The present invention relates generally to secure recordation and inspection systems, and more particularly, for example, to infrared inspection systems.
Environmental and safety concerns may require periodic monitoring of production facilities, which may utilize toxic, flammable, or controlled substances. In some production facilities, these substances pass through hundreds of pressurized pipes and tanks having thousands of seals, seams, and joints at various locations. In some cases, periodic inspection of the facilities at these locations must be documented in order to comply with various regulatory agency requirements. Failure to adequately document compliance with the requirements can result in a levy of fines against the offending facility and a halt to ongoing production until compliance can be verified.
With such a strong motivation to document compliance, there is also a possibility of fraud or inadvertent failures to properly comply. For example, an individual may wish to falsify a compliance report to indicate an area of the production facility was inspected, when it was not (e.g., only a portion of an inspection route was completed, while some other portion was not completed). Furthermore, an inspection procedure may require the inspector to be certified in some particular inspection capacity. Because it may be more expensive to acquire services from a certified inspector, there may be an attempt to utilize uncertified people. In this case, the inspection may have been completed, but may have been accomplished by an uncertified or unqualified person. In view of these issues and others, there remains a need in the art for improved inspection systems that can reduce fraud and facilitate a more complete inspection or more trustworthy compliance verification.
Systems and methods are disclosed herein, in accordance with one or more embodiments of the present invention, to provide secure recordation of inspection data, such as for example for infrared (IR) images within an infrared camera or to secure other types of inspection data within an inspection system (e.g., a portable inspection tool). As an example in accordance with an embodiment of the present invention, a camera system is disclosed for recording infrared images (e.g., one or more single frames or real time video), with the images securely recorded with the time and date of the recordation. The camera system may optionally include additional features to obtain additional information associated with the recordation. For example, information on the operator of the camera system, location, camera orientation, and/or camera recordation settings may be obtained at the time of the recordation and securely associated with the corresponding images.
More specifically in accordance with an embodiment of the present invention, an inspection system is disclosed to capture infrared images and to securely record date, time, and/or other relevant information along with the captured image. For example, the inspection system may securely record the information by employing a cryptographic hash function and a private key to sign the information and store for later verification. Alternatively or in addition, the infrared images may be encrypted using an encryption algorithm.
In accordance with another embodiment of the present invention, an infrared camera system includes an infrared camera adapted to capture image data of a target; and a processor adapted to provide a signature for the image data and associated information, wherein the associated information provides at least one of a location of the infrared camera, an orientation of the infrared camera, operator information of the infrared camera, a time of the image data capture, a date of the image data capture, camera settings, and target information.
In accordance with another embodiment of the present invention, a portable inspection system includes means for inspecting a target to obtain inspection data; means for obtaining a first set of information associated with the inspection data, wherein the first set of information comprises at least one of a setting of the inspecting means, a location of the inspecting means, an orientation of the inspecting means, operator information of the inspecting means, a time of obtaining the inspection data, a date of obtaining the inspection data, and target information; and means for generating a signature for the inspection data and the first set of information associated with the inspection data.
In accordance with another embodiment of the present invention, a method of securely recording inspection data within a portable inspection system includes inspecting a target with the inspection system to obtain inspection data; determining at least one of target information and a location of the inspection system during the inspecting operation; determining a time and a date for the inspecting operation; and securing the inspection data, the time, the date, and at least one of the location and the target information within the inspection system with an encryption algorithm.
The scope of the present invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the present invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures.
Management unit 212 includes a processor 220 and a processor memory 222, such as a suitably programmed microcomputer. Processor 220 controls communications within inspection system 104 and may perform computations to implement inspection algorithms. Processor memory 222 can be implemented in one or more technologies including a Random Access Memory (RAM), Read Only Memory (ROM), a magnetic disc, an optical disc, or other data storage and retrieval mediums. Processor 220 reads and executes instructions contained within processor memory 222 to operate inspection system 104, for example, to perform computations and communicate within inspection system 104.
In order to accurately monitor the time and date of inspection events, management unit 212 may include a timekeeping unit 224 that can generate time and date information for use in marking captured images. Alternatively, time and date information for inspection system 104 may be obtained from position determination unit 204 (e.g., GPS) and, thus, timekeeping unit 224 would not be required. Management unit 212 may also record the position of inspection system 104 for an operator traversing an inspection route using position information provided by position determination unit 204. Finally, management unit 212 includes an external input/output unit 226 that is configured to send and receive data and instructions over an external connection 228 that can be implemented as a wireless connection (e.g., RF or optical link) or a wired connection, with one or more devices enabled to send information to or receive information from inspection system 104. Processor 220 can also communicate over external connection 228 with an Internet server to transfer information, such as for example synchronization information for timekeeping unit 224.
It should be understood that the block diagram of inspection system 104 (
As an example, if the biometric sample taken by biometric sensing unit 302 matches the information stored in biometric database 304, the operator can be authenticated as an authorized operator either during an inspection operation, or to unlock or activate the inspection system prior to use. In this manner, inspector identification unit 202 is configured to record and/or determine the identity of an operator of inspection system 104. Biometric data stored in biometric database 304 can be loaded from previously captured operator data or may be loaded through an initial operator validation process. Alternatively, the identification of the inspector may be obtained through a keypad or operator input, such as a corresponding password or secure key (e.g., secure RSA key, discussed further herein).
Orientation determination unit 404 can include a compass unit 408 for measuring the rotational position of inspection system 104 based on a reference heading. For example, compass unit 408 can measure the rotational deviation of inspection system 104 as measured from a magnetic north direction based on the earth's magnetic field. Other rotational deviations may be detected on up to three orthogonal axes using various gyroscopic technologies. Rotation on these three axes may be used to specify the pan and tilt of inspection system 104 in order to clearly document the location, position, and viewing angle of an inspection system operator.
Passive target identification unit 502 can read a passive target identifier 114 and produce target identifier information (e.g., serial number or other information) that is used to identify an associated inspection target 106 or station 100. This identifying information may be associated with a particular inspection target 106 or inspection station 100 so that, by reading the target identifier, one can determine the inspection target or station. Passive target identification unit 502 can include a barcode unit 508 to read a passive target identifier such as a barcode, while active target identification unit 504 can include an RFID unit 510 to read from and/or write to an active target identifier such as an RFID tag. Target database 506 includes a memory for storing and retrieving target identifier information for a plurality of target identifiers as well as association information to link each target identifier with an inspection target, station, or both. Therefore, an inspection target is identified, for example, when the passive and/or active target identification information matches target database information in the target database.
The image signals from camera 602 are converted into a digital image format that can be stored in and retrieved from video memory 604. The captured images may be stored in a raw format or a standard format complying with an industry standard such as the Joint Photographic Experts Group (JPEG) family of standards, or Moving Picture Experts Group (MPEG) family of standards, for example. Video display 608 can be used to replay captured images for review by the inspector or others. Exemplary embodiments of camera 602 may include the Photon or Micro thermal imaging systems manufactured by Flir Systems™, Incorporated (Indigo Operations) of Goleta, Calif.
Watermark generation unit 606 may optionally be included to receive the digital image information and produce a new digital image having embedded information intended to identify (e.g., authenticate) the new image. The term watermark derives from the historical practice of including faintly visible words or graphics with a printed document, often within the actual paper before printing, where the words or graphics are designed to verify the authenticity or validate the source of the printed document. In traditional digital watermarking, a hidden pattern of information bits are inserted into a digital image file that provides copyright information related to the image such as the author's name, or contact information for reproduction rights, for example. In this disclosure, the term watermarking includes any practice of inserting any information into the digital image related to the captured image or the current state (e.g., date, time, position, and/or operator) of inspection system 104.
In addition to or instead of altering the digital image file, the identifying (e.g., authenticating) information may be included in a header file appended to, collocated, or associated with the captured image file data. The header and/or embedded information can include any information related to the captured image or the current state of inspection system 104, including the date and/or time of image capture, the operator, the location and/or orientation of inspection system 104 during image capture, and the target identifier information, for example. The header and/or embedded information, for example, can also include camera setting information on how the image was recorded, such as whether an image was considered radiometric or non-radiometric. For this disclosure, the term radiometric includes an assessment of a camera's ability to accurately convert radiated energy to object temperatures. For documentation purposes it may be desirable to record, with the radiometric image data, camera radiometric parametric data such as emissivity settings, background temperature values, optics parameters, filter parameters, target distance, and/or camera range settings. These parameters can also be stored, for example, in the image header file.
Furthermore, watermark generation unit 606 may be used to produce a new header having embedded information or the watermark could be appended to the header. The header and/or embedded information can also include an encrypted or plaintext signature for authentication of the image. For example, in reference to
The header and/or embedded (e.g., watermark) information discussed above may be secured by encryption prior to inclusion within the image data (e.g., secure header or embedded information along with the image information in order to identify and validate the captured image). For example, information exchanged with an active target identifier, such as an RFID, may be secured within the header (or watermark) through encryption. Additionally for example, a secure time and date stamp, operator identification, orientation, camera settings (e.g., radiometric information), and/or location may be recorded within the header (or watermark).
In general depending upon the level of security desired and the specific requirements or applications, the image data (e.g., high resolution data) may not have to be encrypted. For example, by not encrypting the image file, considerable savings may be achieved in terms of processing, power savings, time, and/or memory. Thus, the image data may be securely recorded and validated by generating an associated signature that can be verified. Consequently, the image data is viewable and useable in a conventional fashion (e.g., using conventional imaging or display techniques), but is also verifiable through the signature.
As an example, referring briefly to
As shown in
The verification is accomplished, as illustrated in
The encrypted header or embedded information may be included, for example, based on the inspection route traveled by the inspector (e.g., to provide route-key tagging). The inspection route may be recorded, for example, because for each image, the location and time may be stored in the header and signed and, thus, a secure record of the inspection route is created. As an example, as an operator moves through a facility with inspection system 104 to inspect various targets, the location, operator, time, date, radiometric parameters, and/or target information is stored along with the corresponding image data. The image with header information is hashed and signed with the signature stored with the image. This information may then be reviewed via inspection system 104 or by downloading the information to a server or other type of data station (e.g., a computer or processor-based storage device) to verify the route traveled and the results of the inspections. Furthermore, the information may be downloaded and stored based upon the location or target information provided by inspection system 104. An external time or event server (not shown) may also be used to synchronize and report the time (e.g., tag time) or other event such as the inspection system entering a particular inspection location, time on station, and/or time traveling between stations, for example. The image date may be rehashed and the signature validated with the public key.
Operation 802 includes, for example, operating inspector identification unit 202 to identify and/or record the inspector prior to performing an inspection (e.g., in order to avoid the case where an unauthorized or uncertified person may perform the inspection), as discussed in reference to
Systems and methods are disclosed herein to provide an inspection system in accordance with one or more embodiments of the present invention. For example, a video processing unit 208 (e.g., an IR camera) was disclosed in accordance with an embodiment of the present invention as part of inspection system 104. However, it should be understood that video processing unit 208 may be substituted with a different inspection tool, depending upon the desired application, or additional inspection tools may be included within inspection system 104. For example, an ultrasonic analysis system may be included with or substituted for video processing unit 208 to provide fault isolation and detection of a mechanical system (e.g., imminent bearing failure within a motor). As another example, a vibration analyzer or a lubrication analyzer (e.g., oil analyzer) may be included with or substituted for video processing unit 208 to provide the desired inspection system for the desired applications. The data from these systems (e.g., ultrasonic analysis system, vibration analyzer, and/or lubrication analyzer) may be encrypted or otherwise secured in a similar fashion as was described for the image data from video processing unit 208 of inspection system 104.
The inspection systems and methods disclosed herein may be employed, for example in accordance with one or more embodiments of the present invention, in a wide variety of applications. For example, an inspection system may be utilized to provide production facility monitoring and compliance verification, security surveillance, nuclear power plant predictive and preventative maintenance, and other monitoring and surveillance or compliance activities. As another example, an inspection system may be utilized by law enforcement or military to record engagements or record arrest or pursuit activities with secure recordation of the data (e.g., for evidentiary functions).
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present invention. Accordingly, the scope of the invention is defined only by the following claims.