying the activity data on the display device.
  • 4. The method of claim 2, further comprising: receiving by the first computing device the activity data from the portable monitoring device via the communication link.
  • 5. The method of claim 2, wherein the activity data is representative of a physiological metric collected by one or more sensors embedded in the portable monitoring device.
  • 6. The method of claim 1, wherein the first pairing information further includes an identifier of the portable monitoring device and the secret includes a first secret code.
  • 7. The method of claim 6, wherein: the second pairing information includes an identifier of the second computing device and a second secret code.
  • 8. The method of claim 1, wherein the portable monitoring device does not transmit data directly to the server.
  • 9. The method of claim 1, wherein the receiving by the first computing device of the first pairing information and the sending of the first pairing information from the first computing device to the portable monitoring device are performed automatically.
  • 10. The method of claim 1, wherein: the portable monitoring device comprises a biometric device and the first computing device comprises at least one of: a smart phone, a tablet, and computer, wherein the biometric device includes a display unit to display information, andthe biometric device is configured to be worn by a user.
  • 11. The method of claim 1, further comprising: the portable monitoring device communicating bi-directionally with the server via a computer network to send data to the server and to receive the second pairing information from the server.
  • 12. The method of claim 1, wherein: the portable monitoring device lacks a user interface for receiving a pairing selection, andthe portable monitoring device has a dead front display.
  • 13. A first computing device comprising: a user interface configured to receive a selection of a portable monitoring device for pairing with the first computing device;a communication unit configured to: send via a computer network to a server an instruction to facilitate pairing the portable monitoring device with the first computing device,receive, via the computer network from the server, first pairing information including an identifier of a second computing device previously paired with the portable monitoring device and a secret used for authenticating a communication link between the first computing device and the portable monitoring device,send the first pairing information to the portable monitoring device, wherein the secret is communicated as out-of-band data to the portable monitoring device,receive second pairing information from the portable monitoring device, the second pairing information being obtained by the portable monitoring device from the server via the second computing device using the identifier of the first computing device; anda processor configured to pair the first computing device with the portable monitoring device based on the first pairing information and the second pairing information, wherein pairing the first computing device with the portable monitoring device comprises creating a communication link between the first computing device and the portable monitoring device.
  • 14. The first computing device of claim 13, wherein: the communication unit configured to receive activity data from the portable monitoring device via the link, andthe activity data is representative of a physiological metric collected by one or more sensors embedded in the portable monitoring device.
  • 15. The first computer device of claim 13, wherein: the first pairing information further includes an identifier of the portable monitoring device and the secret includes a first secret code, andthe second pairing information includes an identifier of the second computing device and a second secret code.
  • 16. The first computing device of claim 13, wherein the portable monitoring device does not transmit data directly to the server.
  • 17. The first computing device of claim 13, wherein the communication unit is further configured to receive the first pairing information from the server and send the first pairing information the portable monitoring device automatically.
  • 18. The first computing device of claim 13, wherein: the user interface is configured to provide access to a user account via a web service, andthe user interface includes a display device configured to display the activity data.
  • 19. The first computing device of claim 13, wherein: the portable monitoring device comprises a biometric device and the first computing device comprises at least one of: a smart phone or a tablet or a computer,the biometric device includes a display unit to display information, andthe biometric device is configured to be worn by a user.
  • 20. The first computing device of claim 13, wherein the portable monitoring device is configured to communicate bi-directionally with the server via the computer network to send data to the server and to receive the second pairing information from the server.
  • 21. The first computing device of claim 13, wherein: the portable monitoring device lacks a user interface for receiving a selection, andthe portable monitoring device has a dead front display.
  • 22. A non-transitory computer readable storage medium having instructions stored thereon that, when executed cause a processor of a first computing device to: send, to a server, an instruction to facilitate pairing of a portable monitoring device with the first computing device;receive, from the server, first pairing information including an identifier of a second computing device previously paired with the portable monitoring device and a secret used for authenticating a communication link between the first computing device and the portable monitoring device;send the first pairing information from the first computing device to the portable monitoring device, wherein the secret is communicated as out-of-band data to the portable monitoring device;receive second pairing information from the portable monitoring device, the second pairing information being obtained by the portable monitoring device from the server via the second computing device using the identifier of the first computing device; andpair the first computing device with the portable monitoring device based on the first pairing information and the second pairing information, the pairing performed to begin a transfer of activity data from the portable monitoring device to the first computing device, wherein pairing the first computing device with the portable monitoring device comprises creating a link between the first computing device and the portable monitoring device.
  • 23. The non-transitory computer readable storage medium of claim 22, wherein the first pairing information includes an identifier of the portable monitoring device and the secret includes a secret code.
US Referenced Citations (475)
Number Name Date Kind
2717736 Schlesinger Sep 1955 A
2827309 Fred Mar 1958 A
2883255 Anderson Apr 1959 A
3163856 Kirby Dec 1964 A
3250270 Lyon May 1966 A
3522383 Chang Jul 1970 A
3918658 Beller Nov 1975 A
4192000 Lipsey Mar 1980 A
4244020 Ratcliff Jan 1981 A
4281663 Pringle Aug 1981 A
4284849 Anderson et al. Aug 1981 A
4312358 Barney Jan 1982 A
4367752 Jimenez et al. Jan 1983 A
4390922 Pelliccia Jun 1983 A
4407295 Steuer et al. Oct 1983 A
4425921 Fujisaki et al. Jan 1984 A
4575804 Ratcliff Mar 1986 A
4578769 Frederick Mar 1986 A
4617525 Lloyd Oct 1986 A
4887249 Thinesen Dec 1989 A
4930518 Hrushesky Jun 1990 A
4977509 Pitchford et al. Dec 1990 A
5058427 Brandt Oct 1991 A
5224059 Nitta et al. Jun 1993 A
5295085 Hoffacker Mar 1994 A
5314389 Dotan May 1994 A
5323650 Fullen et al. Jun 1994 A
5365930 Takashima et al. Nov 1994 A
5446705 Haas et al. Aug 1995 A
5456648 Edinburg et al. Oct 1995 A
5553296 Forrest et al. Sep 1996 A
5583776 Levi et al. Dec 1996 A
5645509 Brewer et al. Jul 1997 A
5671162 Werbin Sep 1997 A
5704350 Williams, III Jan 1998 A
5724265 Hutchings Mar 1998 A
5817008 Rafert et al. Oct 1998 A
5890128 Diaz et al. Mar 1999 A
5891042 Sham et al. Apr 1999 A
5894454 Kondo Apr 1999 A
5899963 Hutchings May 1999 A
5941828 Archibald et al. Aug 1999 A
5947868 Dugan Sep 1999 A
5955667 Fyfe Sep 1999 A
5976083 Richardson et al. Nov 1999 A
6018705 Gaudet et al. Jan 2000 A
6077193 Buhler et al. Jun 2000 A
6078874 Piety et al. Jun 2000 A
6085248 Sambamurthy et al. Jul 2000 A
6129686 Friedman Oct 2000 A
6145389 Ebeling et al. Nov 2000 A
6183425 Whalen et al. Feb 2001 B1
6213872 Harada et al. Apr 2001 B1
6241684 Amana et al. Jun 2001 B1
6287262 Amana et al. Sep 2001 B1
6301964 Fvfe et al. Oct 2001 B1
6302789 Harada et al. Oct 2001 B2
6305221 Hutchings Oct 2001 B1
6309360 Mault Oct 2001 B1
6469639 Tanenhaus et al. Oct 2002 B2
6478736 Mault Nov 2002 B1
6513381 Fyfe et al. Feb 2003 B2
6513532 Mault et al. Feb 2003 B2
6527711 Stivoric et al. Mar 2003 B1
6529827 Beason et al. Mar 2003 B1
6561951 Carmon et al. May 2003 B2
6571200 Mault May 2003 B1
6585622 Shum et al. Jul 2003 B1
6607493 Song Aug 2003 B2
6620078 Pfeffer Sep 2003 B2
6678629 Tsuji Jan 2004 B2
6699188 Wessel Mar 2004 B2
6761064 Tsuji Jul 2004 B2
6772331 Hind Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6808473 Hisano et al. Oct 2004 B2
6811516 Dugan Nov 2004 B1
6813582 Levi et al. Nov 2004 B2
6813931 Yadav et al. Nov 2004 B2
6856938 Kurtz Feb 2005 B2
6862575 Anttila et al. Mar 2005 B1
7041032 Calvano May 2006 B1
7062225 White Jun 2006 B2
7099237 Laii Aug 2006 B2
7133690 Ranta-Aho et al. Nov 2006 B2
7162368 Levi et al. Jan 2007 B2
7171331 Vock et al. Jan 2007 B2
7185363 Narin et al. Feb 2007 B1
7200517 Darley et al. Apr 2007 B2
7246033 Kudo Jul 2007 B1
7261690 Teller et al. Aug 2007 B2
7272982 Neuhauser et al. Sep 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7373820 James May 2008 B1
7443292 Jensen et al. Oct 2008 B2
7457724 Vock et al. Nov 2008 B2
7467060 Kulach et al. Dec 2008 B2
7502643 Farringdon et al. Mar 2009 B2
7505865 Ohkubo et al. Mar 2009 B2
7539532 Tran May 2009 B2
7558622 Tran Jul 2009 B2
7559877 Parks et al. Jul 2009 B2
7608050 ShuQQ Oct 2009 B2
7653508 Kahn et al. Jan 2010 B1
7690556 Kahn et al. Apr 2010 B1
7713173 Shin et al. May 2010 B2
7762952 Lee et al. Jul 2010 B2
7771320 Riley et al. Aug 2010 B2
7774156 Niva et al. Aug 2010 B2
7789802 Lee et al. Sep 2010 B2
7881902 Kahn et al. Feb 2011 B1
7907901 Kahn et al. Mar 2011 B1
7927253 Vincent et al. Apr 2011 B2
7942824 Kayyali et al. May 2011 B1
7953549 Graham et al. May 2011 B2
7983876 Vock et al. Jul 2011 B2
8005922 Boudreau et al. Aug 2011 B2
8028443 Case, Jr. Oct 2011 B2
8055469 Kulach et al. Nov 2011 B2
8099318 Moukas et al. Jan 2012 B2
8132037 Fehr et al. Mar 2012 B2
8177260 Trapper et al. May 2012 B2
8180591 Yuen et al. May 2012 B2
8180592 Yuen et al. May 2012 B2
8270297 Akasaka et al. Sep 2012 B2
8311769 Yuen et al. Nov 2012 B2
8311770 Yuen et al. Nov 2012 B2
8386008 Yuen et al. Feb 2013 B2
8437980 Yuen et al. May 2013 B2
8462591 Marhaben Jun 2013 B1
8463576 Yuen et al. Jun 2013 B2
8463577 Yuen et al. Jun 2013 B2
8487771 Hsieh et al. Jul 2013 B2
8533269 Brown Sep 2013 B2
8533620 Hoffman et al. Sep 2013 B2
8543185 Yuen et al. Sep 2013 B2
8543351 Yuen et al. Sep 2013 B2
8548770 Yuen et al. Oct 2013 B2
8562489 Burton et al. Oct 2013 B2
8583402 Yuen et al. Nov 2013 B2
8597093 Engelberg et al. Dec 2013 B2
8634796 Johnson Jan 2014 B2
8670953 Yuen et al. Mar 2014 B2
8684900 Tran Apr 2014 B2
8690578 Nusbaum et al. Apr 2014 B1
8738321 Yuen et al. May 2014 B2
8738323 Yuen et al. May 2014 B2
8744803 Park et al. Jun 2014 B2
8762101 Yuen et al. Jun 2014 B2
8764651 Tran Jul 2014 B2
8806205 Metke et al. Aug 2014 B2
8847988 Geisner et al. Sep 2014 B2
8868377 Yuen et al. Oct 2014 B2
8949070 Kahn et al. Feb 2015 B1
8954290 Yuen et al. Feb 2015 B2
8955081 Metke et al. Feb 2015 B2
8968195 Tran Mar 2015 B2
8998829 Coleman Boone Apr 2015 B1
9047648 Lekutai et al. Jun 2015 B1
9185100 Juels Nov 2015 B1
9203819 Fenton et al. Dec 2015 B2
9253168 Panther Feb 2016 B2
9699156 Bone Jul 2017 B2
9743443 Panther Aug 2017 B2
10187918 Panther Jan 2019 B2
10575352 Panther Feb 2020 B2
20010049470 Mault et al. Dec 2001 A1
20010055242 Deshmuhk et al. Dec 2001 A1
20020013717 Ando et al. Jan 2002 A1
20020019585 Dickenson Feb 2002 A1
20020077219 Cohen et al. Jun 2002 A1
20020082144 Pfeffer Jun 2002 A1
20020087264 Hills et al. Jul 2002 A1
20020109600 Mault et al. Aug 2002 A1
20020156906 Kadyk et al. Oct 2002 A1
20020178060 Sheehan Nov 2002 A1
20020191797 Perlman Dec 2002 A1
20020198776 Nara et al. Dec 2002 A1
20030018523 Rappaport et al. Jan 2003 A1
20030050537 Wessel Mar 2003 A1
20030065561 Brown et al. Apr 2003 A1
20030131059 Brown et al. Jul 2003 A1
20030171189 Kaufman Sep 2003 A1
20040054497 Kurtz Mar 2004 A1
20040054899 Balfanz et al. Mar 2004 A1
20040061324 Howard Apr 2004 A1
20040077335 Lee et al. Apr 2004 A1
20040117963 Schneider Jun 2004 A1
20040122488 Mazar Jun 2004 A1
20040131187 Takao et al. Jul 2004 A1
20040152957 Stivoric et al. Aug 2004 A1
20040239497 Schwartzman et al. Dec 2004 A1
20040249299 Cobb Dec 2004 A1
20040257557 Block Dec 2004 A1
20050037844 Shum et al. Feb 2005 A1
20050038679 Short Feb 2005 A1
20050054938 Wehman et al. Mar 2005 A1
20050102172 Sirmans, Jr. May 2005 A1
20050107723 Wehman et al. May 2005 A1
20050163056 Ranta-Aho et al. Jul 2005 A1
20050171410 Hjelt et al. Aug 2005 A1
20050186965 Paconis et al. Aug 2005 A1
20050187481 Hatib Aug 2005 A1
20050193201 Rahman et al. Sep 2005 A1
20050195830 Chitrapu et al. Sep 2005 A1
20050216724 Isozaki Sep 2005 A1
20050228244 Banet Oct 2005 A1
20050228692 Hodgdon Oct 2005 A1
20050234742 Hodgdon Oct 2005 A1
20050248718 Howell et al. Nov 2005 A1
20050262355 Banet Nov 2005 A1
20050272564 Pyles et al. Dec 2005 A1
20050289643 Sato et al. Dec 2005 A1
20060004265 Pulkkinen et al. Jan 2006 A1
20060020174 Matsumura Jan 2006 A1
20060020177 Seo et al. Jan 2006 A1
20060025282 Redmann Feb 2006 A1
20060036858 Miura et al. Feb 2006 A1
20060039348 Racz et al. Feb 2006 A1
20060047208 Yoon Mar 2006 A1
20060047447 Brady et al. Mar 2006 A1
20060064276 Ren et al. Mar 2006 A1
20060069619 Walker et al. Mar 2006 A1
20060089542 Sands Apr 2006 A1
20060111944 Sirmans, Jr. et al. May 2006 A1
20060129436 Short Jun 2006 A1
20060143645 Vock et al. Jun 2006 A1
20060166718 Seshadri et al. Jul 2006 A1
20060217231 Parks et al. Sep 2006 A1
20060247952 Muraca Nov 2006 A1
20060277474 Robarts et al. Dec 2006 A1
20060281409 Levien et al. Dec 2006 A1
20060282021 DeVaul et al. Dec 2006 A1
20060287883 Turgiss et al. Dec 2006 A1
20060288117 Raveendran et al. Dec 2006 A1
20070008568 Senoh Jan 2007 A1
20070011028 Sweeney Jan 2007 A1
20070049384 Kinq et al. Mar 2007 A1
20070050715 Behar Mar 2007 A1
20070051369 Choi et al. Mar 2007 A1
20070061593 Celikkan et al. Mar 2007 A1
20070071643 Hall et al. Mar 2007 A1
20070072156 Kaufman et al. Mar 2007 A1
20070083095 Rippo et al. Apr 2007 A1
20070083602 Heogenhougen et al. Apr 2007 A1
20070101136 Lai et al. May 2007 A1
20070123165 Sheynman et al. May 2007 A1
20070123391 Shin et al. May 2007 A1
20070133803 Saito et al. Jun 2007 A1
20070135264 Rosenberg Jun 2007 A1
20070136093 Rankin et al. Jun 2007 A1
20070141989 Flinchem Jun 2007 A1
20070146116 Kimbrell Jun 2007 A1
20070155277 Amitai et al. Jul 2007 A1
20070159926 Prstojevich et al. Jul 2007 A1
20070179356 Wessel Aug 2007 A1
20070194066 Ishihara et al. Aug 2007 A1
20070197920 Adams Aug 2007 A1
20070208544 Kulach et al. Sep 2007 A1
20070276271 Chan Nov 2007 A1
20070288265 Quinian et al. Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080014947 Carnall Jan 2008 A1
20080022089 Leedom Jan 2008 A1
20080032864 Hakki Feb 2008 A1
20080044014 Corndorf Feb 2008 A1
20080054072 Katracadda et al. Mar 2008 A1
20080057890 McKillop et al. Mar 2008 A1
20080084823 Akasaka et al. Apr 2008 A1
20080093838 Trapper et al. Apr 2008 A1
20080095373 Nagata Apr 2008 A1
20080097550 Dicks et al. Apr 2008 A1
20080098466 Yoshida et al. Apr 2008 A1
20080114829 Button et al. May 2008 A1
20080115199 Young et al. May 2008 A1
20080125288 Case May 2008 A1
20080129457 Ritter et al. Jun 2008 A1
20080134102 Movold et al. Jun 2008 A1
20080140163 Keacher et al. Jun 2008 A1
20080140338 No et al. Jun 2008 A1
20080146892 LeBoeuf et al. Jun 2008 A1
20080155077 James Jun 2008 A1
20080176655 James et al. Jul 2008 A1
20080181401 Picquenot et al. Jul 2008 A1
20080275309 Stivoric et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20080320587 Vauclair et al. Dec 2008 A1
20090018797 Kasama et al. Jan 2009 A1
20090034591 Julian Feb 2009 A1
20090043531 Kahn et al. Feb 2009 A1
20090047645 Dibenedetto et al. Feb 2009 A1
20090048044 Oleson et al. Feb 2009 A1
20090054737 Magar et al. Feb 2009 A1
20090054751 Babashan et al. Feb 2009 A1
20090058635 Lalonde Mar 2009 A1
20090063193 Barton et al. Mar 2009 A1
20090063293 Mirrashidi et al. Mar 2009 A1
20090063851 Nijdam Mar 2009 A1
20090070472 Baldus et al. Mar 2009 A1
20090083538 Merugu et al. Mar 2009 A1
20090093341 James et al. Apr 2009 A1
20090098821 Shinya Apr 2009 A1
20090143012 Jeon Jun 2009 A1
20090144456 Gelf et al. Jun 2009 A1
20090144639 Nims et al. Jun 2009 A1
20090150178 Sutton et al. Jun 2009 A1
20090156172 Chan Jun 2009 A1
20090171788 Trapper et al. Jul 2009 A1
20090195350 Tsem et al. Aug 2009 A1
20090240814 Brubacher et al. Sep 2009 A1
20090262088 Moii-Carrillo et al. Oct 2009 A1
20090264713 Van Loenen et al. Oct 2009 A1
20090271147 Sugai Oct 2009 A1
20090271630 Yoshida Oct 2009 A1
20090287921 Zhu Nov 2009 A1
20090307517 Fehr et al. Dec 2009 A1
20090309742 Alexander et al. Dec 2009 A1
20100023348 Hardee et al. Jan 2010 A1
20100040233 Ganapathy Feb 2010 A1
20100045425 Chivallier Feb 2010 A1
20100058064 Kirovski Mar 2010 A1
20100059561 Ellis et al. Mar 2010 A1
20100069203 Kawaguchi et al. Mar 2010 A1
20100070760 Vanderveen et al. Mar 2010 A1
20100125729 Baentsch et al. May 2010 A1
20100130873 Yuen et al. May 2010 A1
20100153709 Thomas et al. Jun 2010 A1
20100158494 Kine Jun 2010 A1
20100167783 Alameh et al. Jul 2010 A1
20100179411 Holmstrom et al. Jul 2010 A1
20100185064 Bandic et al. Jul 2010 A1
20100205541 Rapaport et al. Aug 2010 A1
20100217099 LeBoeuf et al. Aug 2010 A1
20100222000 Sauer et al. Sep 2010 A1
20100222179 Temple et al. Sep 2010 A1
20100261452 Umezawa et al. Oct 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262696 Oshiba Oct 2010 A1
20100274859 Bucuk Oct 2010 A1
20100292050 DiBenedetto Nov 2010 A1
20100292556 Golden Nov 2010 A1
20100292600 DiBenedetto et al. Nov 2010 A1
20100295684 Hsieh et al. Nov 2010 A1
20100298661 McCombie et al. Nov 2010 A1
20100304674 Kim Dec 2010 A1
20100311544 Robinette et al. Dec 2010 A1
20100318578 Treu et al. Dec 2010 A1
20100318799 Simon et al. Dec 2010 A1
20100331145 Lakovic et al. Dec 2010 A1
20110003665 Burton et al. Jan 2011 A1
20110009051 Khedouri et al. Jan 2011 A1
20110021143 Kapur Jan 2011 A1
20110022349 Stirling et al. Jan 2011 A1
20110063103 Lee et al. Mar 2011 A1
20110080349 Holbein et al. Apr 2011 A1
20110087076 Brynelsen et al. Apr 2011 A1
20110106449 Chowdhary et al. May 2011 A1
20110131005 Ueshima et al. Jun 2011 A1
20110131406 Jones et al. Jun 2011 A1
20110145894 Garcia Morchon Jun 2011 A1
20110153773 Vandwalle Jun 2011 A1
20110159848 Pei Jun 2011 A1
20110167262 Ross et al. Jul 2011 A1
20110193704 Harper et al. Aug 2011 A1
20110197059 Klein Aug 2011 A1
20110197157 Hoffman et al. Aug 2011 A1
20110214030 Greenberq et al. Sep 2011 A1
20110221590 Baker Sep 2011 A1
20110224508 Moon Sep 2011 A1
20110230729 Shirasaki et al. Sep 2011 A1
20110258689 Cohen Oct 2011 A1
20110263201 Bukurak et al. Oct 2011 A1
20120035487 Werner et al. Feb 2012 A1
20120044057 Kang et al. Feb 2012 A1
20120066753 Pan et al. Mar 2012 A1
20120072165 Jallon Mar 2012 A1
20120083705 Yuen et al. Apr 2012 A1
20120083714 Yuen et al. Apr 2012 A1
20120083715 Yuen et al. Apr 2012 A1
20120083716 Yuen et al. Apr 2012 A1
20120084053 Yuen et al. Apr 2012 A1
20120084054 Yuen et al. Apr 2012 A1
20120092157 Tran Apr 2012 A1
20120094649 Porrati et al. Apr 2012 A1
20120102008 Kaariainen et al. Apr 2012 A1
20120116684 Ingrassia, Jr. et al. May 2012 A1
20120119911 Jean et al. May 2012 A1
20120150748 Law Jun 2012 A1
20120165684 Sholder Jun 2012 A1
20120166257 Shiraqami et al. Jun 2012 A1
20120179278 Riley et al. Jul 2012 A1
20120183939 Aragones et al. Jul 2012 A1
20120204027 Baek et al. Aug 2012 A1
20120215328 Schmelzer Aug 2012 A1
20120226471 Yuen et al. Sep 2012 A1
20120226472 Yuen et al. Sep 2012 A1
20120227737 Mastrototaro et al. Sep 2012 A1
20120239221 Mighdoll et al. Sep 2012 A1
20120254987 Ge Oct 2012 A1
20120264402 Zhang et al. Oct 2012 A1
20120265480 Oshima Oct 2012 A1
20120274508 Brown et al. Nov 2012 A1
20120283855 Hoffman Nov 2012 A1
20120296400 Bierman et al. Nov 2012 A1
20120297229 Desai et al. Nov 2012 A1
20120311330 Zhang Dec 2012 A1
20120316456 Rahman et al. Dec 2012 A1
20120324226 Bichsel et al. Dec 2012 A1
20120330109 Tran Dec 2012 A1
20130006718 Nielsen et al. Jan 2013 A1
20130029596 Preston et al. Jan 2013 A1
20130041590 Burich et al. Feb 2013 A1
20130072169 Ross et al. Mar 2013 A1
20130073254 Yuen et al. Mar 2013 A1
20130073255 Yuen et al. Mar 2013 A1
20130080113 Yuen et al. Mar 2013 A1
20130094600 Beziat et al. Apr 2013 A1
20130095459 Tran Apr 2013 A1
20130095753 Chen Apr 2013 A1
20130096843 Yuen et al. Apr 2013 A1
20130102251 Linde et al. Apr 2013 A1
20130103847 Brown Apr 2013 A1
20130104218 Lu et al. Apr 2013 A1
20130106684 Weast May 2013 A1
20130132501 Vandwalle et al. May 2013 A1
20130151196 Yuen et al. Jun 2013 A1
20130158369 Yuen et al. Jun 2013 A1
20130166048 Wemer et al. Jun 2013 A1
20130185559 Morel et al. Jul 2013 A1
20130190903 Balakrishnan et al. Jul 2013 A1
20130191034 Weast et al. Jul 2013 A1
20130203475 Kil et al. Aug 2013 A1
20130209972 Carter et al. Aug 2013 A1
20130225117 Giacoletto et al. Aug 2013 A1
20130228063 Turner Sep 2013 A1
20130231574 Tran Sep 2013 A1
20130238287 Hoffman et al. Sep 2013 A1
20130261475 Mochizuki Oct 2013 A1
20130267249 Rosenberg Oct 2013 A1
20130268199 Nielsen et al. Oct 2013 A1
20130268236 Yuen et al. Oct 2013 A1
20130268687 Schrecker Oct 2013 A1
20130268767 Schrecker Oct 2013 A1
20130274904 Coza et al. Oct 2013 A1
20130281110 Zelinka Oct 2013 A1
20130289366 Chua et al. Oct 2013 A1
20130296666 Kumar et al. Nov 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296673 Thaveeprungsriporn et al. Nov 2013 A1
20130310896 Mass Nov 2013 A1
20130325396 Yuen et al. Dec 2013 A1
20130331058 Harvey Dec 2013 A1
20140032756 Niemi Jan 2014 A1
20140035761 Burton et al. Feb 2014 A1
20140039804 Park et al. Feb 2014 A1
20140039840 Yuen et al. Feb 2014 A1
20140039841 Yuen et al. Feb 2014 A1
20140052280 Yuen et al. Feb 2014 A1
20140067278 Yuen et al. Mar 2014 A1
20140073252 Lee Mar 2014 A1
20140077673 Garg et al. Mar 2014 A1
20140094941 Ellis et al. Apr 2014 A1
20140125618 Panther et al. May 2014 A1
20140164611 Molettiere et al. Jun 2014 A1
20140180022 Stivoric et al. Jun 2014 A1
20140207264 Quy Jul 2014 A1
20140213858 Presura et al. Jul 2014 A1
20140275885 Isaacson et al. Sep 2014 A1
20140278229 Hong et al. Sep 2014 A1
20140316305 Venkatraman et al. Oct 2014 A1
20140337621 Nakhimov Nov 2014 A1
20150026647 Park et al. Jan 2015 A1
20160055758 Francis Feb 2016 A1
20160255461 Zerr et al. Sep 2016 A1
Foreign Referenced Citations (13)
Number Date Country
11-347021 Dec 1999 JP
2178588 Jan 2002 RU
WO 02011019 Feb 2002 WO
WO 06055125 May 2006 WO
WO 06090197 Aug 2006 WO
WO 08038141 Apr 2008 WO
WO 09042965 Apr 2009 WO
WO 12061438 May 2012 WO
WO 12170586 Dec 2012 WO
WO 12170924 Dec 2012 WO
WO 12171032 Dec 2012 WO
WO 15127067 Aug 2015 WO
WO 16003269 Jan 2016 WO
Non-Patent Literature Citations (25)
Entry
Chandrasekar et al., Plug-and-Play, Single-Chip Photoplethysmography, 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, Aug. 28-Sep. 1, 2012, 4 pages.
“Fitbit automatically tracks your fitness and sleep,” Fitbit Inc., published online at www.fitbit.com, downloaded Sep. 10, 2008, 1 page.
“SCPIOOO-D01/D11 Pressure Sensor as Barometer and Altimeter,” VTI Technologies Oy, Application Note 33, date unknown but not later than Nov, 3, 2011, 3 pages.
“Suunto LUMI User Guide,” Suunto Oy, Sep. 2007, 49 pages.
“Using MS5534 for altimeters and barometers,” Intersema Sensoric SA, Intersema Application Note AN501, date unknown but not later than Nov, 3, 2011, 12 pages.
Clifford et al., “Altimeter and Barometer System,” Freescale Semiconductor, Inc., Freescale Semiconductor Application Note AN1979, Rev 3, Nov. 2006.
Fang et al., “Design of a Wireless Assisted Pedestrian Dead Reckoning System—The NavMote Experience,” IEEE Transactions on Instrumentation and Measurement, vol. 54, No. 6, Dec. 2005, pp. 2342-2358.
Godfrey et al., “Direct measurement of human movement by accelerometry,” Medical Engineering & Physics, vol. 30, 2008, pp. 1364-1386.
Godha et al., “Foot mounted inertial system for pedestrian navigation,” Measurement Science and Technology, vol. 19, No. 7, May 2008, pp. 1-9.
Ladetto et al., “On Foot Navigation: When GPS alone is not enough,” Journal of Navigation, vol. 53, No. 2, Sep. 2000, pp. 279-285.
Lammel et al., “Indoor Navigation with MEMS sensors,” Proceedings of the Eurosensors XXIII Conference, vol. 1, No. 1, Sep. 2009, pp. 532-535.
Lester et al., “AHybrid Discriminative/Generative Approach for Modeling Human Activities,” Proceedings of the International Joint Conference on Artificial Intelligence, 2005, pp. 766-772.
Lester et al., “Validated caloric expenditure estimation using a single body-worn sensor,” Proceedings of the International Conference on Ubiquitous Computing, 2009, pp. 225-234.
Ohtaki et al., Automatic classification of ambulatory movements and evaluation of energy consumptions utilizing accelerometers and a barometer, Microsystem Technologies, vol. 11, No. 8-10, Aug. 2005, pp. 1034-1040.
Parkka et al., “Activity Classification Using Realistic Data From Wearable Sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 1, Jan. 2006, pp. 119-128.
Perrin et al., “Improvement of walking speed prediction by accelerometry and altimetry, validated by satellite positioning,” Medical & Biological Engineering & Computing, vol. 38, 2000, pp. 164-168.
Retscher, “An Intelligent Multi-sensor System for Pedestrian Navigation,” Journal of Global Positioning Systems, vol. 5, No. 1, 2006, pp. 110-118.
Sagawa et al., “Classification of Human Moving Patterns Using Air Pressure and Acceleration,” Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, Aug.-Sep. 1998, pp. 1214-1219.
Sagawa et al., “Non-restricted measurement of walking distance,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, Oct. 2000, pp. 1847-1852.
Specification of the Bluetooth. RTM. System, Core Package, version 4.1, Dec. 2013, vols. 0 & 1, 282 pages.
Stirling et al., “Evaluation of a New Method of Heading Estimation for Pedestrian Dead Reckoning Using Shoe Mounted Sensors,” Journal of Navigation, vol. 58, 2005, pp. 31-45.
Tanigawa et al., “Drift-free dynamic height sensor using MEMS IMU aided by MEMS pressure sensor,” Workshop on Positioning, Navigation and Communication, Mar. 2008, pp. 191-196.
International Search Report dated Aug. 15, 2008, in related application PCT/IB07/03617.
U.S. Notice of Allowance, dated Sep. 7, 2018, issued in U.S. Appl. No. 15/682,494.
U.S. Notice of Allowance, dated Oct. 17, 2019, issued in U.S. Appl. No. 16/254,410.
Related Publications (1)
Number Date Country
20200229250 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
61638650 Apr 2012 US
Continuations (5)
Number Date Country
Parent 16254410 Jan 2019 US
Child 16743918 US
Parent 15682494 Aug 2017 US
Child 16254410 US
Parent 15012552 Feb 2016 US
Child 15682494 US
Parent 14642352 Mar 2015 US
Child 15012552 US
Parent 13872015 Apr 2013 US
Child 14642352 US