This disclosure relates to the technical field of encryption and decryption of data. More specifically, this disclosure relates to systems and methods for performing secure probabilistic analytics using an encrypted analytics matrix.
With development of computer technologies, many sensitive data, such as financial information and medical records can be kept on remote servers or cloud-based computing resources. Authorized users can access the sensitive data using applications running, for example, on their personal computing devices. Typically, personal computing devices are connected, via data networks, to servers or cloud-based computing resources. Therefore, the sensitive data can be subject to unauthorized access.
Encryption techniques, such as a homomorphic encryption, can be applied to the sensitive data to prevent unauthorized access. The encryption techniques can be used to protect “data in use”, “data in rest”, and “data in transit”. A homomorphic encryption is a form of encryption in which a specific algebraic operation (generally referred to as addition or multiplication) performed on plaintext, is equivalent to another operation performed on ciphertext. For example, in Partially Homomorphic Encryption (PHE) schemes, multiplication in ciphertext is equal to addition of the same values in plaintext.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Generally, the present disclosure is directed to the technology for secure data processing. Some embodiments of the present disclosure may facilitate a secure transmission of analytics from a client device to remote computing resource(s) for performing analytics over a data source and secure transmission of results of analytics from the computing resources back to the client device.
According to one example embodiment of the present disclosure, a method for performing secure probabilistic analytics using an encrypted analytics matrix is provided. The method may include receiving, by at least one server from a client, at least one analytic matrix, a term generation function, and a keyed hash function. The at least one analytic matrix can be encrypted using a homomorphic encryption scheme. The homomorphic encryption scheme may include a public key for encryption and a private key for decryption. The method may further include extracting, by the at least one server, a set of term components from a data set using the term generation function and the keyed hashed function. The method may include evaluating, by the at least one server, the at least one analytic matrix over the set of term components to obtain at least one encrypted result. The method may further include estimating, by the at least one server, a probabilistic error bound of the at least one encrypted result. The method may further include sending, by the at least one server, the at least one encrypted result and the probabilistic error bound to the client. The client can be configured to decrypt the at least one encrypted result using the homomorphic encryption scheme.
In some embodiments, the homomorphic encryption scheme includes a partially homomorphic encryption scheme. The partially homomorphic encryption scheme may include at least one of a Rivest, Shamir and Adleman cryptosystem, Elgamal cryptosystem, Benaloh cryptosystem, Goldwasser-Micali cryptosystem, and Pallier cryptosystem. In certain embodiments, the homomorphic encryption scheme may include a fully homomorphic encryption scheme.
In some embodiments, the at least one analytic matrix can be generated based on an analytic and at least one parameter associated with the analytic. In certain embodiments, the generation of the at least one analytic matrix may include extracting, using the term generation function, a set of term elements from the analytic and the at least one analytic parameter. The generation of the at least one analytic matrix may further include generating, using the keyed hash function, the set of hashes from the set of term elements. The generation of the at least one analytic matrix may further include partitioning elements of the set of hashes to generate a set of vectors, wherein each of the vectors is of a pre-defined dimension. The generation of the at least one analytic matrix may further include determining whether for at least one matrix element associated with row j and column m of the at least one analytic matrix, there is a vector C from the set of the vectors such that C[j]=m. If the result of the determination is positive, the at least one matrix element can be assigned a non-zero value. If the result of determination is negative, the at least one matrix element can be assigned a zero value. In some embodiments, the non-zero value can include an encrypted value of a non-zero bitmask of a term element selected from the set of term elements, wherein the hash of the term element is used to generate the vector C. The encrypted value can be obtained using the homomorphic encryption scheme.
In some embodiments, a number of rows of the at least one analytic matrix can be equal or greater than the number of elements in the set of term elements and length of the elements in the set of hashes can be divisible by a number of columns of the at least one analytical matrix.
In certain embodiments, estimating the probabilistic error is based on a hash collision rate of the hash function over the data set.
In some embodiments, the data set is one of a plaintext form, deterministically encrypted or semantically encrypted.
According to one example embodiment of the present disclosure, a system for performing secure probabilistic analytics using an encrypted analytics matrix is provided. The system may include at least one processor and a memory storing processor-executable codes, wherein the at least one processor can be configured to implement the operations of the above-mentioned method for performing secure probabilistic analytics using an encrypted analytics matrix.
According to yet another example embodiment of the present disclosure, the operations of the above-mentioned method for performing secure probabilistic analytics using a homomorphic encryption are stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the recited operations.
Other example embodiments of the disclosure and aspects will become apparent from the following description taken in conjunction with the following drawings.
Exemplary embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements.
The technology disclosed herein is concerned with methods and systems for performing secure probabilistic analytics over data source using a homomorphic encryption. Embodiments of the present disclosure may facilitate a secure transmission of analytics from a client device to computing resource(s) providing a target data source and secure transmission of results of analytics from the computing resource(s) back to the client device.
Some embodiments of the present disclosure may be used to encrypt an analytic on a client device using an encrypted analytics matrix. The encrypted analytics matrix can be sent to computing resource(s) providing desired data source(s). The encrypted analytics matrix can be performed over desired data source(s) to produce encrypted results. The encrypted results can be returned to the client device and decrypted using the homomorphic encryption techniques. Embodiments of the present disclosure may allow performing of an analytic over desired data sources in a secure and private manner because neither content of the analytic nor results of the analytic are revealed to a data owner, observer, or attacker.
According to one example embodiment of the present disclosure, a method for performing secure probabilistic analytics using an encrypted analytics matrix commences with receiving, by at least one server from a client, at least one analytic matrix. The at least one analytic matrix can be encrypted using a homomorphic encryption scheme. The homomorphic encryption scheme may include a public key for encryption and a private key for decryption. The method may further include extracting, by the at least one server and based on the homomorphic encryption scheme, a set of terms from a data set. The method may further include evaluating, by the at least one server, the at least one analytic matrix over the set of terms to obtain at least one encrypted result. The method may further include estimating, by the at least one server, a probabilistic error bound of the at least one encrypted result. The method may further include sending, by the at least one server, the at least one encrypted result and the probabilistic error bound to the client. The client can be configured to decrypt the at least one encrypted result using the homomorphic encryption scheme.
Referring now to the drawings, various embodiments are described in which like reference numerals represent like parts and assemblies throughout the several views. It should be noted that the reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples outlined in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
As shown in
In some embodiments, the server(s) 110 may be configured to store or provide access to at least one data source(s) 115. In certain embodiments, the server(s) 110 may include a standalone computing device. In various embodiments, the data source(s) 115 may be located on a single server 110 or distributed over multiple server(s) 110. The data source 115 may include plaintext data, deterministically encrypted data, semantically encrypted data, or a combination of thereof.
In some embodiments, the server(s) 110 may be implemented as cloud-based computing resource shared by multiple users. The cloud-based computing resource(s) can include hardware and software available at a remote location and accessible over a network (for example, the Internet). The cloud-based computing resource(s) can be dynamically re-allocated based on demand. The cloud-based computing resources may include one or more server farms/clusters including a collection of computer servers which can be co-located with network switches and/or routers.
In various embodiments, the client(s) 105 can make certain client inquires within the environment 100. For example, the client(s) 105 may be configured to send analytics to the server 110 to be performed over the data source(s) 115. The server 110 can be configured to perform the analytics over the data source(s) 115 and return the results of analytics to the client(s) 105.
To protect the content of the analytics, the client(s) 105 can be configured to encrypt the analytics to a homomorphic analytics matrix based on a homomorphic encryption scheme. The homomorphic encryption scheme can include a partially homomorphic encryption scheme or a fully homomorphic encryption scheme. The partially homomorphic encryption scheme can include one of a Rivest, Shamir and Adleman cryptosystem, Elgamal cryptosystem, Benaloh cryptosystem, Goldwasser-Micali cryptosystem, and Pallier cryptosystem. The analytics can be encrypted with use of a public (encryption) key of the homomorphic encryption scheme. The homomorphic analytic matrix and the public key can be sent to the server 110. The homomorphic analytic matrix can be only decrypted with a private (decryption) key of the homomorphic encryption scheme. The decryption key can be kept on the client(s) 105 and never provided to the server(s) 110.
To protect the content of the results of the analytic, the server(s) 110 can be configured to evaluate the encrypted analytics matrix over the data source using the same homographic encryption scheme and the public key received from the client 105 and, thereby, obtain encrypted results of the analytics. The encrypted results can be sent to the client(s) 105. The client(s) 105 can decrypt the encrypted results using the private key. Because the private key is always kept on the client(s) 105, neither homomorphic analytic matrix nor encrypted results of the analytic can be decrypted on the server(s) 110 or when intercepted while in transition between the client(s) 105 and the server(s) 110.
The scheme 200 may include a term generation (TG) function 210. The term generation function 210 can be used to extract a set of term elements {T} of analytic A. For, example, if analytic A is a database frequency distribution analytic for elements in <row:column> pairs, then the set {T} reflects the frequency distribution of these elements from the database.
The scheme 200 may further include a keyed hash function H(T) 220. The hash function H(T) can be used to obtain a set of hashes H(T)={H(T): T in {T}}. The set of hashes H(T) denotes the range of the hash function H(T) over the set of term elements {T}. The keyed hash function H(T) can be associated with a public key used for the encryption. The number of distinct elements in the set H(T) is equal to the number of distinct elements in the set of term elements {T}.
The scheme 200 may further include an analytics matrix construction module 230. The module 230 can be used to construct a homomorphic analytic matrix A_M for the analytic A associated with an analytic parameter set {A_P}. The desired dimensions s×d of the matrix A_M can be selected to satisfy the following conditions: number of row s be equal or greater than the number of distinct elements in the set of term elements {T}, s be equal or greater than d, and |H(T)| be divisible by d.
The module 230 can be configured to partition each of hashes H(T) into a vector C_t of d-many bitwise components c_T[j], i=0, . . . d−1. C(H(T)) denotes a set of vectors obtained as result of partition of hashes in set {H(T)}. It should be noted that |{(C(H(T))}|=|{H(T)}|=|{T}|. For example, if d=3 and H(T)=000001001111, then vector c_T={c_T[0], c_T[1], c_T[2]} where c_T[0]=0000, c_T[0]=0100, and c_T[2]=1111.
The module 230 can be further configured to determine whether c_T[d−1] is distinct for all elements in {H(T)}. If the result of the determination is negative the module 230 can select a different keyed hash function H and reconstruct {H(T)} and C(H(T)) before constructing the homographic analytic matrix A_M.
Elements A_M (j,m), wherein j=0, . . . , (d−1) and m=0, . . . , (s−1) can be determined as follows. If there is an element c_T[j] in set of vectors {C(H(T))} such that c_T[j]=m, then A_M(j,m) is set to E(B_j,m) where B_j,m is a nonzero bit mask corresponding to the term element T, otherwise, A_M (j,m) is set to E(0), wherein E is the homographic encryption. In this manner, the homomorphic analytic matrix A_M includes encryptions of nonzero bitmasks for only the term elements present in the set {T}. The analytic A cannot be recovered from the homomorphic analytical matrix A_M without a private key associated with homomorphic encryption scheme E.
The client 105 can be further configured to send the homomorphic analytic matrix A_M, the term generation function TG, and the hash function H(T) with the public key to the server(s) 110.
In some embodiments, the server(s) 110 can be configured to extract a set of term elements {T} from the data source 115 using the term generation function TG and TG and the keyed hash function H(T). The server(s) 110 can be further configured to evaluate the homomorphic analytic matrix A_M over the set of term elements {T} to produce encrypted results E(R). The server(s) 110 can be further configured to estimate a probabilistic error bound b of the encrypted results E(R) based on a hash collision rate of the hash function H(T) over data source 115. The server(s) 110 can be further configured to send the encrypted results E(R) and the probabilistic error bound b to the client 105.
The client 105 can be further configured to decrypt the encrypted results E(R) in order to obtain the results R using the private key of the homomorphic encryption scheme E.
The method 300 may commence, in block 305, with receiving, by at least one server, from a client, at least one analytic matrix, a term generation function, and a keyed hash function. The at least one analytic matrix can be encrypted using the homomorphic encryption scheme. The homomorphic encryption scheme may include a public key for encryption and a private key for decryption.
In block 310, the method 300 may proceed with extracting, by the at least one server, a set of term components from a data set using the term generation function and the keyed hashed function.
In block 315, the method 300 may evaluate, by the at least one server, the at least one analytic matrix over the set of term components to obtain at least one encrypted result.
In block 320, the method 300 may proceed with estimating, by the at least one server, a probabilistic error of the at least one encrypted result. The estimate can be based on hash collision of the keyed hash function over the data set.
In block 325, the method may include sending, by the at least one server, the at least one encrypted result and the probabilistic error to the client. The client can be configured to decrypt the at least one encrypted result using the homomorphic encryption scheme.
The components shown in
Mass data storage 430, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 410. Mass data storage 430 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 420.
Portable storage device 440 operates in conjunction with a portable non-volatile storage medium, such as a flash drive, floppy disk, compact disk, digital video disc, or Universal Serial Bus (USB) storage device, to input and output data and code to and from the computer system 400 of
User input devices 460 can provide a portion of a user interface. User input devices 460 may include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 460 can also include a touchscreen. Additionally, the computer system 400 as shown in
Graphics display system 470 include a liquid crystal display (LCD) or other suitable display device. Graphics display system 470 is configurable to receive textual and graphical information and processes the information for output to the display device.
Peripheral devices 480 may include any type of computer support device to add additional functionality to the computer system.
The components provided in the computer system 400 of
The processing for various embodiments may be implemented in software that is cloud-based. In some embodiments, the computer system 400 is implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computer system 400 may itself include a cloud-based computing environment, where the functionalities of the computer system 400 are executed in a distributed fashion. Thus, the computer system 400, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud may be formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 400, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.
The present technology is described above with reference to example embodiments. Therefore, other variations upon the example embodiments are intended to be covered by the present disclosure.
This application claims the benefit and priority of U.S. Provisional Application Ser. No. 62/448,890, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,918, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,893, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,906, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,908, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,913, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,916, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,883, filed on Jan. 20, 2017; U.S. Provisional Application 62/448,885, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,902, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,896, filed on Jan. 20, 2017; U.S. Provisional Application Ser. No. 62/448,899, filed on Jan. 20, 2017; and U.S. Provisional Application Ser. No. 62/462,818, filed on Feb. 23, 2017, all of which are hereby incorporated by reference herein, including all references and appendices, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5732390 | Katayanagi et al. | Mar 1998 | A |
6178435 | Schmookler | Jan 2001 | B1 |
6745220 | Hars | Jun 2004 | B1 |
6748412 | Ruehle | Jun 2004 | B2 |
6910059 | Lu et al. | Jun 2005 | B2 |
7712143 | Comlekoglu | May 2010 | B2 |
7937270 | Smaragdis | May 2011 | B2 |
8515058 | Gentry | Aug 2013 | B1 |
8565435 | Gentry et al. | Oct 2013 | B2 |
8781967 | Tehranchi et al. | Jul 2014 | B2 |
8832465 | Gulati et al. | Sep 2014 | B2 |
9059855 | Johnson et al. | Jun 2015 | B2 |
9094378 | Yung et al. | Jul 2015 | B1 |
9189411 | Mckeen et al. | Nov 2015 | B2 |
9215219 | Krendelev et al. | Dec 2015 | B1 |
9288039 | Monet et al. | Mar 2016 | B1 |
9491111 | Roth et al. | Nov 2016 | B1 |
9503432 | El Emam et al. | Nov 2016 | B2 |
9514317 | Martin et al. | Dec 2016 | B2 |
9565020 | Camenisch et al. | Feb 2017 | B1 |
9577829 | Roth et al. | Feb 2017 | B1 |
9652609 | Kang et al. | May 2017 | B2 |
9846787 | Johnson et al. | Dec 2017 | B2 |
9852306 | Cash et al. | Dec 2017 | B2 |
9942032 | Kornaropoulos et al. | Apr 2018 | B1 |
9946810 | Trepetin | Apr 2018 | B1 |
9973334 | Hibshoosh et al. | May 2018 | B2 |
10027486 | Liu | Jul 2018 | B2 |
10055602 | Deshpande et al. | Aug 2018 | B2 |
10073981 | Arasu | Sep 2018 | B2 |
10075288 | Khedr et al. | Sep 2018 | B1 |
10129028 | Kamakari et al. | Nov 2018 | B2 |
10148438 | Evancich et al. | Dec 2018 | B2 |
10181049 | El Defrawy et al. | Jan 2019 | B1 |
10210266 | Antonopoulos | Feb 2019 | B2 |
10235539 | Ito et al. | Mar 2019 | B2 |
10255454 | Kamara et al. | Apr 2019 | B2 |
10333715 | Chu et al. | Jun 2019 | B2 |
10375042 | Chaum | Aug 2019 | B2 |
10396984 | French et al. | Aug 2019 | B2 |
10423806 | Cerezo Sanchez | Sep 2019 | B2 |
10489604 | Yoshino et al. | Nov 2019 | B2 |
10496631 | Tschudin et al. | Dec 2019 | B2 |
10644876 | Williams et al. | May 2020 | B2 |
10693627 | Carr | Jun 2020 | B2 |
10721057 | Carr | Jul 2020 | B2 |
10728018 | Williams et al. | Jul 2020 | B2 |
20020032712 | Miyasaka et al. | Mar 2002 | A1 |
20020104002 | Nishizawa et al. | Aug 2002 | A1 |
20030037087 | Rarick | Feb 2003 | A1 |
20030059041 | MacKenzie et al. | Mar 2003 | A1 |
20040167952 | Gueron et al. | Aug 2004 | A1 |
20050008152 | MacKenzie | Jan 2005 | A1 |
20050076024 | Takatsuka et al. | Apr 2005 | A1 |
20050259817 | Ramzan et al. | Nov 2005 | A1 |
20060008080 | Higashi et al. | Jan 2006 | A1 |
20060008081 | Higashi et al. | Jan 2006 | A1 |
20070053507 | Smaragdis | Mar 2007 | A1 |
20070095909 | Chaum | May 2007 | A1 |
20070140479 | Wang et al. | Jun 2007 | A1 |
20070143280 | Wang | Jun 2007 | A1 |
20090037504 | Hussain | Feb 2009 | A1 |
20090193033 | Ramzan et al. | Jul 2009 | A1 |
20090268908 | Bikel et al. | Oct 2009 | A1 |
20090279694 | Takahashi et al. | Nov 2009 | A1 |
20100202606 | Almeida | Aug 2010 | A1 |
20100205430 | Chiou et al. | Aug 2010 | A1 |
20110026781 | Osadchy et al. | Feb 2011 | A1 |
20110107105 | Hada | May 2011 | A1 |
20110110525 | Gentry | May 2011 | A1 |
20110243320 | Halevi et al. | Oct 2011 | A1 |
20110283099 | Nath et al. | Nov 2011 | A1 |
20120039469 | Meuller et al. | Feb 2012 | A1 |
20120054485 | Tanaka et al. | Mar 2012 | A1 |
20120066510 | Weinman | Mar 2012 | A1 |
20120201378 | Mabeel et al. | Aug 2012 | A1 |
20120265794 | Niel | Oct 2012 | A1 |
20120265797 | Niel | Oct 2012 | A1 |
20130010950 | Kerschbaum | Jan 2013 | A1 |
20130051551 | El Aimani | Feb 2013 | A1 |
20130054665 | Felch | Feb 2013 | A1 |
20130170640 | Gentry | Jul 2013 | A1 |
20130191650 | Balakrishnan | Jul 2013 | A1 |
20130195267 | Alessio et al. | Aug 2013 | A1 |
20130216044 | Gentry et al. | Aug 2013 | A1 |
20130230168 | Takenouchi | Sep 2013 | A1 |
20130246813 | Mori et al. | Sep 2013 | A1 |
20130326224 | Yavuz | Dec 2013 | A1 |
20130339722 | Krendelev et al. | Dec 2013 | A1 |
20130339751 | Sun et al. | Dec 2013 | A1 |
20130346741 | Kim et al. | Dec 2013 | A1 |
20130346755 | Nguyen et al. | Dec 2013 | A1 |
20140189811 | Taylor et al. | Jul 2014 | A1 |
20140233727 | Rohloff et al. | Aug 2014 | A1 |
20140355756 | Iwamura et al. | Dec 2014 | A1 |
20150100785 | Joye et al. | Apr 2015 | A1 |
20150100794 | Joye et al. | Apr 2015 | A1 |
20150205967 | Naedele et al. | Jul 2015 | A1 |
20150215123 | Kipnis et al. | Jul 2015 | A1 |
20150227930 | Quigley et al. | Aug 2015 | A1 |
20150229480 | Joye et al. | Aug 2015 | A1 |
20150244517 | Nita | Aug 2015 | A1 |
20150248458 | Sakamoto | Sep 2015 | A1 |
20150304736 | Lal et al. | Oct 2015 | A1 |
20150358152 | Ikarashi et al. | Dec 2015 | A1 |
20160004874 | Ioannidis et al. | Jan 2016 | A1 |
20160072623 | Joye et al. | Mar 2016 | A1 |
20160105402 | Kupwade-Patil et al. | Apr 2016 | A1 |
20160105414 | Bringer et al. | Apr 2016 | A1 |
20160119346 | Chen et al. | Apr 2016 | A1 |
20160140348 | Nawaz et al. | May 2016 | A1 |
20160179945 | Lastra Diaz et al. | Jun 2016 | A1 |
20160182222 | Rane | Jun 2016 | A1 |
20160323098 | Bathen | Nov 2016 | A1 |
20160335450 | Yoshino et al. | Nov 2016 | A1 |
20160344557 | Chabanne et al. | Nov 2016 | A1 |
20160350648 | Gilad-Bachrach et al. | Dec 2016 | A1 |
20170070340 | Hibshoosh et al. | Mar 2017 | A1 |
20170070351 | Yan | Mar 2017 | A1 |
20170099133 | Gu et al. | Apr 2017 | A1 |
20170134158 | Pasol | May 2017 | A1 |
20170185776 | Robinson et al. | Jun 2017 | A1 |
20170264426 | Joye et al. | Sep 2017 | A1 |
20180091466 | Friedman et al. | Mar 2018 | A1 |
20180139054 | Chu | May 2018 | A1 |
20180198601 | Laine et al. | Jul 2018 | A1 |
20180204284 | Cerezo Sanchez | Jul 2018 | A1 |
20180212751 | Williams et al. | Jul 2018 | A1 |
20180212752 | Williams et al. | Jul 2018 | A1 |
20180212753 | Williams | Jul 2018 | A1 |
20180212754 | Williams et al. | Jul 2018 | A1 |
20180212755 | Williams et al. | Jul 2018 | A1 |
20180212756 | Carr | Jul 2018 | A1 |
20180212757 | Carr | Jul 2018 | A1 |
20180212759 | Williams et al. | Jul 2018 | A1 |
20180212775 | Williams | Jul 2018 | A1 |
20180212933 | Williams | Jul 2018 | A1 |
20180224882 | Carr | Aug 2018 | A1 |
20180234254 | Camenisch et al. | Aug 2018 | A1 |
20180267981 | Sirdey et al. | Sep 2018 | A1 |
20180270046 | Carr | Sep 2018 | A1 |
20180276417 | Cerezo Sanchez | Sep 2018 | A1 |
20180343109 | Koseki et al. | Nov 2018 | A1 |
20180359097 | Lindell | Dec 2018 | A1 |
20180373882 | Veugen | Dec 2018 | A1 |
20190013950 | Becker et al. | Jan 2019 | A1 |
20190042786 | Williams et al. | Feb 2019 | A1 |
20190108350 | Bohli et al. | Apr 2019 | A1 |
20190158272 | Chopra et al. | May 2019 | A1 |
20190229887 | Ding et al. | Jul 2019 | A1 |
20190238311 | Zheng | Aug 2019 | A1 |
20190251553 | Ma et al. | Aug 2019 | A1 |
20190251554 | Ma et al. | Aug 2019 | A1 |
20190253235 | Zhang et al. | Aug 2019 | A1 |
20190260585 | Kawai et al. | Aug 2019 | A1 |
20190280880 | Zhang et al. | Sep 2019 | A1 |
20190312728 | Poeppelmann | Oct 2019 | A1 |
20190327078 | Zhang et al. | Oct 2019 | A1 |
20190334716 | Koosis et al. | Oct 2019 | A1 |
20190349191 | Soriente et al. | Nov 2019 | A1 |
20190371106 | Kaye | Dec 2019 | A1 |
20200134200 | Williams et al. | Apr 2020 | A1 |
20200150930 | Carr et al. | May 2020 | A1 |
20200204341 | Williams et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
2873186 | Mar 2018 | EP |
5680007 | Mar 2015 | JP |
5680007 | Mar 2015 | JP |
20127025089 | Feb 2011 | KR |
101386294 | Apr 2014 | KR |
WO2014105160 | Jul 2014 | WO |
WO2015094261 | Jun 2015 | WO |
WO2016003833 | Jan 2016 | WO |
WO2016018502 | Feb 2016 | WO |
WO2018091084 | May 2018 | WO |
WO2018136801 | Jul 2018 | WO |
WO2018136804 | Jul 2018 | WO |
WO2018136811 | Jul 2018 | WO |
Entry |
---|
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2018/014535, dated Apr. 19, 2018, 9 pages. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2018/014530, dated Apr. 23, 2018, 7 pages. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2018/014551, dated Apr. 24, 2018, 8 pages. |
Petition to Insitute Derivation Proceeding Pursuant to 35 USC 135; Case No. DER2019-00009, US Patent and Trademark Office Patent Trial and Appeal Board; Jul. 26, 2019, 272 pages. (2 PDFs). |
SCAMP Working Paper L29/11, “A WOODS HOLE Proposal Using Striping,” Dec. 2011, 14 pages. |
O'Hara, Michael James, “Shovel-ready Private Information Retrieval,” Dec. 2015, 4 pages. |
Carr, Benjamin et al., “Proposed Laughing Owl,” NSA Technical Report, Jan. 5, 2016, 18 pages. |
Carr, Benjamin et al., “A Private Stream Search Technique,” NSA Technical Report, Dec. 1, 2015, 18 pages. |
Drucker et al., “Paillier-encrypted databases with fast aggregated queries,” 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Jan. 8-11, 2017, pp. 848-853. |
Tu et al., “Processing Analytical Queries over Encrypted Data,” Proceedings of the VLDB Endowment, vol. 6, Issue No. 5, Mar. 13, 2013. pp. 289-300. |
Boneh et al., “Private Database Queries Using Somewhat Homomorphic Encryption”, Cryptology ePrint Archive: Report 2013/422, Standford University [online], Jun. 27, 2013, [retrieved on Dec. 9, 2019], 22 pages. |
Chen et al., “Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts with Application to Oblivious Neural Network Inference”, CCS '19 Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, May 19, 2019. pp. 395-412. |
Armknecht et al., “A Guide to Fully Homomorphic Encryption” IACR Cryptology ePrint Archive: Report 2015/1192 [online], Dec. 14, 2015, 35 pages. |
Bayar et al., “A Deep Learning Approach to Universal Image Manipulation Detection Using a New Convolutional Layer”, IH&MMSec 2016, Jun. 20-22, 2016. pp. 5-10. |
Juvekar et al. “GAZELLE: A Low Latency Framework for Secure Neural Network Inference”, 27th USENIX Security Symposium, Aug. 15-17, 2018. pp. 1650-1668. |
Bösch et al., “SOFIR: Securely Outsourced Forensic Recognition,” 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), IEEE 978-1-4799-2893-4/14, 2014, pp. 2713-2717. |
Waziri et al., “Big Data Analytics and Data Security in the Cloud via Fullly Homomorphic Encryption,” World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 9, No. 3, 2015, pp. 744-753. |
Bajpai et al., “A Fully Homomorphic Encryption Implementation on Cloud Computing,” International Journal of Information & Computation Technology, ISSN 0974-2239 vol. 4, No. 8, 2014, pp. 811-816. |
Viejo et al., “Asymmetric homomorphisms for secure aggregation in heterogeneous scenarios,” Information Fusion 13, Elsevier B.V., Mar. 21, 2011, pp. 285-295. |
Patil et al, “Big Data Privacy Using Fully Homomorphic Non-Deterministic Encryption,” IEEE 7th International Advance Computing Conference, Jan. 5-7, 2017, 15 pages. |
Williams, Ellison Anne et al., “Wideskies: Scalable Private Information Retrieval,” Jun. 8, 2016, 14 pages. |
Panda et al., “FPGA Prototype of Low Latency BBS PRNG,” IEEE International Symposium on Nanoelectronic and Systems, Dec. 2015, pp. 118-123, 7 pages. |
Sahu et al., “Implementation of Modular Multiplication for RSA Algorithm,” 2011 International Conference on Communication Systems and Network Technologies, 2011, pp. 112-114, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20180212758 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62448890 | Jan 2017 | US | |
62448918 | Jan 2017 | US | |
62448893 | Jan 2017 | US | |
62448906 | Jan 2017 | US | |
62448908 | Jan 2017 | US | |
62448913 | Jan 2017 | US | |
62448916 | Jan 2017 | US | |
62448883 | Jan 2017 | US | |
62448885 | Jan 2017 | US | |
62448902 | Jan 2017 | US | |
62448896 | Jan 2017 | US | |
62448899 | Jan 2017 | US | |
62462818 | Feb 2017 | US |