This application relates generally to applicant's commonly-owned, co-pending U.S. patent application Ser. No. ______ [Attorney Docket No. YOR920050473US1 (D#19248)] filed on even date herewith, the contents and whole disclosure of which is incorporated by reference as if fully set forth herein.
This invention relates generally to the field of data security and computer data backup systems, and particularly, to a novel secure RFID technology-based Backup/Restore system for Computing/Pervasive Devices.
Currently, no RFID-based fully automated backup data solution exists for computer/pervasive devices.
One conventional RFID-based solution for backing data in computer/pervasive devices is described in U.S. Patent Publication No. 2004/0188512 which is directed to an RFID controlled device for managing storage. However, the system described in this reference does not take into account password security for user initiated recovery or recovery of pervasive devices containing other types of media. Moreover, the system described in U.S. Patent Publication No. 2004/0188512 assumes that the device is administrator managed.
U.S. Pat. No. 6,870,797 is a transponder-based cartridge system that does not take into account password security for user initiated recovery or recovery of pervasive devices containing other types of media. Moreover, this reference does not address delta backups and is only used for controlling data cartridges.
It would be highly desirable to provide a computer/pervasive device user with the ability to post full or intermittent backups via the intermediary of RFID-based technology to a remote disconnected computer (e.g., a server).
The present invention provides an RFID-based solution for providing user-specified or automated data backup and recovery in a computer or computer-related device.
Particularly, an RFID technology-based detection system and method is provided that enables a computer/pervasive device user with the ability to post full and intermittent backups throughout a user defined period, e.g., 24 hour period, to a remote disconnected computer system, e.g., a server.
More particularly, the invention relates to a system, method and computer program product for backing up contents of a data storage device provided in a computing device. The system is an RFID-based system comprising: an RFID device provided in the computing device and adapted for receiving and sending RFID signals, and in response to receipt of an RFID signal, the device generating an activation signal representing an instruction to backup data storage device contents of the data storage device contents in response to receipt of an RFID signal; and, a control means responsive to the activation signal received from the RFID device for invoking logic to initiate a physical copying and transmission of contents of the data storage device to a remote storage device for full or incremental backed up storage therein. By applying GPS and RFID object movement can be detected and alerts triggered and data signals generated that invokes logic to yield both a disk or data backup and purge operation.
In addition, the system and method of the invention permits a full recovery of a drive in the event the drive is wiped clean without the need of boot-up software. This is achieved by inserting RFID technology that can grab requisite software to bootstrap the drive and enable a recovery from the remote system. This would be enabled within corporate sites, airports, specific and general locations, locally and globally. In addition to providing full restores, specific files could be restored per user request all with password protection and encryption.
In one embodiment, a data backup is initiated automatically upon detection of a triggering event.
In another embodiment of the invention, an RFID signal is initiated by a user that is remotely located from the computing device.
In a further embodiment of the invention, the computing device includes a satellite navigation receiver configured for receiving position determining signals from a satellite based navigation system and determining a position of the computer device; and, a means for comparing the determined position with a predetermined position, wherein a detected triggering event including a determination that a location of said computer device has changed relative to the predetermined position. By applying GPS and RFID, a location can be detected and wireless communication provided with instructions to establish data transfer, disk back-up, or recovery.
Advantageously, data transmissions using RIFD technology according to the invention can be used to send only delta changes or specific files based on user request or preset rules. Fortuitously, this removes the guess work out of creating a system backup and allows the user to focus on the work at hand and not be concerned about backups.
These and other objects, features and advantages of the present invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings, in which:
The invention provides for the physical backup of data stored on a media storage device that can be automatically initiated through an RFID Sense and Respond process or, alternatively, triggered by a user (e.g., an owner) of the computing device having the media storage unit(s) either via a server or by a satellite based (e.g., GPS) location detection of the device. The invention additionally provides for the physical restoration of data on a media storage device that can be automatically initiated through an RFID Sense and Respond process triggered by a user (e.g., owner) of the computing device having the media storage unit(s) either via a server or by a satellite based (e.g., GPS) location detection of the device.
Aspects of the invention will be described with reference to
The Sense and Respond RFID device 20 particularly includes an RFID Tag system including an RFID tag device, including an RFID transponder device 35, for receiving interrogation signals from a remote system 50 that includes an RFID interrogator device and/or like device adapted for communicating RFID and other signals, e.g., via antenna device 36. Included in system 50 includes an RFID transponder and/or interrogator device including a transceiver, decoder and antenna configured to emit a signal that activates the RFID tag so it can read data from and write data to the RFID transponder 35. While typically a passive device (i.e., RFID transponder 35 absorbs energy to power its circuitry from the received interrogation signals), the transponder may be configured to be a read-only or a read/write type and may have a battery or like power supply source (not shown). The RFID transponder device 35 may be fabricated as an ASIC on a single silicon chip including a receiver/transmitter and controller circuitry along with an associated attached memory device. The memory stores an identification code, or other data related to the particular computing device to which it corresponds. The transponder may alternately comprise a collection of integrated components: tag, antenna, logic for reader and controller, requisite software systems, etc.
The Sense and Respond RFID device 20 additionally includes a global positioning system (GPS) receiver device 25 for receiving satellite data signal transmissions via a suitable antenna device 26, e.g., GPS signals (not shown), and, as known in the art, includes processing functionality for determining the location of the computing related device 12 from the satellite data signal transmissions received. It is appreciated that receiver device 25 may comprise any satellite navigation system receiver device employed for receiving signals from three or more satellites implemented in satellite navigation systems such as GPS, GLONASS, and Galileo and like satellite-based transmission signals and for determining location or position coordinates (e.g., latitude and longitude) of the computing device 12. In the preferred embodiment, position coordinate data of the device 12 may be determined by processing in the receiver device 25 itself, or by the CPU device 40 coupled to the receiver 25.
Controlling operation of the Sense and Respond RFID device 20 generally and the satellite-based positioning receiver is a microcontroller device or CPU 40 having an associated memory for storing logic 45 (e.g., rules) implementing the functionality for RFID Sense and respond backup and recovery functionality as will be described in greater detail herein with respect to
In typical operation, in response to receiving an interrogation signal 75, the microcontroller or CPU 40 is enabled to perform control and data processing for the Sense and Respond RFID device 20 according to programmed logic 45. In one embodiment, transponder device 35 and may initially transmit an identification code and/or other data from its memory back to the remote interrogating system 50, or other transponder devices. This is performed in combination with software logic in combination with a Sensor/Actuator (used for external inputs and outputs) and is required to alert instructions to systems and devices to trigger events, such as processes to backup or purge data, or initiate other remote triggers to incite actions, thus delivering sense and respond scenarios. More particularly, as will be described in greater detail herein below, according to the invention, the RFID transponder 35 is further configured to send an “action” signal to another transponder or other devices to perform certain functions. In the context of the invention, an “action” signal is generated and communicated along signal lines 65a, . . . , 65c to execute a respective data backup operation of all data on connected hard disk drives 15a, . . . , 15c, respectively. Thus, for instance, as shown in
In the conceptual diagram depicting the operation of the Sense and Respond RFID Disk Backup and Recovery system 100 of
Data may be backed up or restored via one or more communications modalities. For instance, primary communication between the local or remote backup recovery server 150 and each device 110, 120 or 130 is via RFID signals transmitted/received via the RFID tag device 35; however,
Moreover, as would be known to skilled artisans, the inserted BIOS level Sense and Respond RFID module can further initiate system start up. That is, a system may be bootstrapped without preloaded software. Thus, if there is no operating system detected using the standard system, the system will be able to boot up and through RFID signals; there is provided enough logic to restore or build a functional drive on a computer.
As shown in
Likewise, as shown in
Further, as shown in
In a further embodiment, the RFID tag device implements logic for determining whether the user has requested or triggered a data restore operation regardless of whether the Operating system (O/S) of the host device is intact as shown in
Besides the types of alerts mentioned with respect to
Thus, it is within the scope of the invention that any detectable criteria or patterns may initiate a disk data backup or restore operation. That is, any given event that can be “sensed” by the system and initiate a “response” to either correct a situation or protect a resource, is contemplated. Other events include occurrences such as detected tampering, theft, vibrations, temperature changes, and even detection of human conversation and movement in proximity to the device, i.e., such events that can be sensed using the apparatus with responses signaled using RFID to invoke remote services in order to initiate data backup, recovery and purge drive processes. Additional criteria or patterns include: 1) implementation of user defined questions/answers; 2) detection of executing of password cracking software (storing process names); 3) detection of executing keystroke logging software; 4) detection of login spoofing; 4) detection of decryption attempts; and, detection of dictionary attacks, for instance.
Applying the technology of the invention to software logic, sense and response signals are used to initiate a disk backup/restoration wither with or without a purge based on system provided criteria. By applying GPS and RFID, object movement can be detected and alerts triggered and through data signals, logic can be invoked to yield a disk backup and data purge thus ensuring a compromised device has no recoverable or accessible data. The logic executed within such device 12 interprets transmitted or received signals and then triggers automated processes to yield data backup/restore or purge disk results.
The advantages of this invention over traditional backup and recovery systems include the ability to work in an “On Demand” fashion, without the end-user having to initiate, monitor or, have the media storage device physically connected to the backup system. In addition, via the RFID based Sensed and respond backup and recovery functionality, a user can restore the drive remotely, e.g., if the user is traveling and the disk needs to be recovered.
This invention could be used to restore a disk in the event the system is compromised and data is caused to be physically deleted by an associated secure disk purge system such as described in applicants' related co-pending U.S. Ser. No.______ [Attorney Docket No. YOR920050473US 1 (D#19248)]. In an embodiment of the invention, BIOS level detection is tied with RFID technology such that a password is requested to initiate a data restore.
This system may additionally be used to deploy software in the event that a standard Internet connection (such as a LAN connection) could not be established on a system due to unavailable software. This invention would also help streamline system setups without the need to load base software directly, e.g., through installed CD ROM devices and other peripherals.
The present invention has been described with reference to diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each diagram can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified herein.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the functions specified herein.
The computer program instructions may also be loaded onto a computer-readable or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified herein.
While the invention has been particularly shown and described with respect to illustrative and preformed embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention which should be limited only by the scope of the appended claims.