Many Automated Teller Machines (ATMs) are located outdoors for ease of customer access; some outdoor ATMs are also drive thru accessible. A drive-thru ATM permits a customer to operate the ATMs while remaining in his/her vehicle.
Outdoor ATMs are convenient, but they have unique security concerns which indoor ATMs do not. For example, a determined thief may attempt to steal the whole ATM, take it to a remote location, and blast the safe open. Thieves have become increasingly brazen in their attempts to access the ATMs' safes. Some thieves have even wrapped chains around the ATMs, affixed the other ends of the chains to their vehicles, and dragged the ATMs off.
Most drive-thru ATMs are secured to a manufactured island that is bolted to a concrete slab. Some are also surrounded by two to four concrete posts designed to prevent the ATMs from being rammed by vehicles. An ATM's safe is located at the bottom of the ATM and is manufactured with a combination of steel and concrete; the floor of the ATM's safe is bolted to the island and sometimes bolted to both the island the concrete slab, which the island is also bolted to.
Yet, this structural arrangement is still not sufficient enough to withstand the force that most vehicles can generate when a safe is ripped from the island using heavy chains or rammed at a substantial speed. In fact, a large consumer truck may generate enough force to pull the concrete slab from the ground when the slab is not of sufficient thickness, size, and set at a sufficient depth below the ground. Furthermore, the safe bolts are easily ripped from the island-slab combination even when the slab is of sufficient thickness and size.
In various embodiments, a secure safe apparatus and system are provided.
According to an aspect, a secure safe apparatus is provided. The apparatus comprises a base and a bollard. The bollard comprises a first portion and a second portion manufactured as a single vertical member. The first portion is of sufficient length to extend below a bottom surface of the base into ground at a site where the secure safe apparatus is set. The second portion is of sufficient length to extend through a thickness of the base and above a top surface of the base. The second portion is adapted to be inserted through an aperture in a floor of a safe and affixed to an interior beam manufactured within an inside of the safe to affix the second portion to the beam.
As will be described more completely herein and below, system 100 provides a force-resistant safe moored to the ground and apparatus. Significant force is required to rip the safe from the ground and apparatus. Conventional vehicles are incapable of generating enough force to pull the safe from system 100, such that trying to drag the safe off its moorings or ramming the safe would require commercial grade earth moving equipment. Any thief attempting to use such equipment required to rip the safe from system 100 would be conspicuous. As a result, system 100 eliminates concerns about safe theft making such theft impractical.
System 100 comprises a secure safe apparatus 110 and an ATM 120. The ATM 120 is set and affixed to a secure safe apparatus 110 in the manners discussed herein and below. ATM 120 comprises a safe 125 (shown more clearly in
Secure safe apparatus 110 may also be referred to as “island 110.”
Island 110 comprises a base 111, vehicle deterrent posts 112, and a novel bollard 113. Bollard 113 is surrounded by vehicle deterrent posts 112 and oriented to be closer to one set of posts 112 (left set of two posts 112 in
Island 100 may be manufactured with a recess in base 111 at a location within base 111 that corresponds to bollard 113 in
Moreover, bollard 113 maybe bolted to sides of a recess in base 111 before concrete is poured into recess and cured.
Bollard 113 is comprised of a combination of concrete and a rebar mesh (metal/steel) having a thickness of at least 100 mm2 and a length of at least 730 mm. Bollard 113 comprises a vertical-squared member manufactured as a combination of concrete and rebar.
Island 100 is set in ground on top of a concrete slab or partially cured within the concrete slab at the desired site.
Once island 100 is set with bollard 113 at a desired site, bollard 113 comprises a first portion (that extends through the base 111 and into the ground below the island 100 for at least 150 mm) and a second portion that vertically extends upward from a top surface of base 111 for a distance approximately equal to the difference between 730 mm (length of bollard 113) and a sum of 150 mm (depth below a bottom surface of bollard 113) and a manufactured thickness of base 111. A vertical height of the second portion comports with and is slightly less than a height of the inside of the ATM safe 125 being affixed to bollard 113 at a desired site.
Also, visible in
Wedge 130-1 may be cured at the site when concrete column 130 is cured and the safe 125 is affixed to bollard 113, such that wedge 130-1 and concrete column 130 are one solid cured piece of concrete with or without rebar reinforcement.
Optionally, a small depth within island base 111 and a depth of at least a thickness of the safe's floor is left around the second portion of bollard 113 before the safe 125 is placed at the desired site and this small depth, thickness of safe's floor, and wedge 130-1 are filled with concrete poured and cured after the safe 125 is aligned at the desired site.
Second portion of bollard 113 is bolted with two steel bolts 140 into a structural support beam 128 inside of safe 125. Beam 128 is welded and manufactured inside of safe 125 and extends from and through the safe's floor through the safe's ceiling.
A front surface of the second portion of bollard 113 is visible in
An inside 127 of safe 125 is visible from
Aperture 129 is more clearly shown and is adapted to receive the second portion of bollard 113. Bolts 140 are removed before placing the second portion of bollard 113 through aperture 129. Bolts 140 are then assembled through bollard 113, through beam 128, and affixed by nuts 141.
In an embodiment, aperture 129 is manufactured through a side of the safe's housing (body) extending through the floor for a height of the second portion of bollard 113 but not through the safe's ceiling. This permits the safe 125 to be slid into place around the second portion of bollard 113; rather than lifting or hoisting safe 125 over the second portion of bollard 113 at the site.
In an embodiment, bolts 140 are 16 mm in diameter by 175 mm in length (M16×175).
It is noted that no fasteners are visible or protrude from an exterior of the safe's body with system 100. The safe 125 may also still use four security bolts through the floor of the safe 125 into island 110. However, bollard 113 acts to counter any applied force applied to the top of the safe's body, such forces that could help leverage the safe from existing floor security bolts, so that bollard 113 prevents any leveraging that could traditionally be used to free the safe.
Dimensions or a size of bollard 113 may be increased for added security as well as the depth of the first portion of bollard 113 that extends into the ground and is surrounded by cured concrete 130. This will enhance the security of the safe 125. Similarly, dimensions or a size of bollard 113 may be decreased for easier integration and installation of a safe 125 to island 110.
System 100 makes it difficult and impractical for thieves to use non-commercial grade vehicles to separate a safe 125 from its moorings on an island 110. Safes designed for drive-thru ATMs have cash slots on top of their housing making it difficult to access by thieves. As a result, thieves have attempted to remove the safe from the ATMs for transport to other locations where the safes can be blasted or damaged otherwise to open. These types of safes are referred to as “slim safes.” Slim safes are also smaller and lighter than safes of indoor ATMs, so they have been prone to rip and carry types of theft. The system 100 provides a mechanism that thwarts these types of theft by making it impractical and unlikely that a non-commercial grade vehicle or other known theft mechanisms can be used as a tool by thieves to rip the safes 125 from system 100.
It is noted that safe 125 may be constructed of heavy-duty steel having a shell that is filled with concrete, concrete and rebar, or concrete and a mesh of materials cured within the concrete. This is done during manufacture of the safe 125 and provides added theft deterrence and blast resistance to the safe's housing. Beam 128 is manufactured with safe 125 in the same manner, such that beam 128 is an integral component of safe 125.
In an embodiment, safe shell or safe body comprises a first fill material that is lighter than a second fill material. The second fill is insert into portions of the shell associated with the top, the bottom, and the beam 128. This provides the necessary hardness and structural support to the beam 128 and the portions of the safe body that are integrally connected to the beam 128, while allowing a overall weight of safe 125 to be reduced because the lighter fill is used with the front, back, and sides of the safe 125. This makes installation and removal of the safe 125 easier by providing a lighter safe 125. Moreover, this does not reduce the security of the safe 125 because the safe 125 still cannot be removed from island 110 with brute force. Authorized individuals that are authorized to install and remove safe 125 are fully aware that an inside 127 of safe 125 comprises beam 128 and are able to open safe door 126 for access to beam 128, once beam 128 is detached from bollard 113, safe 125 is easily removed.
Bollard 113 is hidden on an inside 127 of safe 125, such that thieves are unaware of its presence. As a result, thieves that plan to remove safe 125 from island 110 will not bring the appropriate tools to generate a sufficient force to separate safe 125 from island 110. However, authorized individual will be fully aware of the attachment of bollard 113 to beam 128 and will be able to open safe door 126, detach bollard 113 from beam 128 and easily remove safe 125 from island 113.
In an embodiment, a shell associated with the safe body is filled with Aircrete® instead of concrete, providing a lighter safe 125.
In an embodiment, a shell associated with the safe body is filled with recycled waste materials used as components to create a concrete mixture providing an environmentally friendly fill, which may also be less expensive than traditional concrete and concrete with rebar mixtures.
In an embodiment, beam 128 does not include or share the shell of the of remaining portions of the safe body. In an embodiment, beam 128 is a Stainless Steel-H beam sized to extend from the floor of the safe 125 to the roof of the safe 125 and/or manufactured so as to be an integral component of a portion of the safe floor and a portion of the safe roof.
The above description is illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of embodiments should therefore be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
In the foregoing description of the embodiments, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting that the claimed embodiments have more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Description of the Embodiments, with each claim standing on its own as a separate exemplary embodiment.