Secure service chaining

Information

  • Patent Grant
  • 10798187
  • Patent Number
    10,798,187
  • Date Filed
    Monday, June 19, 2017
    7 years ago
  • Date Issued
    Tuesday, October 6, 2020
    4 years ago
Abstract
In one embodiment, secure service chaining can be implemented efficiently for content delivery systems. An orchestrator can determine a service chain for processing a request from a client for content. The orchestrator can determine a capability identifying nodes of the service chain. The orchestrator can then transmit, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain. The nodes of the service chain can verify the capability and carry out the service chain. Service functions can be applied to the traffic flow associated with delivering the content to the user.
Description
TECHNICAL FIELD

This disclosure relates in general to the field of communications and, more particularly, to secure service chaining using Hypertext Transfer Protocol (HTTP).


BACKGROUND

In computer networking, network administrators are often concerned with how to best route traffic flows from one end point to another end point across a network. When provisioning a route for a traffic flow, administrators may implement policies to ensure that certain service functions are applied to the packet or the traffic flow as it traverses across the network. Service functions can provide security, wide area network (WAN) acceleration, and load balancing. These service functions can be implemented at various points in the network infrastructure, such as the WAN, data center, campus, etc. Network elements providing these service functions are generally referred to as “service nodes.”





BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying FIGURES, wherein like reference numerals represent like parts, in which:



FIG. 1 illustrates a service chain having a plurality of nodes performing respective service functions, according to some embodiments of the disclosure;



FIG. 2 illustrates an exemplary HTTP request and response;



FIG. 3 illustrates an exemplary HTTP request and HTTP redirect response for implementing secure service chaining, according to some embodiments of the disclosure;



FIG. 4 illustrates functions of an exemplary orchestrator and an exemplary node in the service chain, according to some embodiments of the disclosure;



FIG. 5 depicts a flow diagram illustrating a method for implementing secure service chaining, according to some embodiments of the disclosure;



FIG. 6 depicts a flow diagram illustrating a method for carrying out secure service chaining, according to some embodiments of the disclosure; and



FIG. 7 depicts a block diagram illustrating an exemplary data processing system that may be used to implement the functionality of secure service chaining, according to some embodiments of the disclosure.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview


Secure service chaining can be implemented efficiently for content delivery systems. An orchestrator can determine a service chain for processing a request from a client for content. The orchestrator can determine a capability identifying nodes of the service chain. The orchestrator can then transmit, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain.


The capability can be digitally signed using cryptography for providing security. The nodes of the service chain can verify the capability, i.e., a signature of the capability, and carry out the service chain. Nodes of the service chain can apply service functions to the traffic flow associated with delivering the content to the user, in a manner specified by the capability.


One aspect of the disclosure relates to computer-implemented methods for secure service chaining using HTTP.


In other aspects, systems for implementing the methods described herein are provided. Moreover, a computer program for carrying out the methods described herein, as well as a non-transitory computer-readable storage-medium storing the computer program are provided. A computer program may, for example, be downloaded (updated) to the existing network devices and systems (e.g. to the existing routers, switches, various control nodes and other network elements, etc.) or be stored upon manufacturing of these devices and systems.


In other aspects, apparatuses comprising means for carrying out one or more of the method steps are envisioned by the disclosure.


As will be appreciated by one skilled in the art, aspects of the disclosure, in particular the functionalities related to service chaining using HTTP, may be embodied as a system, a method or a computer program product. Accordingly, aspects of the disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Functions described in this disclosure may be implemented as an algorithm executed by a processor, e.g., a microprocessor, of a computer. Furthermore, aspects of the disclosure may take the form of a computer program product embodied in one or more computer-readable medium(s) having computer-readable program code embodied, e.g., stored, thereon.


Example Embodiments

Service Chaining and its Challenges


To accommodate agile networking and flexible provisioning of network nodes in the network, service function chains (SFC) can be used to ensure an ordered set of service functions (SF) to be applied to packets and/or frames of a traffic flow. The ability to implement SFCs is referred to as service chaining. SFCs provides a method for deploying SFs in a way that enables dynamic ordering and topological independence of those SFs. A service function chain can define an ordered set of SFs that is applied to packets and/or frames of a traffic flow, where the ordered set of service functions can be selected as a result of classification. The implied order may not be a linear progression as the architecture allows for nodes that copy to more than one branch. The term service chain is often used as shorthand for service function chain.



FIG. 1 illustrates a service chain having a plurality of service nodes, such as nodes 102_1, 102_2, . . . 102_N. The example here shows N nodes, and N can be two or more. The nodes 102_1, 102_2, . . . 102_N can performing respective service functions, according to some embodiments of the disclosure. At each node, a service function can be applied to the traffic flow, where a given service function can be responsible for specific treatment of received packets. A service function can act at the network layer or other Open Systems Interconnection (OSI) layers (e.g., application layer, presentation layer, session layer, transport layer, data link layer, and physical link layer).


A service function can be a virtual instance or be embedded in a physical network element. Multiple service functions can be embedded in the same network element. Multiple instances of the service function can be enabled in the same administrative SFC-enabled domain. A non-exhaustive list of SFs includes: firewalls, WAN and application acceleration, Deep Packet Inspection (DPI), server load balancers (SLBs), NAT44, NAT64, HOST_ID injection, HTTP Header Enrichment functions, TCP optimizer, application delivery controllers (ADCs) etc. For some content delivery applications, service functions can include caching, transcoding, advertisement or content modification/insertion, etc.


A service node, such as any one of the nodes 102_1, 102_2, . . . 102_N can be a physical network element (or a virtual element embedded on a physical network element) that hosts one or more SFs and has one or more network locators associated with it for reachability and service delivery. In many standardization documents, “service functions” can refer to the service nodes described herein as having one or more service functions hosted thereon.


Generally speaking, service chaining can guide network traffic associated with a client or user entity (e.g., a home computer or a mobile phone) through a series of processing entities, e.g., nodes 102_1, 102_2, . . . 102_N, that perform various service functions on the network traffic. In the field of content delivery, the client consumes content, e.g., audio or video (e.g., from Netflix, YouTube, Spotify, etc.), and the network traffic would transport the audio or video from a content source to the user entity. Typically, the communications protocol of choice for downloading content is Hypertext Transfer Protocol (HTTP) or HTTP Secure (HTTPS). FIG. 2 illustrates an exemplary HTTP request and response. A client 202 can transmit an HTTP request 210 requesting content from server 204. Server 204 can provide the content in an HTTP response 212 to client 202.


Often, the content may have to be processed before delivery to the user. The processing can include: transcoding to overcome bandwidth limitations, insertion of logos, watermarking, augmenting content with metadata, applying digital rights management functionalities, etc. Such content processing can be implemented by nodes in a service chain. In traditional service chaining, the first node of the service chain is responsible for labelling the incoming traffic flow so that the traffic flow follows the rest of the chain. Requiring an “anchor” such as the first node of the service chain to perform such function be burdensome. Moreover, if service chain components, e.g., service nodes, have to perform specific functions for specific flows, there is an additional level of signaling from the service orchestrator to the service nodes. It is a challenge to implement service chaining for content delivery which utilizes HTTP or HTTPS that is efficient and flexible.


Redirect Message to the Client with Capability


To address some of the issues mentioned above, a unique mechanism can be provided to implement and carry out service chaining for content delivery. Specifically, the mechanism utilizes a redirect message (e.g., HTTP redirect message) to cause the client to refer to a start of a service chain. Moreover, the redirect message has a capability, which the client and any one of the nodes in the service chain can use for implementing and/or carrying out the service chain. For a content distribution network that aims to process traffic flows with service chains, the network can cause a client to receive a redirect message that identifies a service chain and its parameters. Advantageously, the redirect mechanism avoids additional overhead otherwise needed for signaling and orchestrating the service chain since the redirect has all the information that the client and the nodes require for implementing and/or carrying out the service chain. Moreover, the capability included in the redirect message can be signed, thereby providing security for the service chain and confining the client to the content that the client is authorized to receive. The following passages elaborates on the details of such mechanism.


For illustration, various examples being described herein consider service chains comprising of one or more nodes (e.g., service functions implemented on service nodes) placed in a data path between a client (e.g., a user entity) and a content producer. For instance, the nodes can perform service functions associated with the content being delivered to the client. These service chains are often confined to a data center. In some cases, these service chains can also apply to clients fetching content from content providers through content delivery networks (CDNs), possibly hierarchies of CDNs (some of which may cache content using service chains). While examples are described with respect to HTTP, it is understood that the examples can be applicable for HTTPS or other similar application level web-based communication protocols used for content delivery. Furthermore, many examples describe a client-server relationship. It is understood that the examples can be applicable to other kinds of relationships where a user entity receives content from a content producer.



FIG. 3 illustrates an exemplary HTTP request and HTTP redirect response for implementing secure service chaining, according to some embodiments of the disclosure. Similar to the mechanism seen in FIG. 2, a client 202 can transmit a HTTP request 210 to server 204 for content. For instance, the HTTP request 210 can request for content to be delivered to client 202. When a client (e.g., user entity) sends the HTTP request 210 specifying server 204, a uniform resource locator in the HTTP request 210 can cause the HTTP request 210 or a derivation thereof to be delivered at an orchestrator 302 for implementing a service chain 306. The orchestrator 302 can decide on the service chain 306 and parameters for the nodes of the service chain 306 (e.g., service chain entities and service functions to be applied by said entities). The service chain 306 having nodes 102_1, 102_2, . . . 102_N is provided as an illustration only, and it is envisioned by the disclosure that other service chains 306 can be implemented. The orchestrator 302 can encode the decided service chain and parameters in a string that is then digitally signed by the orchestrator 302. This signed string constitutes a “capability” or “signed capability”, which can identify nodes of the service chain and service functions to be applied on the content. The capability is akin to a theater ticket because the capability is unforgeable (using cryptography), and the capability can be verified and processed by the nodes in the service chain 306. The orchestrator 302 returns a redirect message 304 to the client 202 having the capability. For instance, the redirect message can include a redirect uniform resource locator (URL) which can refer to or redirect the request for content to the start (e.g., first node, e.g., service node 102_1) of the service chain 306 and parameters for carrying out the service chain 306. Each node in the service chain 306 (including the aforementioned first node) can verify the capability for correctness and uses the parameters embedded in it to direct its actions. Service nodes can also uses the capability to construct a URL for forwarding the traffic flow to the next node in the service chain.



FIG. 4 illustrates functions of an exemplary orchestrator and an exemplary node in the service chain, according to some embodiments of the disclosure. The orchestrator 302 can include a service chain orchestrator part 402, a capability generator part 404, and a signature part 406. An exemplary service node 102_1 illustrates possible parts of any one of the nodes in the service chain processing traffic flow for delivering the content to the client 202. The node 102_1 can include signature verification part 412 and service function part 414.


The service chain orchestrator part 402 can determine the service chain for processing a request from a client for content and parameters associated with the service chain. For instance, the service chain orchestrator part 402 can determine an appropriate service chain based on various parameters associated with the request. The parameters can include one or more of the following: parameter(s) associated with the client, parameter(s) associated with the content being requested, parameter(s) associated with the content provider providing the content, and parameter(s) associated with a network delivering the content, etc.


For illustration, suppose the orchestrator 302 (0 for orchestrator), e.g., service chain orchestrator part 302, determines/decides for the client 202 (C for client) to have traffic through a service chain of nodes P, Q, and R. Any one of these nodes can be the content provider for the content of interest. One or more of these nodes can provide a service function, such as caching, transcoding, ad insertion, etc., on the traffic flow associated with the delivery of the content of interest to C.


O 302 can create a redirect message 304 that can implement the service chain, and subsequently send the redirect message 304 to C 202. The redirect message 304 can redirect C to a first node of the service chain, e.g., P or node 102_1 (as illustrated by FIG. 4). To generate the redirect message, the capability generator part 404 can determine the capability that identifies the nodes of the service chain and the parameters. To implement the service chain with the redirect message 304, a URL of the redirect message 304 can encode the capability and redirect the request to the first node of the service chain.


For instance, e.g., the redirect URL requests C to fetch the content from P, whose domain name or Internet Protocol (IP) address is, say, “name-of-P.com”. Furthermore, the URL of the redirect message 304 generated by the capability generator part 404 can include additional information/parameters encoded in that URL. When configured with the proper information, the URL of the redirect message 304 can serve as the capability that can be used to carry out the service chain. An exemplary URL for the redirect message 304 can include: //name-of-P.com/<M>/name-of-content/<S>. The parts of the exemplary URL thus includes one or more of the following: the locator for P “https://name-of-P.com”, a message <M>, name of the content being requested, and a signature <S>.


The message <M> can include information/parameters for carrying out the service chain by the nodes of the service chain. For instance, the message can be intended for P, Q, and/or R. The message can be usable by P, Q, and/or R for directing actions to be performed by nodes P, Q, and/or R. The message <M> can include a service chain identifier (CID) identifying the service chain and/or locators for the nodes in the service chain. For instance, the message <m> can include a list of host addresses and port numbers for nodes of the service chain, e.g., address-of-Q, port-of-Q, address-of-R, and port-of-R. Note that the address/locator of P is already implied by the name-of-P.com in the URL of the redirect message 304. Also note that name-of-P.com could also be an IP address and a port number: 192.168.1.10:789. Accordingly, the nodes P, Q, and/or R, can use the message <M> to construct further URLs for directing the traffic flow to the next node in the service chain.


The signature <S> is the signature placed by O 302, and the signature can be verified by nodes of the service chain be used by P, Q and R, to verify <M> is genuine. The orchestrator 302 can include a signature part 406 for signing the capability generated by capability generator part 404. The capability can include the message <M> and the name of the content. Following the same example, the signature <S> can be created by the signature part 406 by taking the whole URL up to (but not including)/<S>, which can include the CID, the names/addresses of P, Q, and R, and the name of the content being requested, and computing a secure hash H of that (e.g., using the SHA256 algorithm) and encrypting H with O's secret key. The redirect message 304 would include the signature, and provides a signed capability for client 202 to use the service chain and obtain the content requested.


The resulting signature <S> can be used by nodes P, Q, and R to verify that the traffic flow through the service chain is genuine and authorized to request service functions to be applied to the traffic flow. For instance, signature verification part 412 of exemplary node 102_1 can verify the signature <S> to make sure the capability is genuine. All nodes P, Q, and R know O's public key, so that the nodes receiving the signed capability can take the URL and compute the hash H. The nodes can also decrypt <S> with O's public key. If the result is H, then the signature is valid and the URL will be trusted by P, Q, and R. These nodes can trust the capability encoded in the URL because they trust O 302 and the nodes can ascertain that that O must have signed the URL (with its private key). Once the signature is verified, for example, the service function part 414 of exemplary node 102_1 can apply an appropriate service function, e.g., based on the capability. The service function part 414 can also utilize the capability to direct the traffic flow to a next node according to the service chain identified by the capability. Other nodes in the service chain can include the signature verification part 412 and service function part 414 as illustrated by node 102_1.


The nodes such as the one illustrated by node 102_1 can use the capability to forward traffic using protocols other than HTTP/HTTPS. No matter the communication protocol, the nodes are configured to forward the capability for verification by downstream nodes in the service chain. Generally speaking, the nodes in the service chain are equipped with signature verification part 412 and service function part 414 for carrying out secure service chaining.


Besides the URL example described above for encoding the capability, variations can be implemented to achieve a similar function. The message <M> and signature <S> can be placed in the body of the messages that O 302 sends to C 202 and C 202 sends to P, instead of encoding the message <M> and the signature <S> in the URL of redirect message 304.


The capability may be encoded in the URL itself in the redirect message 304, or the capability can be communicated in another part of the redirect message 304, such as a header of the redirect message 304. The client 202 can treat and store the capability as a cookie. In some cases, capabilities may include an indirection to a place that supplies the information for the service chain. For instance, a capability can include an identifier of a network service header (NSH) or an identifier of a data element which has the information for the service chain. The identifier can point the client 202 to a different place to obtain the information for the service chain. In some cases, the capability can be encoded inside the Internet Engineering Task Force (IETF) SFC header or service chain selection (in place of utilizing HTTP/HTTPS to communicate the capability).


In some cases, the client 202 may receive a capability, e.g., a URL, in redirect message 304 that includes a locator for a first node of the service chain and an identifier for a further capability that the first node of the service chain then fetches (or automatically receives). The client 202 can use the locator for the first node to direct the traffic flow for requesting content to the first node of the service chain, and that identifier for the further capability enables the first node of the service chain to implement and carry out the service chain. That further capability to be received by the first node of the service chain can identify further nodes of the service chain downstream from the first node.


Capabilities may include a description of the service chain as a list of URL (prefixes), a list of IP addresses (or IP address/protocol/port triples). For instance, a capability may include addresses and port numbers of the nodes of the service chain. In another instance, a capability can include a service chain identifier identifying the service chain, and addresses and port numbers of the nodes of the service chain. In some cases, the capability being included or referenced in the redirect message (e.g., the HTTP redirect message) may further include other information besides IP addresses and port numbers, such as metadata for the service chain. Exemplary metadata includes subscriber identifier (not the client's or sender's IP address), and other header fields.


Capabilities can include a “valid from/valid until” field that prevents a capability from being reused at a later date/time without authorization. The capability can identify a time period during which the capability is valid within the service chain.


The redirect using a signed capability can additionally be interpreted by a client 204 as verification that a first node in the service chain is trusted by the content provider doing the redirect (e.g., if Netflix signs the redirect and the redirect points to Akamai, the user may conclude that Akamai is a trusted representative of Netflix).


Exemplary Methods



FIG. 5 depicts a flow diagram illustrating a method for implementing secure service chaining, according to some embodiments of the disclosure. In 502, an orchestrator can determine a service chain for processing a request from a client for content. In 504, the orchestrator can determine a capability identifying nodes of the service chain. In 506, the orchestrator can transmit, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain. Any one or more parts shown for orchestrator 302 in FIG. 3 can implement functionalities associated with implementing secure service chaining.



FIG. 6 depicts a flow diagram illustrating a method for carrying out secure service chaining, according to some embodiments of the disclosure. In 602, a node in the service chain can receive a capability associated with a traffic flow. In 604, the node can verify the capability. For instance, a cryptographic signature can be used to verify the authenticity of the capability. In 606, the node can apply a service function to the traffic flow, e.g., upon verifying that the signature is genuine. The service function to be applied can be determined based on the parameters in the capability. In 606, the node can forward the capability and the traffic flow to a next node in the service chain, as specified by parameters in the capability. Any one or more nodes 102_1, 102_2, . . . 102_N in FIG. 3 can implement functionalities associated with carrying out secure service chaining.


Exemplary System



FIG. 7 depicts a block diagram illustrating an exemplary data processing system 700 (sometimes referred herein as a “node”) that may be used to implement the functionality associated with secure service chaining, according to some embodiments of the disclosure. For instance, components seen in FIGS. 3 and 4, may have one or more of the components of the data processing system 700 or their functionalities may be implemented with one or more components of data processing system 700.


As shown in FIG. 7, the data processing system 700 may include at least one processor 702 coupled to memory elements 704 through a system bus 706. As such, the data processing system may store program code within memory elements 704. Further, the processor 702 may execute the program code accessed from the memory elements 704 via a system bus 706. In one aspect, the data processing system may be implemented as a computer that is suitable for storing and/or executing program code. It should be appreciated, however, that the data processing system 700 may be implemented in the form of any system including a processor and a memory that is capable of performing the functions described within this Specification.


The memory elements 704 may include one or more physical memory devices such as, for example, local memory 708 and one or more bulk storage devices 710. The local memory may refer to random access memory or other non-persistent memory device(s) generally used during actual execution of the program code. A bulk storage device may be implemented as a hard drive or other persistent data storage device. The data processing system 700 may also include one or more cache memories (not shown) that provide temporary storage of at least some program code in order to reduce the number of times program code must be retrieved from the bulk storage device 710 during execution.


Input/output (I/O) devices depicted as an input device 712 and an output device 714 optionally can be coupled to the data processing system. Examples of input devices may include, but are not limited to, a keyboard, a pointing device such as a mouse, or the like. Examples of output devices may include, but are not limited to, a monitor or a display, speakers, or the like. Input and/or output devices may be coupled to the data processing system either directly or through intervening I/O controllers.


In an embodiment, the input and the output devices may be implemented as a combined input/output device (illustrated in FIG. 7 with a dashed line surrounding the input device 712 and the output device 714). An example of such a combined device is a touch sensitive display, also sometimes referred to as a “touch screen display” or simply “touch screen”. In such an embodiment, input to the device may be provided by a movement of a physical object, such as e.g. a stylus or a finger of a user, on or near the touch screen display.


A network adapter 716 may also be coupled to the data processing system to enable it to become coupled to other systems, computer systems, remote network devices, and/or remote storage devices through intervening private or public networks. The network adapter may comprise a data receiver for receiving data that is transmitted by said systems, devices and/or networks to the data processing system 700, and a data transmitter for transmitting data from the data processing system 700 to said systems, devices and/or networks. Modems, cable modems, and Ethernet cards are examples of different types of network adapter that may be used with the data processing system 700.


As pictured in FIG. 7, the memory elements 704 may store an application 718. In various embodiments, the application 718 may be stored in the local memory 708, the one or more bulk storage devices 710, or apart from the local memory and the bulk storage devices. It should be appreciated that the data processing system 700 may further execute an operating system (not shown in FIG. 7) that can facilitate execution of the application 718. The application 718, being implemented in the form of executable program code, can be executed by the data processing system 700, e.g., by the processor 702. Responsive to executing the application, the data processing system 700 may be configured to perform one or more operations or method steps described herein.


Persons skilled in the art will recognize that while the elements 702-718 are shown in FIG. 7 as separate elements, in other embodiments their functionality could be implemented in lesser number of individual elements or distributed over a larger number of components.


Examples

Example 1 is a method for service chaining, the method comprising: determining a service chain for processing a request from a client for content; determining a capability identifying nodes of the service chain; and transmitting, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain.


In Example 2, the method in Example 1 can optionally include: signing the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.


In Example 3, the method in Example 1 or 2 can optionally include the redirect message having the capability comprising a message to be processed by the service chain, name of the content, and a signature of the message and the name of the content.


In Example 4, the method in any one of Examples 1-3 can optionally include the capability of the redirect message comprising addresses and port numbers of the nodes of the service chain.


In Example 5, the method in any one of Examples 1-4 can optionally include the capability of the redirect message comprising a service chain identifier identifying the service chain, and addresses and port numbers of the nodes of the service chain.


In Example 6, the method in any one of Examples 1-5 can optionally include the capability of the redirect message comprising an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.


In Example 7, the method in any one of Examples 1-6 can optionally include the capability identifying a time period during which the capability is valid within the service chain.


Example 8 is an orchestrator for service chaining, the orchestrator comprising: at least one memory element having instructions stored thereon; and at least one processor coupled to the at least one memory element and configured to execute the instructions to cause the orchestrator to perform operations including: determining a service chain for processing a request from a client for content; determining a capability identifying nodes of the service chain; and transmitting, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain.


In Example 9, the orchestrator of Example 8 can optionally include the operations further including: signing the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.


In Example 10, the orchestrator of Example 8 or 9 can optionally include the redirect message having the capability comprising a message to be processed by the service chain, name of the content, and a signature of the message and the name of the content.


In Example 11, the orchestrator of any one of Examples 8-10 can optionally include the capability of the redirect message comprising addresses and port numbers of the nodes of the service chain.


In Example 12, the orchestrator of any one of Examples 8-11 can optionally include the capability of the redirect message comprising a service chain identifier identifying the service chain, and addresses and port numbers of the nodes of the service chain.


In Example 13, the orchestrator of any one of Examples 8-12 can optionally include the capability of the redirect message comprising an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.


In Example 14, the orchestrator of any one of Examples 8-13 can optionally include the capability identifying a time period during which the capability is valid within the service chain.


Example 15 has one or more computer-readable non-transitory media comprising one or more instructions for service chaining, that when executed on a processor configure the processor to: determine a service chain for processing a request from a client for content; determine a capability identifying nodes of the service chain; and transmit, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain.


In Example 16, the one or more computer-readable non-transitory media in Example 15 can optionally include wherein the instructions, that when executed on the processor, further configuring the processor to: sign the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.


In Example 17, the one or more computer-readable non-transitory media of Example 15 or 16 can optionally include the redirect message having the capability comprising a message to be processed by the service chain, name of the content, and a signature of the message and the name of the content.


In Example 18, the one or more computer-readable non-transitory media of any one of Examples 15-17 can optionally include the capability of the redirect message comprising one or more of the following: (1) a service chain identifier identifying the service chain, and (2) addresses and port numbers of the nodes of the service chain.


In Example 19, the one or more computer-readable non-transitory media of any one of Examples 15-18 can optionally include the capability of the redirect message comprising an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.


In Example 20, the one or more computer-readable non-transitory media of any one of Examples 15-19 can optionally include the capability identifying a time period during which the capability is valid within the service chain.


Example 21 is an apparatus comprising means for implementing and/or carrying out the methods in any one of Examples 1-7.


Additional Variations and Implementations

Within the context of the disclosure, a network used herein represents a series of points, nodes, or network elements of interconnected communication paths for receiving and transmitting packets of information that propagate through a communication system. A network offers communicative interface between sources and/or hosts, and may be any local area network (LAN), wireless local area network (WLAN), metropolitan area network (MAN), Intranet, Extranet, Internet, WAN, virtual private network (VPN), or any other appropriate architecture or system that facilitates communications in a network environment depending on the network topology. A network can comprise any number of hardware or software elements coupled to (and in communication with) each other through a communications medium.


In one particular instance, the architecture of the present disclosure can be associated with a service provider deployment. In other examples, the architecture of the present disclosure would be equally applicable to other communication environments, such as an enterprise WAN deployment, The architecture of the present disclosure may include a configuration capable of transmission control protocol/internet protocol (TCP/IP) communications for the transmission and/or reception of packets in a network.


As used herein in this Specification, the term ‘node’ or ‘network element’ is meant to encompass any of the aforementioned elements, as well as servers (physical or virtually implemented on physical hardware), machines (physical or virtually implemented on physical hardware), end user devices, routers, switches, cable boxes, gateways, bridges, load balancers, firewalls, inline service nodes, proxies, processors, modules, or any other suitable device, component, element, proprietary appliance, or object operable to exchange, receive, and transmit information in a network environment. These network elements may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the NSH features/operations thereof. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information.


In one implementation, various nodes or network elements may include software to achieve (or to foster) the functions discussed herein for providing service chaining related features/functions where the software is executed on one or more processors to carry out the functions. This could include the implementation of instances of parts seen in FIG. 4, and/or any other suitable element that would foster the activities discussed herein. Additionally, each of these elements can have an internal structure (e.g., a processor, a memory element, etc.) to facilitate some of the operations described herein. In other embodiments, these functions may be executed externally to these elements, or included in some other network element to achieve the intended functionality. Alternatively, these nodes may include software (or reciprocating software) that can coordinate with other network elements in order to achieve the functions described herein. In still other embodiments, one or several devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.


In certain example implementations, the service chaining related functions outlined herein may be implemented by logic encoded in one or more non-transitory, tangible media (e.g., embedded logic provided in an application specific integrated circuit [ASIC], digital signal processor [DSP] instructions, software [potentially inclusive of object code and source code] to be executed by one or more processors, or other similar machine, etc.). In some of these instances, one or more memory elements can store data used for the operations described herein. This includes the memory element being able to store instructions (e.g., software, code, etc.) that are executed to carry out the activities described in this Specification. The memory element is further configured to store databases or metadata disclosed herein. The processor can execute any type of instructions associated with the data to achieve the operations detailed herein in this Specification. In one example, the processor could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by the processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array [FPGA], an erasable programmable read only memory (EPROM), an electrically erasable programmable ROM (EEPROM)) or an ASIC that includes digital logic, software, code, electronic instructions, or any suitable combination thereof.


Any of these elements (e.g., the network elements, service nodes, etc.) can include memory elements for storing information to be used in achieving the service chaining related features, as outlined herein. Additionally, each of these devices may include a processor that can execute software or an algorithm to perform the NSH-related and load balancing-related features as discussed in this Specification. These devices may further keep information in any suitable memory element [random access memory (RAM), ROM, EPROM, EEPROM, ASIC, etc.], software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein should be construed as being encompassed within the broad term ‘memory element.’ Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term ‘processor.’ Each of the network elements can also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment.


Additionally, it should be noted that with the examples provided above, interaction may be described in terms of two, three, or four network elements. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of network elements. It should be appreciated that the systems described herein are readily scalable and, further, can accommodate a large number of components, as well as more complicated/sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad techniques of service chaining, as potentially applied to a myriad of other architectures.


It is also important to note that the various steps described herein illustrate only some of the possible scenarios that may be executed by, or within, the network elements described herein (e.g., entities of FIG. 4). Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of the present disclosure. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by network elements described herein in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the present disclosure.


It should also be noted that many of the previous discussions may imply a single client-server relationship. In reality, there is a multitude of servers in the delivery tier in certain implementations of the present disclosure. Moreover, the present disclosure can readily be extended to apply to intervening servers further upstream in the architecture, though this is not necessarily correlated to the ‘m’ clients that are passing through the ‘n’ servers. Any such permutations, scaling, and configurations are clearly within the broad scope of the present disclosure.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the Specification, to limit this disclosure in any way that is not otherwise reflected in the appended claims.

Claims
  • 1. A method for service chaining, the method comprising: determining a service chain for processing a request from a client for content;determining a capability identifying nodes of the service chain; andtransmitting, to the client, a redirect message having the capability,wherein, the redirect message includes a message and a name of the content,the redirect message redirects the request to a first node of the service chain, andthe capability of the redirect message includes a service chain identifier identifying the service chain.
  • 2. The method of claim 1, further comprising: signing the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.
  • 3. The method of claim 1, wherein the redirect message includes a signature of the message and the name of the content.
  • 4. The method of claim 1, wherein the capability of the redirect message comprises addresses and port numbers of the nodes of the service chain.
  • 5. The method of claim 1, wherein the capability of the redirect message comprises an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.
  • 6. The method of claim 1, wherein the capability identifies a time period during which the capability is valid within the service chain.
  • 7. An orchestrator for service chaining, the orchestrator comprising: at least one memory element having instructions stored thereon; andat least one processor coupled to the at least one memory element and configured to execute the instructions to cause the orchestrator to perform operations including: determining a service chain for processing a request from a client for content;determining a capability identifying nodes of the service chain; andtransmitting, to the client, a redirect message having the capability,wherein, the redirect message includes a message and a name of the content,the redirect message redirects the request to a first node of the service chain, andthe capability of the redirect message includes a service chain identifier identifying the service chain.
  • 8. The orchestrator of claim 7, wherein the operations further include: signing the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.
  • 9. The orchestrator of claim 7, wherein the redirect message includes a signature of the message and the name of the content.
  • 10. The orchestrator of claim 7, wherein the capability of the redirect message comprises addresses and port numbers of the nodes of the service chain.
  • 11. The orchestrator of claim 7, wherein the capability of the redirect message comprises an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.
  • 12. The orchestrator of claim 7, wherein the capability identifies a time period during which the capability is valid within the service chain.
  • 13. One or more computer-readable non-transitory media comprising one or more instructions for service chaining, that when executed on a processor configure the processor to: determine a service chain for processing a request from a client for content;determine a capability identifying nodes of the service chain; and transmit, to the client, a redirect message having the capability,wherein, the redirect message includes a message and a name of the content,the redirect message redirects the request to a first node of the service chain, andthe capability of the redirect message includes a service chain identifier identifying the service chain.
  • 14. The one or more computer-readable non-transitory media of claim 13, wherein the instructions, that when executed on the processor, further configure the processor to: sign the capability to generate a signature to be verified by nodes of the service chain, wherein the redirect message further includes the signature.
  • 15. The one or more computer-readable non-transitory media of claim 13, wherein the redirect message includes a signature of the message and the name of the content.
  • 16. The one or more computer-readable non-transitory media of claim 13, wherein the capability of the redirect message includes addresses and port numbers of the nodes of the service chain.
  • 17. The one or more computer-readable non-transitory media of claim 13, wherein the capability of the redirect message comprises an identifier for a further capability identifying further node(s) of the service chain to be provided to the first node of the service chain.
  • 18. The one or more computer-readable non-transitory media of claim 13, wherein the capability identifies a time period during which the capability is valid within the service chain.
US Referenced Citations (373)
Number Name Date Kind
3629512 Yuan Dec 1971 A
4769811 Eckberg, Jr. et al. Sep 1988 A
5408231 Bowdon Apr 1995 A
5491690 Alfonsi et al. Feb 1996 A
5557609 Shobatake et al. Sep 1996 A
5600638 Bertin et al. Feb 1997 A
5687167 Bertin et al. Nov 1997 A
6115384 Parzych Sep 2000 A
6167438 Yates et al. Dec 2000 A
6400681 Bertin et al. Jun 2002 B1
6661797 Goel et al. Dec 2003 B1
6687229 Kataria et al. Feb 2004 B1
6799270 Bull et al. Sep 2004 B1
6888828 Partanen et al. May 2005 B1
6993593 Iwata Jan 2006 B2
7027408 Nabkel et al. Apr 2006 B2
7062567 Benitez et al. Jun 2006 B2
7095715 Buckman et al. Aug 2006 B2
7096212 Tribble et al. Aug 2006 B2
7139239 Mcfarland et al. Nov 2006 B2
7165107 Pouyoul et al. Jan 2007 B2
7197008 Shabtay et al. Mar 2007 B1
7197660 Liu et al. Mar 2007 B1
7209435 Kuo et al. Apr 2007 B1
7227872 Biswas et al. Jun 2007 B1
7231462 Berthaud et al. Jun 2007 B2
7333990 Thiagarajan et al. Feb 2008 B1
7443796 Albert et al. Oct 2008 B1
7458084 Zhang et al. Nov 2008 B2
7472411 Wing et al. Dec 2008 B2
7486622 Regan et al. Feb 2009 B2
7536396 Johnson et al. May 2009 B2
7552201 Areddu et al. Jun 2009 B2
7558261 Arregoces et al. Jul 2009 B2
7567504 Darling et al. Jul 2009 B2
7571470 Arregoces et al. Aug 2009 B2
7573879 Narad et al. Aug 2009 B2
7610375 Portolani et al. Oct 2009 B2
7643468 Arregoces et al. Jan 2010 B1
7644182 Banerjee et al. Jan 2010 B2
7647422 Singh et al. Jan 2010 B2
7657898 Sadiq Feb 2010 B2
7657940 Portolani et al. Feb 2010 B2
7668116 Wijnands et al. Feb 2010 B2
7684321 Muirhead et al. Mar 2010 B2
7738469 Shekokar et al. Jun 2010 B1
7751409 Carolan Jul 2010 B1
7793157 Bailey et al. Sep 2010 B2
7814284 Glass et al. Oct 2010 B1
7831693 Lai Nov 2010 B2
7852785 Lund et al. Dec 2010 B2
7860095 Forissier et al. Dec 2010 B2
7860100 Khalid et al. Dec 2010 B2
7895425 Khalid et al. Feb 2011 B2
7899012 Ho et al. Mar 2011 B2
7899861 Feblowitz et al. Mar 2011 B2
7907595 Khanna et al. Mar 2011 B2
7908480 Firestone et al. Mar 2011 B2
7983174 Monaghan et al. Jul 2011 B1
7990847 Leroy et al. Aug 2011 B1
8000329 Fendick et al. Aug 2011 B2
8018938 Fromm et al. Sep 2011 B1
8094575 Vadlakonda et al. Jan 2012 B1
8095683 Balasubramaniam Chandra Jan 2012 B2
8116307 Thesayi et al. Feb 2012 B1
8166465 Feblowitz et al. Apr 2012 B2
8180909 Hartman et al. May 2012 B2
8191119 Wing et al. May 2012 B2
8195774 Lambeth et al. Jun 2012 B2
8280354 Smith et al. Oct 2012 B2
8281302 Durazzo et al. Oct 2012 B2
8291108 Raja et al. Oct 2012 B2
8305900 Bianconi Nov 2012 B2
8311045 Quinn et al. Nov 2012 B2
8316457 Paczkowski et al. Nov 2012 B1
8355332 Beaudette et al. Jan 2013 B2
8442043 Sharma et al. May 2013 B2
8451817 Cheriton May 2013 B2
8464336 Wei et al. Jun 2013 B2
8473981 Gargi Jun 2013 B1
8479298 Keith et al. Jul 2013 B2
8498414 Rossi Jul 2013 B2
8520672 Guichard et al. Aug 2013 B2
8601152 Chou Dec 2013 B1
8605588 Sankaran et al. Dec 2013 B2
8612612 Dukes et al. Dec 2013 B1
8627328 Mousseau et al. Jan 2014 B2
8645952 Biswas et al. Feb 2014 B2
8676965 Gueta Mar 2014 B2
8676980 Kreeger et al. Mar 2014 B2
8700892 Bollay et al. Apr 2014 B2
8724466 Kenigsberg et al. May 2014 B2
8730980 Bagepalli et al. May 2014 B2
8743885 Khan et al. Jun 2014 B2
8751420 Hjelm et al. Jun 2014 B2
8762534 Hong et al. Jun 2014 B1
8762707 Killian et al. Jun 2014 B2
8792490 Jabr et al. Jul 2014 B2
8793400 Mcdysan et al. Jul 2014 B2
8812730 Vos et al. Aug 2014 B2
8819419 Carlson et al. Aug 2014 B2
8825070 Akhtar et al. Sep 2014 B2
8830834 Sharma et al. Sep 2014 B2
8904037 Haggar et al. Dec 2014 B2
8984284 Purdy, Sr. et al. Mar 2015 B2
9001827 Appenzeller Apr 2015 B2
9071533 Hui et al. Jun 2015 B2
9077661 Andreasen et al. Jul 2015 B2
9088584 Feng et al. Jul 2015 B2
9130872 Kumar et al. Sep 2015 B2
9143438 Khan et al. Sep 2015 B2
9160797 Mcdysan Oct 2015 B2
9178812 Guichard et al. Nov 2015 B2
9189285 Ng et al. Nov 2015 B2
9203711 Agarwal et al. Dec 2015 B2
9253274 Quinn et al. Feb 2016 B2
9300579 Frost et al. Mar 2016 B2
9300585 Kumar et al. Mar 2016 B2
9311130 Christenson et al. Apr 2016 B2
9319324 Beheshti-Zavareh et al. Apr 2016 B2
9325565 Yao et al. Apr 2016 B2
9338097 Anand et al. May 2016 B2
9344337 Kumar et al. May 2016 B2
9374297 Bosch et al. Jun 2016 B2
9379931 Bosch et al. Jun 2016 B2
9385950 Quinn et al. Jul 2016 B2
9398486 La Roche, Jr. et al. Jul 2016 B2
9407540 Kumar et al. Aug 2016 B2
9413655 Shatzkamer et al. Aug 2016 B2
9424065 Singh et al. Aug 2016 B2
9436443 Chiosi et al. Sep 2016 B2
9444675 Guichard et al. Sep 2016 B2
9473570 Bhanujan et al. Oct 2016 B2
9479443 Bosch et al. Oct 2016 B2
9491094 Patwardhan et al. Nov 2016 B2
9537836 Maller et al. Jan 2017 B2
9558029 Behera et al. Jan 2017 B2
9559970 Kumar et al. Jan 2017 B2
9571405 Pignataro et al. Feb 2017 B2
9608896 Kumar et al. Mar 2017 B2
9614739 Kumar et al. Apr 2017 B2
9660909 Guichard et al. May 2017 B2
9723106 Shen et al. Aug 2017 B2
9774533 Zhang et al. Sep 2017 B2
9794379 Kumar et al. Oct 2017 B2
9882776 Aybay et al. Jan 2018 B2
9929945 Schultz et al. Mar 2018 B2
10003530 Zhang et al. Jun 2018 B2
20010023442 Masters Sep 2001 A1
20020085562 Hufferd et al. Jul 2002 A1
20020128982 Gefwert Sep 2002 A1
20020131362 Callon Sep 2002 A1
20020156893 Pouyoul et al. Oct 2002 A1
20020167935 Nabkel et al. Nov 2002 A1
20030023879 Wray Jan 2003 A1
20030026257 Xu et al. Feb 2003 A1
20030037070 Marston Feb 2003 A1
20030088698 Singh et al. May 2003 A1
20030110081 Tosaki et al. Jun 2003 A1
20030120816 Berthaud et al. Jun 2003 A1
20030188019 Wesley Oct 2003 A1
20030214913 Kan et al. Nov 2003 A1
20030226142 Rand Dec 2003 A1
20040049579 Ims Mar 2004 A1
20040109412 Hansson et al. Jun 2004 A1
20040148391 Lake, Sr. et al. Jul 2004 A1
20040199812 Earl Oct 2004 A1
20040213160 Regan et al. Oct 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040268357 Joy et al. Dec 2004 A1
20050044197 Lai Feb 2005 A1
20050058118 Davis Mar 2005 A1
20050060572 Kung Mar 2005 A1
20050086367 Conta et al. Apr 2005 A1
20050120101 Nocera Jun 2005 A1
20050138065 Ciriza Jun 2005 A1
20050152378 Bango et al. Jul 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050160180 Rabje et al. Jul 2005 A1
20050204042 Banerjee et al. Sep 2005 A1
20050210096 Bishop et al. Sep 2005 A1
20050257002 Nguyen Nov 2005 A1
20050281257 Yazaki et al. Dec 2005 A1
20050286540 Hurtta et al. Dec 2005 A1
20050289244 Sahu et al. Dec 2005 A1
20060005240 Sundarrajan et al. Jan 2006 A1
20060031374 Lu et al. Feb 2006 A1
20060045024 Previdi et al. Mar 2006 A1
20060074502 Mcfarland Apr 2006 A1
20060092950 Arregoces et al. May 2006 A1
20060095960 Arregoces et al. May 2006 A1
20060112400 Zhang et al. May 2006 A1
20060155862 Kathi et al. Jul 2006 A1
20060168223 Mishra et al. Jul 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060233155 Srivastava Oct 2006 A1
20070061441 Landis et al. Mar 2007 A1
20070067435 Landis et al. Mar 2007 A1
20070094397 Krelbaum et al. Apr 2007 A1
20070143851 Nicodemus et al. Jun 2007 A1
20070237147 Quinn et al. Oct 2007 A1
20070250836 Li et al. Oct 2007 A1
20080056153 Liu Mar 2008 A1
20080080509 Khanna et al. Apr 2008 A1
20080080517 Roy et al. Apr 2008 A1
20080170542 Hu Jul 2008 A1
20080177896 Quinn Jul 2008 A1
20080181118 Sharma et al. Jul 2008 A1
20080196083 Parks et al. Aug 2008 A1
20080209039 Tracey et al. Aug 2008 A1
20080219287 Krueger et al. Sep 2008 A1
20080225710 Raja et al. Sep 2008 A1
20080289039 Rits Nov 2008 A1
20080291910 Tadimeti et al. Nov 2008 A1
20090003364 Fendick et al. Jan 2009 A1
20090006152 Timmerman et al. Jan 2009 A1
20090037713 Khalid et al. Feb 2009 A1
20090094684 Chinnusamy et al. Apr 2009 A1
20090164995 Waris Jun 2009 A1
20090204612 Keshavarz-nia et al. Aug 2009 A1
20090271656 Yokota et al. Oct 2009 A1
20090300207 Giaretta et al. Dec 2009 A1
20090305699 Deshpande et al. Dec 2009 A1
20090328054 Paramasivam et al. Dec 2009 A1
20100058329 Durazzo et al. Mar 2010 A1
20100063988 Khalid Mar 2010 A1
20100080226 Khalid Apr 2010 A1
20100165985 Sharma et al. Jul 2010 A1
20100191612 Raleigh Jul 2010 A1
20100211658 Hoogerwerf et al. Aug 2010 A1
20100235394 Sukanen Sep 2010 A1
20100306368 Gagliardi Dec 2010 A1
20110023090 Asati et al. Jan 2011 A1
20110032833 Zhang et al. Feb 2011 A1
20110055845 Nandagopal et al. Mar 2011 A1
20110131338 Hu Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110142056 Manoj Jun 2011 A1
20110161494 Mcdysan et al. Jun 2011 A1
20110222412 Kompella Sep 2011 A1
20110255538 Srinivasan et al. Oct 2011 A1
20110267947 Dhar et al. Nov 2011 A1
20120131662 Kuik et al. May 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120324442 Barde Dec 2012 A1
20120331135 Alon et al. Dec 2012 A1
20130003735 Chao et al. Jan 2013 A1
20130003736 Szyszko et al. Jan 2013 A1
20130040640 Chen et al. Feb 2013 A1
20130044636 Koponen et al. Feb 2013 A1
20130121137 Feng et al. May 2013 A1
20130124708 Lee et al. May 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130163606 Bagepalli et al. Jun 2013 A1
20130238806 Moen Sep 2013 A1
20130272305 Lefebvre et al. Oct 2013 A1
20130311675 Kancherla Nov 2013 A1
20130329584 Ghose et al. Dec 2013 A1
20140010083 Hamdi et al. Jan 2014 A1
20140010096 Kamble et al. Jan 2014 A1
20140036730 Nellikar et al. Feb 2014 A1
20140050223 Foo et al. Feb 2014 A1
20140067758 Boldyrev et al. Mar 2014 A1
20140105062 McDysan et al. Apr 2014 A1
20140173018 Westphal Jun 2014 A1
20140181267 Wadkins et al. Jun 2014 A1
20140254603 Banavalikar et al. Sep 2014 A1
20140259012 Nandlall et al. Sep 2014 A1
20140279863 Krishnamurthy et al. Sep 2014 A1
20140280836 Kumar et al. Sep 2014 A1
20140310375 Jeon Oct 2014 A1
20140317261 Shatzkamer et al. Oct 2014 A1
20140321459 Kumar et al. Oct 2014 A1
20140334295 Guichard et al. Nov 2014 A1
20140344439 Kempf et al. Nov 2014 A1
20140362682 Guichard et al. Dec 2014 A1
20140362857 Guichard et al. Dec 2014 A1
20140369209 Khurshid et al. Dec 2014 A1
20140376558 Rao et al. Dec 2014 A1
20150003455 Haddad et al. Jan 2015 A1
20150012584 Lo et al. Jan 2015 A1
20150012988 Jeng et al. Jan 2015 A1
20150029871 Frost et al. Jan 2015 A1
20150032871 Allan et al. Jan 2015 A1
20150052516 French et al. Feb 2015 A1
20150071285 Kumar et al. Mar 2015 A1
20150074276 DeCusatis et al. Mar 2015 A1
20150082308 Kiess et al. Mar 2015 A1
20150085635 Wijnands et al. Mar 2015 A1
20150085870 Narasimha et al. Mar 2015 A1
20150089082 Patwardhan et al. Mar 2015 A1
20150092564 Aldrin Apr 2015 A1
20150103827 Quinn et al. Apr 2015 A1
20150117308 Kant Apr 2015 A1
20150124622 Kovvali et al. May 2015 A1
20150131484 Aldrin May 2015 A1
20150131660 Shepherd et al. May 2015 A1
20150156035 Foo et al. Jun 2015 A1
20150172380 Yamamura Jun 2015 A1
20150180725 Varney et al. Jun 2015 A1
20150180767 Tam Jun 2015 A1
20150181309 Shepherd et al. Jun 2015 A1
20150188949 Mahaffey et al. Jul 2015 A1
20150195197 Yong et al. Jul 2015 A1
20150222516 Deval et al. Aug 2015 A1
20150222533 Birrittella et al. Aug 2015 A1
20150236948 Dunbar et al. Aug 2015 A1
20150317169 Sinha Nov 2015 A1
20150319078 Lee et al. Nov 2015 A1
20150319081 Kasturi et al. Nov 2015 A1
20150326473 Dunbar et al. Nov 2015 A1
20150333930 Aysola et al. Nov 2015 A1
20150334027 Bosch et al. Nov 2015 A1
20150341285 Aysola et al. Nov 2015 A1
20150358235 Zhang Dec 2015 A1
20150365495 Fan et al. Dec 2015 A1
20150381465 Narayanan et al. Dec 2015 A1
20150381557 Fan et al. Dec 2015 A1
20160028604 Chakrabarti et al. Jan 2016 A1
20160028640 Zhang et al. Jan 2016 A1
20160043952 Zhang et al. Feb 2016 A1
20160050117 Voellmy et al. Feb 2016 A1
20160050132 Zhang Feb 2016 A1
20160080263 Park et al. Mar 2016 A1
20160099853 Nedeltchev et al. Apr 2016 A1
20160119159 Zhao et al. Apr 2016 A1
20160119253 Kang et al. Apr 2016 A1
20160127139 Tian et al. May 2016 A1
20160134518 Callon et al. May 2016 A1
20160134535 Callon May 2016 A1
20160139939 Bosch et al. May 2016 A1
20160164776 Biancaniello Jun 2016 A1
20160165014 Nainar et al. Jun 2016 A1
20160173373 Guichard et al. Jun 2016 A1
20160173464 Wang et al. Jun 2016 A1
20160182336 Doctor et al. Jun 2016 A1
20160182342 Singaravelu et al. Jun 2016 A1
20160182684 Connor et al. Jun 2016 A1
20160212017 Li et al. Jul 2016 A1
20160212277 Lopez Jul 2016 A1
20160226742 Apathotharanan et al. Aug 2016 A1
20160248685 Pignataro et al. Aug 2016 A1
20160277250 Maes Sep 2016 A1
20160285720 Mäenpää et al. Sep 2016 A1
20160285961 Kisel Sep 2016 A1
20160323165 Boucadair et al. Nov 2016 A1
20160352614 Valencia Lopez Dec 2016 A1
20160352629 Wang et al. Dec 2016 A1
20160380966 Gunnalan et al. Dec 2016 A1
20170019303 Swanny et al. Jan 2017 A1
20170019331 Yong Jan 2017 A1
20170031804 Ciszewski et al. Feb 2017 A1
20170078175 Xu et al. Mar 2017 A1
20170163742 Chou Jun 2017 A1
20170187609 Lee et al. Jun 2017 A1
20170208000 Bosch et al. Jul 2017 A1
20170214627 Zhang et al. Jul 2017 A1
20170237656 Gage et al. Aug 2017 A1
20170250917 Ruckstuhl et al. Aug 2017 A1
20170272470 Gundamaraju et al. Sep 2017 A1
20170279712 Nainar et al. Sep 2017 A1
20170310611 Kumar et al. Oct 2017 A1
20170317932 Paramasivam Nov 2017 A1
20170331741 Fedyk et al. Nov 2017 A1
20170339130 Reddy Nov 2017 A1
20180013841 Nainar et al. Jan 2018 A1
20180026884 Nainar et al. Jan 2018 A1
20180026887 Nainar et al. Jan 2018 A1
20180041470 Schultz et al. Feb 2018 A1
20180062991 Nainar et al. Mar 2018 A1
20180062997 Uberoy Mar 2018 A1
20180285009 Guim Bernat Oct 2018 A1
20180359337 Kodaypak Dec 2018 A1
Foreign Referenced Citations (12)
Number Date Country
103716123 Apr 2014 CN
103716137 Apr 2014 CN
3160073 Apr 2017 EP
2016149686 Aug 2016 JP
WO 2011029321 Mar 2011 WO
WO 2012056404 May 2012 WO
WO 2015065353 May 2015 WO
WO 2015180559 Dec 2015 WO
WO 2015187337 Dec 2015 WO
WO 2016004556 Jan 2016 WO
WO 2016058245 Apr 2016 WO
WO 2017011607 Jan 2017 WO
Non-Patent Literature Citations (61)
Entry
Matloff, “Level 2 Routing: LAN Bridges and Switches”, 2001 (Year: 2001).
Aldrin, S., et al. “Service Function Chaining Operation, Administration and Maintenance Framework,” Internet Engineering Task Force, Oct. 26, 2014, 13 pages.
Author Unknown, “ANSI/SCTE 35 2007 Digital Program Insertion Cueing Message for Cable,” Engineering Committee, Digital Video Subcommittee, American National Standard, Society of Cable Telecommunications Engineers, © Society of Cable Telecommunications Engineers, Inc. 2007 All Rights Reserved, 140 Philips Road, Exton, PA 19341; 42 pages.
Author Unknown, “AWS Lambda Developer Guide,” Amazon Web Services Inc., May 2017, 416 pages.
Author Unknown, “CEA-708,” from Wikipedia, the free encyclopedia, Nov. 15, 2012; 16 pages http://en.wikipedia.org/w/index.php?title=CEA-708&oldid=523143431.
Author Unknown, “Cisco and Intel High-Performance VNFs on Cisco NFV Infrastructure,” White Paper, Cisco and Intel, Oct. 2016, 7 pages.
Author Unknown, “Cloud Functions Overview,” Cloud Functions Documentation, Mar. 21, 2017, 3 pages; https://cloud.google.com/functions/docs/concepts/overview.
Author Unknown, “Cloud-Native VNF Modelling,” Open Source Mano, © ETSI 2016, 18 pages.
Author Unknown, “Digital Program Insertion,” from Wikipedia, the free encyclopedia, Jan. 2, 2012; 1 page http://en.wikipedia.org/w/index.php?title=Digital_Program_Insertion&oldid=469076482.
Author Unknown, “Dynamic Adaptive Streaming over HTTP,” from Wikipedia, the free encyclopedia, Oct. 25, 2012; 3 pages, http://en.wikipedia.org/w/index.php?title=Dynannic_Adaptive_Streanning_over_HTTP&oidid=519749189.
Author Unknown, “GStreamer and in-band metadata,” from RidgeRun Developer Connection, Jun. 19, 2012, 5 pages https://developersidgerun.conn/wiki/index.php/GStreanner_and_in-band_nnetadata.
Author Unknown, “ISO/IEC JTC 1/SC 29, Information Technology—Dynamic Adaptive Streaming over HTTP (DASH)—Part 1: Media Presentation Description and Segment Formats,” International Standard © ISO/IEC 2012—All Rights Reserved; Jan. 5, 2012; 131 pages.
Author Unknown, “M-PEG 2 Transmission,” © Dr. Gorry Fairhurst, 9 pages [Published on or about Jan. 12, 2012] http://www.erg.abdn.ac.uk/future-net/digital-video/mpeg2-trans.html.
Author Unknown, “MPEG Transport Stream,” from Wikipedia, the free encyclopedia, Nov. 11, 2012; 7 pages, http://en.wikipedia.org/w/index.php?title=MPEG_transport_streann&oldid=522468296.
Author Unknown, “Network Functions Virtualisation (NFV); Use Cases,” ETSI, GS NFV 001 v1.1.1, Architectural Framework, © European Telecommunications Standards Institute, Oct. 2013, 50 pages.
Author Unknown, “Understanding Azure, A Guide for Developers,” Microsoft Corporation, Copyright © 2016 Microsoft Corporation, 39 pages.
Author Unknown, “3GPP TR 23.803 V7.0.0 (Sep. 2005) Technical Specification: Group Services and System Aspects; Evolution of Policy Control and Charging (Release 7),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Sep. 2005; 30 pages.
Author Unknown, “3GPP TS 23.203 V8.9.0 (Mar. 2010) Technical Specification: Group Services and System Aspects; Policy and Charging Control Architecture (Release 8),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Val bonne—France, Mar. 2010; 116 pages.
Author Unknown, “3GPP TS 23.401 V13.5.0 (Dec. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 13),” 3GPP, 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Dec. 2015, 337 pages.
Author Unknown, “3GPP TS 23.401 V9.5.0 (Jun. 2010) Technical Specification: Group Services and Systems Aspects; General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access (Release 9),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Jun. 2010; 259 pages.
Author Unknown, “3GPP TS 29.212 V13.1.0 (Mar. 2015) Technical Specification: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control (PCC); Reference points (Release 13),” 3rd Generation Partnership Project (3GPP), 650 Route des Lucioles—Sophia Antipolis Valbonne—France, Mar. 2015; 230 pages.
Baird, Andrew, et al. “AWS Serverless Multi-Tier Architectures; Using Amazon API Gateway and AWS Lambda,” Amazon Web Services Inc., Nov. 2015, 20 pages.
Boucadair, Mohamed, et al., “Differentiated Service Function Chaining Framework,” Network Working Group Internet Draft draft-boucadair-network-function-chaining-03, Aug. 21, 2013, 21 pages.
Cisco Systems, Inc. “Cisco NSH Service Chaining Configuration Guide,” Jul. 28, 2017, 11 pages.
Ersue, Mehmet, “ETSI NFV Management and Orchestration—An Overview,” Presentation at the IETF# 88 Meeting, Nov. 3, 2013, 14 pages.
Fayaz, Seyed K., et al., “Efficient Network Reachability Analysis using a Succinct Control Plane Representation,” 2016, ratul.org, pp. 1-16.
Halpern, Joel, et al., “Service Function Chaining (SFC) Architecture,” Internet Engineering Task Force (IETF), Cisco, Oct. 2015, 32 pages.
Hendrickson, Scott, et al. “Serverless Computation with OpenLambda,” Elastic 60, University of Wisconson, Madison, Jun. 20, 2016, 7 pages, https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf.
Jiang, Yuanlong, et al., “Fault Management in Service Function Chaining,” Network Working Group, China Telecom, Oct. 16, 2015, 13 pages.
Kumar, Surendra, et al., “Service Function Path Optimization: draft-kumar-sfc-sfp-optimization-00.txt,” Internet Engineering Task Force, IETF; Standard Working Draft, May 10, 2014, 14 pages.
Penno, Reinaldo, et al. “Packet Generation in Service Function Chains,” draft-penno-sfc-packet-03, Apr. 29, 2016, 25 pages.
Penno, Reinaldo, et al. “Services Function Chaining Traceroute,” draft-penno-sfc-trace-03, Sep. 30, 2015, 9 pages.
Pierre-Louis, Marc-Arhtur, “OpenWhisk: A quick tech preview,” DeveloperWorks Open, IBM, Feb. 22, 2016, modified Mar. 3, 2016, 7 pages; https://developer.ibm.com/open/2016/02/22/openwhisk-a-quick-tech-preview/.
Pujol, Pua Capdevila, “Deployment of NFV and SFC scenarios,” EETAC, Master Thesis, Advisor: David Rincon Rivera, Universitat Politecnica De Catalunya, Feb. 17, 2017, 115 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-sfc-nsh-02.txt, Feb. 14, 2014, 21 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group, draft-quinn-nsh-00.txt, Jun. 13, 2013, 20 pages.
Quinn, Paul, et al., “Network Service Header,” Network Working Group Internet Draft draft-quinn-nsh-01, Jul. 12, 2013, 20 pages.
Quinn, Paul, et al., “Service Function Chaining (SFC) Architecture,” Network Working Group Internet Draft draft-quinn-sfc-arch-05.txt, May 5, 2014, 31 pages.
Wong, Fei, et al., “SMPTE-TT Embedded in ID3 for HTTP Live Streaming, draft-smpte-id3-http-live-streaming-00,” Informational Internet Draft, Jun. 2012, 7 pages http://tools.ietf.org/htnnl/draft-snnpte-id3-http-live-streaming-00.
Yadav, Rishi, “What Real Cloud-Native Apps Will Look Like,” Crunch Network, posted Aug. 3, 2016, 8 pages; https://techcrunch.com/2016/08/03/what-real-cloud-native-apps-will-look-like/.
Alizadeh, Mohammad, et al., “CONGA: Distributed Congestion-Aware Load Balancing for Datacenters,” SIGCOMM '14, Aug. 17-22, 2014, 12 pages.
Author Unknown, “IEEE Standard for the Functional Architecture of Next Generation Service Overlay Networks, IEEE Std. 1903-2011,” IEEE, Piscataway, NJ, Oct. 7, 2011; 147 pages.
Author Unknown, “OpenNebula 4.6 User Guide,” Jun. 12, 2014, opennebula.org, 87 pages.
Author Unknown, “Service-Aware Network Architecture Based on SDN, NFV, and Network Intelligence,” 2014, 8 pages.
Bi, Jing, et al., “Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center,” 2010 IEEE 3rd International Conference on Cloud Computing, Jul. 5, 2010, pp. 370-377, IEEE Computer Society.
Bitar, N., et al., “Interface to the Routing System (I2RS) for the Service Chaining: Use Cases and Requirements,” draft-bitar-i2rs-service-chaining-01, Feb. 14, 2014, pp. 1-15.
Bremler-Barr, Anat, et al., “Deep Packet Inspection as a Service,” CoNEXT '14, Dec. 2-5, 2014, pp. 271-282.
Cisco Systems, Inc. “Cisco VN-Link: Virtualization-Aware Networking,” 2009, 9 pages.
Dunbar, et al., “Architecture for Chaining Legacy Layer 4-7 Service Functions,” IETF Network Working Group Internet Draft, draft-dunbar-sfc-legacy-14-17-chain-architecture-03.txt, Feb. 10, 2014; 17 pages.
Farrel, A., et al., “A Path Computation Element (PCE)—Based Architecture,” RFC 4655, Network Working Group, Aug. 2006, 40 pages.
Jiang, Y., et al., “An Architecture of Service Function Chaining,” IETF Network Working Group Internet Draft, draft-jiang-sfc-arch-01.txt, Feb. 14, 2014; 12 pages.
Katsikas, Goergios P., et al., “Profiling and accelerating commodity NFV service chains with SCC,” The Journal of Systems and Software, vol. 127, Jan. 2017, pp. 12-27.
Kumbhare, Abhijit, et al., “Opendaylight Service Function Chaining Use-Cases,” Oct. 14, 2014, 25 pages.
Li, Hongyu, “Service Function Chaining Use Cases”, IETF 88 Vancouver, Nov. 7, 2013, 7 pages.
Mortensen, A., et al., “Distributed Denial of Service (DDoS) Open Threat Signaling Requirements,” DOTS, Mar. 18, 2016, 16 pages; https://tools.ietf.org/pdf/draft-ietf-dots-requirements-01.pdf.
Newman, David, “Review: FireEye fights off multi-stage malware,” Network World, May 5, 2014, 7 pages.
Nguyen, Kim-Khoa, et al. “Distributed Control Plane Architecture of Next Generation IP Routers,” IEEE, 2009, 8 pages.
Quinn, P., et al., “Network Service Header,” Network Working Group, Mar. 24, 2015, 42 pages; https://tools.ietf.org/pdf/draft-ietf-sfc-nsh-00.pdf
Quinn, P., et al., “Network Service Chaining Problem Statement,” draft-quinn-nsc-problem-statement-03.txt, Aug. 26, 2013, 18 pages.
Quinn, Paul, et al., “Service Function Chaining: Creating a Service Plane via Network Service Headers,” IEEE Computer Society, 2014, pp. 38-44.
Zhang, Ying, et al. “StEERING: A Software-Defined Networking for Inline Service Chaining,” IEEE, 2013, IEEE, p. 10 pages.
Related Publications (1)
Number Date Country
20180367621 A1 Dec 2018 US