This invention relates to passive RFID tags used to secure physical objects against tampering, and more particularly, to anti-tamper seals employing both passive RFID devices for battery-free communications, and fiber optic cables for tamper detection.
Containers of sensitive, valuable and/or dangerous materials such as radioactive and fissile materials must be securely monitored to verify location and also container condition, including unauthorized opening and seal tampering. The use of RFID tags to monitor such containers is well known in the art. In the simplest form, such an RFID tag may consist of a substrate upon which a tuned antenna is formed, and an integrated circuit electrically connected to the antenna. This integrated circuit typically contains a unique identifying number, and circuitry that uses incoming RF energy at the antenna's tuned frequency to produce a backscattered signal containing this number. Tamper detection may be provided by forming the substrate and antenna with a frangible region and affixing the tag to the container such that any tampering with the container causes permanent damage to the antenna and renders the tag incapable of transmitting a signal. Such a monitoring means is simple and has the advantage of not requiring a battery, but is extremely limited in capability. The limitations include low signal range, low data capacity and no data security, as well as constraints in how the tag can be affixed to the container to provide seal monitoring. Possibly the most critical limitation is that the tamper result is a loss of signal, rather than any positive means of tamper notification.
Seal and enclosure integrity sensors using damage to a fiber optic element to detect tampering are also well known in the art. U.S. Pat. No. 8,446,278 entitled SECURITY MONITOR FOR DOORS teaches a security monitor for container doors which include locking rods, with a fiber optic loop to monitor door locking integrity. However, while the '278 monitor can include some means for broadcasting detection of a tamper incident, this broadcasting is not secure, and the '278 monitor is still a battery powered device.
U.S. Pat. No. 8,013,744 entitled RADIO FREQUENCY IDENTIFICATION (RFID) SURVEILLANCE TAG teaches an RFID tag designed for mounting on containers of radioactive and fissile materials, and incorporating sensors to monitor tampering and other environmental conditions. However, the '744 RFID tag is battery operated, and much of the sensor function inside the tag is dedicated to battery management. The long-term utility of the '744 tag is thus limited by battery life, and there is a need for field service to supply fresh batteries at intervals of time. There is also no mention of any use of secure communications between the '744 tag and other wireless devices. Additionally, the '744 tag lacks any means to monitor the integrity of features that the tag body is not directly attached to.
U.S. Pat. No. 7,936,266 entitled Shipping Container Seal Monitoring Device, System And Method teaches a seal device for a shipping container, wherein a portion of the device is affixed to a shipping container, and a cable which may be conductive or containing optical fibers is configured to engage with an element such as a door. Attempts to breach the door will cause damage to the cable and a disruption of any signal present in the cable. Other sensors such as acoustic sensors may also be used to detect intrusion or tampering attempts. The '266 device also teaches the use of active RFID and a microprocessor or microcontroller, and does teach the use of encryption for all data input and output. However, the '266 device does not teach the use of passive RFID, and in fact the active RFID is taught as merely one of several active transceiver options. Further, the fiber optic cable is taught as part of a cable structure having a steel cable reinforcing element, thereby making malicious cutting more difficult but consequently preventing any field-trimming of the cable to an optimal length. Often when fiber optic monitoring cables are taught for use in tamper monitoring of transport containers, the cables are armored or reinforced for enhanced durability. Further, while the use of a fiber optic cable is taught, there is no enabling mechanical detail for either the transmitting or receiving end of the fiber optic cable.
U.S. Pat. No. 7,636,047 entitled Apparatus For Monitoring A Mobile Object Including A Partitionable Strap teaches a tracking bracelet having either active or passive RFID, an optical fiber embedded in the strap for tamper detection, length trimming of the strap and optical fiber, and the use of sensors. While there is no explicit mention of a microprocessor in the apparatus, the sophistication of the disclosed sensors strongly implies the presence of a microprocessor and thus this patent is seen as implicitly disclosing the use of a microprocessor along with the sensors. However, while the use of optical fibers for tamper detection and the trimming of straps containing optical fibers are both taught, there is no enablement taught for the combination of these two features. Further, no encryption or encoding of signals is taught.
U.S. Pat. No. 7,135,973 entitled Tamper Monitoring Article, System and Method teaches an article generally formed as a strap, where one strap end may be attached to a substrate or to the other strap end to form an anti-tamper strap. Both active and passive RFID are taught, but the fiber optic cable is configured exclusively as a continuous loop, with no facility for inserting or trimming one end to optimize the fit of the anti-tamper feature. Further, neither sensors nor microprocessors or microcontrollers are taught, nor is the use of any encryption.
U.S. Patent Application No. 20060202824 entitled Electronic seal and method of shipping container tracking teaches an active RFID tag having a security cable containing a fiber optic cable. A microprocessor is also taught, although there are no sensors. The cable is taught as being of a fixed length, without any option to trim it to an optimal length during installation. There is also no suggestion to use encoding or encryption in any signal transmission. While one option taught is that of a fiber optic cable, the use of the RFID in combination with the fiber optic cable is lacking enablement.
A secure RFID tag with greater utility would provide entirely battery-free operation and secure radio signal reception and transmission, would incorporate a fiber optic tamper prevention cable with adjustable length and secure optical signal transmission and reception, would be environmentally sealed, would be configured for field attachment and installation on a container, and would incorporate sensors to monitor environmental parameters within and around the tag.
The secure passive RFID tag system of the present invention comprises at least one base station, and at least one RFID tag having means for receiving radio signals from the base station and for transmitting radio signals to the base station, where the tag is powered exclusively by received radio energy. The tag has a fiber optic cable comprising a first end, a second end, and a middle portion therebetween, wherein the first and second ends are sealed within the tag and the middle portion forms an external loop. The loop is adapted to be secured to, around or through at least portions of an object. The tag includes means for transmitting an optical signal through the fiber optic cable, and means for receiving the optical signal. The fiber optic cable is frangible and therefore easily damaged or broken in response to removal or tampering attempts, wherein the optical signal is detectably altered if the fiber optic cable is damaged or broken. The tag transmits the optical signal in response to receiving a radio signal from the base station, and the tag has means for comparing the transmitted optical signal to the received optical signal. If the transmitted optical signal and the received optical signal are approximately identical, the tag transmits an affirmative radio signal to the base station.
Further, the tag includes means for attachment to an object, where the means of attachment may be an adhesive, which may be an adhesive tape. The tag is capable of receiving and transmitting radio signals while attached to a metal substrate of substantially greater area than the area of the tag.
Still further, the tag includes an environmentally sealed enclosure formed at least in part from a radio-transparent polymer, wherein the first and second ends of the fiber optic cable are environmentally sealed within the tag. The second end of the fiber optic cable is configured to be field inserted and environmentally sealed into the tag. If the transmitted optical signal and the received optical signal are not identical, the tag may transmit an alarm radio signal to the base station. The second end of the fiber optic cable may be removed and then reinserted into the tag without damage to the fiber optic cable. The system may further comprise means for authorizing a permitted removal and subsequent reinsertion of the second end of the fiber optic cable without a resultant alarm signal. This means for authorizing removal and subsequent reinsertion may be limited by parameters which may include length of time, specific time interval, the tag receiving an authorization code, the base station receiving an authorization code, a physical key being used with the tag, and a physical key being used with the base station. The second end of the fiber optic cable may be permanently inserted and sealed into the tag such that any attempt to remove the fiber optic cable will cause damage to the fiber optic cable. The fiber optic cable may have a poly methyl methacrylate core and be not armored, thereby facilitating field-trimming and increasing tamper sensitivity, and may be field-trimmed to a desired final length in order to optimize secure attachment and to reduce the risk of accidental damage or successful tampering via excess cable length. Alternatively, the fiber optic cable may be environmentally rugged and high temperature resistant, with an optical core made from materials which may include high temperature resistant optical polymers, quartz, and glass, and a jacket made from materials which may include high temperature resistant polymers and metals.
Yet still further, the tag further comprises an aperture providing access to an optical transmitter or receiver recessed within the tag, wherein the second end of the fiber optic cable is insertable into the optical transmitter or receiver, which has a twist-lock means for aligning and retaining the second fiber optic cable end. The twist-lock means is exclusively accessible through the aperture, and is at least partially tubular with an outer surface at least partially comprising grip enhancing features which may include conical portions, ridges, knurls, high-friction texture, conformal material, and high-friction material. The system further comprises a twist-lock tool for insertion into the aperture, engaging the outer surface, and actuating the twist-lock means. The twist-lock tool further comprises a substantially cylindrical body having a center axis, a handle end and an engaging end, with a longitudinal slot traversing at least the engaging end portion of the body, with the slot having a width greater than the diameter of the fiber optic cable and a depth encompassing the center axis, thereby rendering at least a portion of the center axis substantially hollow. The engaging end has an outer diameter less than the width of the aperture, and has an internal surface at least partially comprising grip enhancing features which may include conical portions, ridges, knurls, high-friction texture, conformal material, and high-friction material, such that the grip enhancing features of the engaging end and the grip enhancing features of the twist-lock means are sufficiently matched to provide mutual grip enhancement, whereby the twist-lock tool may be held by the handle and used to grip and engage the twist-lock means in order to lock or unlock the second end at the optical transmitter or receiver without interfering with or damaging the optical fiber.
Additionally, the tag may comprise a microcontroller or microprocessor, and encrypted radio signals received by the tag are decrypted and radio signals sent by the tag are encrypted. The optical signal may comprise at least one random number, a single bit of data, a relatively small number of bits of data, or an encrypted message such as an encryption of a clock/timer signal. The optical signal may comprise an infra-red signal. The tag may also comprise signal processing and conditioning circuitry and at least one sensor selected from the group consisting of temperature sensors, radiation sensors, light level sensors, humidity sensors, vibration sensors, accelerometers, and gyroscopes, wherein the tag may transmit a radio signal comprising tamper status data and sensor data to the base station.
Still additionally, the tag further comprises a parasitic patch type antenna with a transmission range of at least 6 meters.
Yet still additionally, the base station may comprise multiple base stations, which may be a mixture of fixed base stations and mobile base stations, and the multiple base stations may be networkable in order to increase geographic area coverage and allow communication with the tag from multiple vantage points. The tag may also comprise multiple tags, wherein the means for transmitting an optical signal, the means for receiving an optical signal, and the fiber optic cable in combination form a fiber optic link, and the fiber optic link in one of the tags is interconnected to the fiber optic link in at least one other of the tags, whereby the optical signal is passed along the fiber optic cables in a ring.
It is an object of the present invention to provide battery-free remote monitoring of an object such as a container versus intrusion, theft or tampering.
It is another object of the present invention to monitor a potentially openable portion of the object.
It is still another object of the present invention that such remote monitoring be protected against spying or eavesdropping.
It is yet another object of the present invention to transmit monitoring status and data signals.
It is a further object of the present invention that at least portions of the monitoring hardware be configured for installation and adjustment in the field.
It is a still further object of the present invention to be environmentally sealed.
It is a feature of the present invention to provide a secure passive RFID tag powered exclusively by radio signals, that includes a fiber optic loop attachable as a security seal to an object such as a container.
It is another feature of the present invention that in response to a received radio signal, the secure passive RFID tag transmits an optical signal through the fiber optic loop, receives the optical signal and compares the transmitted optical signal to the received optical signal, and if the transmitted optical signal matches the received optical signal, transmits an affirmative radio signal to the base station.
It is still another feature of the present invention to optionally include signal processing and conditioning circuitry and at least one sensor of types and functions including temperature, radiation, light level, humidity, vibration, acceleration, and gyroscopic orientation, in order to measure environmental parameters within or in proximity to the secure passive RFID tag, which can then process and transmit the sensor data.
It is yet another feature of the present invention that the secure passive RFID tag receives encrypted signals from at least one base station, decrypts the received signals, and transmits encrypted signals back to the base station.
It is a further feature of the present invention to include an environmentally sealed enclosure composed at least in part of radio-transparent molded polymer, which may be attached to an object such as a container with an adhesive.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
In some embodiments, the energy harvesting, conversion, and management circuitry 62 may comprise an energy harvesting circuit to convert incoming radio frequency energy to direct current power for the device. In some embodiments the energy harvesting circuitry may comprise a rectifier composed of one or more type HSMS-2850, HSMS-2862, or other Schottky diodes manufactured by Avago Technologies or other companies. In further embodiments a voltage regulator such as a low dropout regulator (LDO) serves to limit the output voltage of the rectifier to a suitable voltage to run the other circuitry, such as 2.5 V or another DC voltage. In further embodiments, one or more capacitors are connected to the rectifier and/or voltage regulator output and are used to store energy to continue the operation of the tag 10 during a momentary decrease of the incident RF power, for example during a frequency hopping of the incident RF power.
The radio receiver circuitry 66 provides means for converting incoming radio signals into signal data usable by the tag 10. In some embodiments, the radio receiver circuitry 66 may comprise an envelope detector. This envelope detector may be implemented with one or more Schottky diodes such as the type HSMS-2850 series or HSMS-2862 series from Avago Technologies, or the type BAS70 or equivalent from NXP Inc. In other embodiments the envelope detector may be implemented with diode-connected field effect transistors (FETs). In further embodiments the radio receiver circuitry 66 may include a comparator circuit which compares the envelope detector output voltage to a reference voltage to yield a digital output for processing by the microcontroller 60. In some embodiments the reference voltage is derived from a low-pass filtered version of the envelope detected signal to yield a smoothed reference that tracks an average of the envelope detected voltage.
The radio transmitter circuitry 68 provides means for converting tag 10 output data into transmitted radio signals. In some embodiments, the radio transmitter circuitry 68 may comprise a backscatter modulator. In some embodiments the backscatter modulator may comprise a radio frequency switch configured to present a variable impedance to the antenna in response to a control signal from the microcontroller 60. This radio frequency switch may comprise one or more field effect transistors (FETs) or bipolar transistors connected to the antenna. In one embodiment the radio transmitter circuitry 68 comprises a type BF-1212 FET manufactured by NXP Inc. In other embodiments an RF switch such as the type ADG918 from Analog Devices Inc. may provide the switching function. In further embodiments the components of the radio transmitter circuitry 68 may be integrated on the same integrated circuit substrate as at least one of the radio receiver circuitry 66, the microcontroller 60, and/or the energy harvesting, conversion, and management circuitry 62.
In some embodiments, the signal processing and conditioning circuitry 64 comprises an analog-to-digital converter. In some embodiments, the analog-to-digital converter is integrated with the microcontroller 60. In further embodiments the analog-to-digital converter is multiplexed among multiple sensors 70.1, 70.2, etc.
In a further embodiment, some or all of the radio receiver circuitry 66, the radio transmitter circuitry 68, and the energy harvesting, conversion, and management circuitry 62 may be integrated into a single chip such as the type UCODE I2C integrated circuit, part number SL3S4011_4021, manufactured by NXP Inc. Alternatively, a custom application specific integrated circuit (ASIC) may integrate one or more of these functions, with the optional integration of the microcontroller 60.
The tag 10 contains no batteries and is powered exclusively by received radio energy.
The microcontroller 60 is powered through the energy harvesting, conversion and management circuitry 62, and is connected to the radio receiver 66 and radio transmitter 68 circuitry. The microcontroller 60 is also connected to the fiber optic transmitter 34 and fiber optic receiver 36, which are linked via the fiber optic cable 20. Optionally, the microcontroller 60 may receive inputs from sensors 70, either directly or through analog and/or digital signal processing and conditioning circuitry 64. While it is within the scope of the present invention for the control element to be a microprocessor, a microcontroller 60 is preferred.
In the present invention, the preferred type of fiber optic transmitter 34 and fiber optic receiver 36 are both mounted on a secondary pc board 52 connected to the RFID printed circuit board 32 with a flat flexible multi-wire cable 40. The same functionality may be achieved with a unitary pc board, or with separate pc boards for each of the fiber optic transmitter 34 and fiber optic receiver 36. The flat flexible cable 40 is terminated at each pc board in a flat cable connector 42, and is positioned and strain relieved in the middle by a clamp bar 44. The microcontroller 60 and related RFID circuitry occupying the RFID pc board 32 are preferably located in proximity to the antenna 30, while the optical transmitting and receiving components are preferably located in a portion of the enclosure 11 where mechanical attachment features and environmental sealing features for the fiber optic cable 20 are easiest to form and use. The fiber optic transmitter 34 and receiver 36 each have a hollow threaded barrel 38 containing a twist-lock compression feature to lock an inserted fiber optic cable 20 in place. The barrels 38 have knurled and slightly conically tapered exteriors for easy hand tightening and loosening. The barrels 38 may also at least partially comprise grip enhancing features such as conical portions, ridges, knurls, high-friction texture, conformal material, and high-friction material, used singly or in combination. The twist-lock feature provides repeatable and reversible compressive retention of the fiber optic cable 20. The fiber optic cable 20 is inserted into the transmitter 34 barrel and hand tightened during assembly. It is also within the scope of the present invention to first assemble the fiber optic cable into the receiver 36, and then to field-insert the fiber optic cable into the transmitter 34, with the mechanical details of the tag 10 consequently accommodating such a variation. In the enclosure 11 of the present invention, both the transmitter 34 and the receiver 36 are recessed inside the enclosure 11, where an aperture 48 in the side of the enclosure 11 provides access for the fiber optic cable 20 to the receiver 36. As can be seen in
The preferred fiber optic cable 20 has a poly methyl methacrylate (PMMA) optical core surrounded by a polymer jacket, with an overall OD of approximately 2.2 mm. One significant advantage of this style of fiber optic cable 20 is the ease with which the open cable end may be prepared for insertion and use by simply trimming it at right angles with a razor blade. No polishing or other specialized preparation is required, which is ideal for field use. Since the desired length of cable is not likely to exceed approximately 5 meters, the signal attenuation of the PMMA cable with a hand-trimmed end is not an impediment to use. This style of fiber optic cable 20 is specifically not armored, where the lack of armor results in the fiber optic cable 20 having a relatively small bend radius which aids in installation and in following contours of the container, and also being sufficiently easily damaged or severed if tampered with. Another significant advantage of the preferred fiber optic cable 20 is that in the process of being field-inserted it can thus be easily field-trimmed to an optimal length to prevent the sort of tampering that an excessively long security cable could permit. Once the fiber optic cable 20 has been attached to, around or through features of the container being monitored, any excess cable length may be trimmed prior to insertion into the fiber optic receiver.
The RFID antenna 30 is preferably of the parasitic patch type and is used to both collect radio energy and the radio signals, and to transmit radio signals. Preferably, both the radio signal transmitted to the tag 10 and the radio signal transmitted by the tag 10 are encrypted. The encrypted information content of the received signal is decrypted by the microcontroller 60, which also encrypts the transmitted signal. Preferably, the transmitting range of the tag 10 is at least 6 meters.
The wireless link between the tag 10 and the base station is preferably a modulated-backscatter link using binary phase shift keying (BPSK) though any modulation scheme (ASK, PSK, QAM, OFDM, etc.) known in the art may be employed. The fiber optic transmitter 34 is preferably an infra-red transmitter such as an IR LED as or a laser diode. The fiber optic receiver 36 is preferably either a photodiode or phototransistor. The modulation used on the fiber link is preferably amplitude shift keying (ASK) although other modulation schemes known in the art may be employed. Preferably, the information content of the signal sent over the fiber optic link is a random number rather than encrypted information. However, it is within the scope of the present invention for the information content of the fiber optic signal to be a single bit of data, a relatively small number of bits of data, a random number, or an encrypted message such as an encryption of a clock/timer inside the tag. Authentication on the fiber link is necessary before the RFID transmission takes place. In other words, if the fiber link is broken, the wireless link will signal “not authentic”. Therefore, tamper on the fiber link implies tamper on the seal itself.
The preferred means for attaching the enclosure 11 to a portion of a container or to any other object is with the use of adhesives. The enclosure 11 of the present invention includes very high bond (VHB) adhesive tape 46 attached to at least a portion of the enclosure base 14, enabling the enclosure 11 to be field attached to a clean and dry surface. The VHB tape 46 will provide an environmentally rugged permanent bond between the enclosure 11 and the surface. If appropriately configured, the VHB tape 46 may also provide an environmentally sealed bond between the enclosure 11 and the surface. The enclosure top 12 and enclosure base 14 are preferably attached to each other with an environmentally rugged adhesive such as an epoxy or a urethane compound.
In the preferred mode of use, the secure RFID tag 10 of the present invention is first attached to a portion of a container with the VHB tape 46. The fiber optic cable 20 is then preferably attached to or wrapped around container features, and/or threaded through openings to produce a seal. Once the fiber optic cable 20 is fully engaged with the container features, excess cable may be trimmed off. The receiver cap 18 and compression seal 22 are removed from the enclosure top 12 and threaded onto the cable 20. The receiver cap 18 is preferably internally threaded and configured to be fastened onto a threaded tube 26 which protrudes from the side of the enclosure top 12. This threaded tube 26 forms the outer bounds of the aperture 48 through which the receiver 36 may be accessed. The twist-lock tool 50 is inserted into the aperture 48 so that the engaging end 54 may engage with the barrel 38 of the receiver 36, and twisted by the handle 53 to unlock the barrel 38. The fiber optic cable 20 end is then inserted through the slot 51 of the tool 50, and through the center of the barrel 38 until it is stopped by being fully inserted into the receiver 36. The handle 53 of the tool 50 is then twisted to rotate the barrel 38 to lock the cable 20 into the receiver 36. The compression seal 22 is then slid into place in the aperture 48 inside the threaded tube 26, and the receiver cap 18 is attached. Preferably, the receiver cap 18 is tightened until a mechanical stop 24 is reached, thus guaranteeing proper tightening of the receiver cap 18 while completing the environmental sealing of the fiber optic cable 20 into the enclosure 11 by actuating the compression seal 22, and thus completing the environmental sealing of the entire tag 10.
The base station can now transmit a radio signal to the secure passive RFID tag 10. The antenna 30 receives the radio signal, wherein the energy harvesting, conversion and management means 62 provides electrical energy from the radio signal to power the microcontroller 60 and other signal-related circuitry, and the radio receiver circuitry 66 provides the signal information to the microcontroller 60. The microcontroller 60 decrypts the base station signal, and then sends a signal to the fiber optic transmitter 34. The fiber optic transmitter 34 converts the electrical signal to an optical signal and transmits the optical signal through the fiber optic cable 20 to the fiber optic receiver 36, which converts the optical signal back to an electrical signal and sends the electrical signal back to the microcontroller 60. The microcontroller 60 compares the sent and received fiber optic cable 20 signals for being identical in information content. Optionally, the microcontroller 60 may also have calibration data for parameters including fiber optic signal amplitude and propagation time, and thus may also verify that the transmitted optical signal and the received optical signal match sufficiently for these parameters too, whereby the transmitted optical signal and the received optical signal are seen as being approximately identical. The means for comparing the transmitted and received optical signals is preferably incorporated into the microcontroller 60 but it is within the scope of the present invention for circuitry external to the microcontroller 60 to perform part or all of the signal comparison functions. If the fiber optic cable 20 signal is normal, then the microcontroller 60 will generate an encrypted affirmative reply indicating that all conditions are normal, which the radio transmitter 68 will then transmit through the antenna 30. Preferably, if the fiber optic cable 20 signal is not normal, thereby indicating possible tampering or container breach, then the microcontroller 60 will generate an encrypted reply indicating an alarm, which the radio transmitter 68 will then transmit through the antenna 30. The means for decrypting and encrypting signals are preferably provided by software programmed into the microcontroller 60.
The microcontroller 60 may also receive data from sensors 70 located within the tag 10, in order to provide more data about the environmental conditions within and around the tag 10. If the fiber optic cable 20 signal is normal and any sensor data is normal too, then the microcontroller 60 will generate an encrypted affirmative reply indicating that all conditions are normal, which the radio transmitter 68 will then transmit through the antenna 30. If the fiber optic cable 20 signal is not normal, thereby indicating possible tampering or container breach, or if any sensor data is not normal, then the microcontroller 60 will generate an encrypted reply indicating an alarm, which the radio transmitter 68 will then transmit through the antenna 30. The tag may also transmit preferably encrypted sensor data, so that computers and users monitoring the base station may interpret the sensor data.
Preferably, after initial attachment and activation, the receiver cap 18, compression seal 22, and fiber optic cable 20 may be removed and then reinserted and re-sealed into the tag 10 without damage in order to perform field service including container opening if necessary, with a means for authorizing a permitted opening and subsequent reattachment and reactivation of the fiber optic circuit without a resultant alarm signal. The means for authorizing a permitted opening and subsequent reattachment and reactivation is preferably governed by parameters including but not limited to length of time, specific time interval, the tag 10 receiving an authorization code, a base station receiving an authorization code, a physical key being used with the tag 10, and a physical key being used with a base station. Those skilled in the art of electromechanical design will recognize that there are a wide range of well-known options for implementing a function such as the means for authorizing a permitted opening and subsequent reattachment and reactivation, typically wherein the microcontroller 60 would receive an authorization command via hardware or software, wherein optionally a software authorization command received by the microcontroller would originate with a hardware or software authorization command received by the base station. It is also well known in the art for passive RFID tags to respond to special authorization codes that have been programmed into their instruction sets.
In an alternate embodiment of the invention, multiple base stations of any combination of fixed and mobile types may be networked together to cover a larger area or to communicate with the tag 10 from multiple vantage points.
In another alternate embodiment of the invention, the fiber optic transmitter 34, the fiber optic cable 20, and the fiber optic receiver 36 in combination form a fiber optic link, and the fiber optic link on one secure passive RFID tag 10 is interconnected to the fiber optic link in at least one other secure passive RFID tag 10, and signals can be passed along the fiber optic cables 20 in a ring. This is shown in
It can be desirable to use a secure passive RFID tag 10 in applications with severe environmental conditions. One example of severe environmental conditions is an autoclave, where high temperatures and steam may be present. In yet another alternate embodiment of the invention, more environmentally rugged and high temperature resistant fiber optic cables may be employed, with cores made of materials such as high temperature resistant optical polymers, quartz and glass, and jackets made of materials such as high temperature resistant polymers and metals.
In still another alternate embodiment of the invention, an adhesive sealant may be added under the receiver cap 18 and around the compression seal 22 surrounding the fiber optic cable 20 to make the environmental seal permanent, such that any attempt to remove the fiber optic cable 20 will result in damage to the fiber optic cable 20.
In the above description of the secure passive RFID tag with fiber optic seal of this invention, various configurations are described and applications thereof in corresponding systems are provided. Because many varying and different embodiments may be made within the scope of the inventive concept herein taught, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
This patent application claims the benefit under 35 USC 119(e) of U.S. Provisional Patent Application No. 61/984,841, filed on Apr. 27, 2014 and entitled “Secure Passive RFID Tag With Seal”, the entirety of which is incorporated herein by reference.
The United States Government has rights in this invention pursuant to Contract DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC, for the operation of Lawrence Livermore National Laboratory.
Number | Name | Date | Kind |
---|---|---|---|
4262284 | Stieff | Apr 1981 | A |
4321930 | Jobsis | Mar 1982 | A |
H595 | Lafaw | Mar 1989 | H |
5031981 | Peterson | Jul 1991 | A |
5097253 | Eschbach | Mar 1992 | A |
5202673 | Conrad | Apr 1993 | A |
5656996 | Houser | Aug 1997 | A |
6069563 | Kadner | May 2000 | A |
6262664 | Maloney | Jul 2001 | B1 |
6320509 | Brady | Nov 2001 | B1 |
7135973 | Kittel | Nov 2006 | B2 |
7274293 | Bradus | Sep 2007 | B2 |
7471203 | Worthy | Dec 2008 | B2 |
7474209 | Marsilio | Jan 2009 | B2 |
7636047 | Sempek | Dec 2009 | B1 |
7936266 | Francis | May 2011 | B2 |
8446278 | Ivashin | May 2013 | B2 |
9088372 | Goldner | Jul 2015 | B2 |
20010022552 | Maloney | Sep 2001 | A1 |
20040057691 | Doss | Mar 2004 | A1 |
20050231365 | Tester | Oct 2005 | A1 |
20060067697 | Aizpuru | Mar 2006 | A1 |
20060109115 | Bradus | May 2006 | A1 |
20060168644 | Richter | Jul 2006 | A1 |
20060202824 | Carroll | Sep 2006 | A1 |
20070090921 | Fisher | Apr 2007 | A1 |
20070096906 | Lyons | May 2007 | A1 |
20070164863 | Himberger | Jul 2007 | A1 |
20070207284 | McClintic | Sep 2007 | A1 |
20080013888 | Barnes | Jan 2008 | A1 |
20080256991 | Goldman | Oct 2008 | A1 |
20080309487 | Chao | Dec 2008 | A1 |
20090111393 | Scalisi | Apr 2009 | A1 |
20110074582 | Alexis | Mar 2011 | A1 |
20110244798 | Daigle | Oct 2011 | A1 |
20120144885 | Mills | Jun 2012 | A1 |
20130064509 | Byer | Mar 2013 | A1 |
20140109631 | Asquith | Apr 2014 | A1 |
20140243442 | Coles | Aug 2014 | A1 |
20140322452 | Kasyanova | Oct 2014 | A1 |
20150015393 | McCuen | Jan 2015 | A1 |
20150043308 | Maas | Feb 2015 | A1 |
20150108300 | Poplawski | Apr 2015 | A1 |
20150254961 | Brandl | Sep 2015 | A1 |
20160356963 | Liu | Dec 2016 | A1 |
20160356964 | Liu | Dec 2016 | A1 |
Entry |
---|
United States Enrichment Corporation USEC 651: Good Handling Practices for Uranium Hexafluoride pp. 47-48 Published 1995 Bethesda, MD. |
IEEE Antennas and Propagation Magazine, vol. 51, No. 2 Joshua D. Griffin and Gregory D. Durgin Complete Link Budgets for Backscatter-Radio and RFID Systems p. 20, Section 5.15, Figs. 7a, 7b Publication Date Apr. 2009 New York, NY. |
51st International Symposium Elmar-2009 Davor Vinko, Tomislav {hacek over (S)}vedek, Marijan Herceg Effects of power consumption and modulation of the passive RFID tag on the transmission range of backscattered signal Published Sep. 28, 2009 Zadar, Croatia. |
Xerify Kelly Stark Best Practice Guild for RFID on Metal Tags pp. 6-13 Published Sep. 27, 2011 Aditionally, Hong Kong. |
Number | Date | Country | |
---|---|---|---|
20150310715 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61984841 | Apr 2014 | US |