Shipping containers used in transportation of goods are vulnerable to a multiplicity of problems. A common problem is the intrusion into the container to replace the goods shipped for less valuable goods and counterfeits. Other issues exist when the goods shipped can exhibit sensitivity to extreme temperatures which can make the goods spoil and degrade. It is possible to breach a shipping package through the walls of the container, which causes a breakdown of the shipment quality and places doubts on the authenticity of the shipped goods. Some goods like pharmaceuticals have an expiration date for the medications, and to be effective, there needs to be a time stamp somewhere on the package. Other goods have a high monetary value such as jewelry, perfumes, wine, clothing. Critical legal documents are also shipped through the mail system which need to be protected. Art items such as paintings and sculptures need to be shipped securely, on time and without exposure to extreme ambient conditions. Counterfeit products for critical electronics, if they enter the military supply chain can cause loss of life and jeopardize national security.
There are solutions that include the utilization of Radio Frequency Identification (RFID) tags. These tags are useful for tracking materials during shipment, but they only track the shipment and not protect the authenticity or monitor environmental conditions that can affect the articles in a shipment. The presently used RFID tags will not always monitor the shipment and will not by itself include sensors to determine if environmental conditions are such that the goods can be damaged in transit.
There have been proposed solutions that include attaching a set of conductors inside of packages to form an antenna which can respond to an external radio frequency monitoring receiver used to verify the antenna is intact inside of the container. Presumably this configuration will ensure the items inside a shipping container will be secured from tampering and will also maintain quality. This approach is not practical since it is not possible to have frequency monitoring receivers at all locations where the monitors can actively continuously check the shipping package throughout the geographical travel of the goods. There is also no way to protect all the internal surfaces of the package from intrusion by placing dense conductors while still forming an effective radio antenna. Furthermore, with this approach, RF antennas must be individually placed and tuned for each type of package and tuned to a nearby monitoring receiver frequency. This approach makes the proposed solution costly and not practical for industry to be used as a solution to monitor and protect the health and authenticity of the shipped goods.
It should be noted that this Background is not intended to be an aid in determining the scope of the claimed subject matter nor be viewed as limiting the claimed subject matter to implementations that solve any or all of the disadvantages or problems presented above. The discussion of any technology, documents, or references in this Background section should not be interpreted as an admission that the material described is prior art to any of the subject matter claimed herein.
In one implementation, a shipping container comprises a container body comprising one or more layers, at least one sensor embedded within at least one of the one or more layers or positioned between at least two of the one or more layers, and monitoring electronics connected to the sensor, wherein the monitoring electronics is configured to detect a tampering status of the container based at least in part on a signal from the sensor. The monitoring electronics may comprise one or more additional sensors. The sensor embedded in the layers may comprise a conductive material such as wire or conductive ink. At least a first portion of the embedded sensor may be positioned between two layers of paperboard.
In another implementation, a method for securing a shipping container comprises placing goods into the container and placing a removable cap onto the container. In this implementation, the placing connects monitoring electronics embedded in the cap with at least one sensor embedded in the container.
In another implementation, a shipping container comprises a container body and a removable container cap. The container body comprises a container wall comprising at least one sensor, the container cap comprises monitoring electronics, and the monitoring electronics are coupled to the at least one sensor when the container cap is coupled to the container body.
In any of the above implementations, the container may be in the shape of a tube, a bag, or a box.
It is understood that various configurations of the subject technology will become apparent to those skilled in the art from the disclosure, wherein various configurations of the subject technology are shown and described by way of illustration. As will be realized, the subject technology is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the subject technology. Accordingly, the summary, drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various embodiments are discussed in detail in conjunction with the Figures described below, with an emphasis on highlighting the advantageous features. These embodiments are for illustrative purposes only and any scale that may be illustrated therein does not limit the scope of the technology disclosed. These drawings include the following figures, in which like numerals indicate like parts.
The following description and examples illustrate some exemplary implementations, embodiments, and arrangements of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain example embodiment should not be deemed to limit the scope of the present invention.
Implementations of the technology described herein are directed generally to apparatus and methods used to monitor shipment containers with the use of sensors to better ensure they are protected and monitored from door to door in the shipment process. Monitoring sensors may include one or more of temperature, pressure, motion, intrusion, and means for counterfeit part detection. Containers described herein are commonly used for shipment of documents, paintings or other works of art, legal documents, consumer merchandise, mechanical parts, and electronic parts. These types of containers are extensively used by leading companies to send shipments.
The disclosed apparatus and methods may use sensors to protect the shipped goods by including various sensors in the shipping package, a set of electronic monitors that protect the shipped goods from door to door, communication technologies for communicating with monitoring facilities, and verification methods for the end user to verify the goods shipped to them meet expectations of authenticity and quality.
Embodiments disclosed herein address the above-stated needs to protect shipped goods to consumers and other industries from damage due to environmental conditions and from replacement with low quality substitutes, or counterfeits.
Embodiments of the present technology may include an arrangement of a protection layer and a set of sensors to help ensure the shipped goods are safe, authentic, and not damaged, and the protection is done on a continuous basis during shipment and travel over different geographical locations using sensors, processors for electronic monitoring and means of communication. Sensors that can be embedded in the shipping package including wire, optical fiber, or conductive ink made of various chemical mixtures that can include carbon, silver and other materials as needed for the specific application. In addition, other materials such as partially conductive material, thin conductive film, semiconductors, an assortment of pressure temperature, friction, capacitance, humidity, optical and any other sensors can be included as needed to monitor the security, quality, and environmental stress sensitivity.
In addition, certain embodiments can use location methods to determine GPS coordinates and can integrate any of the available set of communication interfaces such as Wi-Fi, RFID, Bluetooth, and Cellular to continuously report status to a remote monitoring service using the Mobile communications (cell) infrastructure. Communication for monitoring purposes can be automatically done to security personnel nearby using Bluetooth, Wi-Fi, or RFID.
The RFID capability can also be used as the means for embedding security, serial numbers, source, destination, tracking, and sensor information in the shipping package to be used for later review.
In applications where tampering protection is necessary, the tampering sensor can be implemented with a pattern of embedded wire in such a way that the cutting of the wire is detected by a processor and interpreted as an attempt to enter the container and have access to the goods targeted for shipment. The wire can be of fine gauge so that it can be disguised within the package and can be placed as dense as it is needed to prevent intrusion. Also, wire can be placed in a mesh configuration with a density high enough to prevent access.
Security and authentication to prevent forgery of the container itself or the goods inside can be obtained with the use of encrypted communications, and the addition of a token or a pedigree at the point of shipment. Also, it is possible to include an internal pedigree in the container in this invention by using physical parameters measured by the sensors, or data from random number generators, or a digitized analog component signature with unique characteristics.
A significant challenge in shipping containers for consumer use is cost and environmental concerns. Typical shipping containers use paper, paperboard, cardboard, and the like which are inexpensive and biodegradable. To implement one or more of the functions previously described, implementations of the inventive principles described herein may embed in those types of inexpensive materials the sensors as well as all the needed functionalities with the appropriate manufacturing techniques. These techniques can be implemented with assembly tooling ranging from simple hand tools, and with various degrees of highly automated machinery.
The manufacturing implementation can be done using circuits, batteries, electronic components printed directly on the substrate used, which can be made of plastics or other convenient substrate as needed to achieve the cost effectiveness of mass production for high volumes. The physical look of the protected container in this invention can be a shipment packaging material where the sensors are embedded in the material in a way that the sensors surround the goods to be shipped. It is anticipated that the solution can be applied to shipping palleted containers by using the appropriate scaling measures with the sensors.
In order to achieve the constant monitoring, the container described in the preceding discussion may use one or more various technical features. A processor embedded in the shipping container may store the status of the sensors with a time stamp to record all the information in processor memory. The information can then be sent to anexternal device such as an RFID reader, or to another system using Wi-Fi , or to a mobile phone or another Bluetooth-enabled device. If the objective in each shipment application is to obtain real-time location, then a GPS unit can be used in conjunction with the shipment container to report status of the sensors. If the needs are to send the monitoring information to a remote location, then either a near Wi-Fi portal can be used or Cell communications.
For a remote monitoring secure application, the method can be for the container to send a data package with the sensor information to a server in a cloud installation using cable after a Wi-Fi portal connection. If the means of communication to a server is the use of Cell, then the wireless cell communication channel can be used.
For applications where the receiver of the shipment also needs to be notified, appropriate access to the receiver of the goods can be provided.
The disclosed embodiments provide systems, devices, and processes for tamper evident security of a shipping container. Included is an apparatus containing an Electrical pattern used as a sensor for tampering, environmental sensors, geolocation and communication features, and a process consisting of a sensor test, security features, communication systems, geolocation, and security system. All these features allow a shipping container to be protected from intrusion on all its sides, to collect environmental information during shipment and to be monitored remotely.
After achieving the placement of wire 202, placing a cover on the wire 208 and installing the cap 209, as shown in
The MCU 501 can store information regarding thresholds for various sensors which are acceptable during the shipment of the container. At 502 the diagram in
The electronic monitoring unit 500 can include a set of various types of communication elements. These elements can be a cell modem 508, which can be used to establish a remote connection to a monitoring center to report the location and status of the shipment. Cell modem communications can be for example 4G LTE CAT M or 2G GSM, or 5G communications. In addition, short range communication can be established in a fixed location with the use of a Wi-Fi modem 509. In some applications it can be convenient to have a Bluetooth 510 module to send information to a receiving Bluetooth unit in a mobile phone. RFID read and write tag 512 and antenna 511 can be used to provide information to a reader and can be used to receive tracking information regarding the shipment in each location such as a delivery truck or a shipping distribution center. The RFID tag 512 can contain a file that summarizes the values of the sensors during the travel of the shipping package. The RFID tag can contain customized values for the thresholds of the sensors which are entered at the shipment location. In addition, the RFID can store a password, token, encryption key, and a pedigree serial number to meet Cybersecurity and authentication goals. The file in the RFID tag can be read with an RFID reader and a phone app by the person receiving the shipment to determine if the goods were not damaged or tampered with. One or more of these communication devices can be used in the electronic monitoring unit 501 as needed for a given application. The electronic monitoring unit 500 also includes one or more LED indicators 513, which can be seen through the port 305, and which are used to signal the person receiving the shipment if any of the sensors exceeded thresholds. For example, the LED can flash red if the shipment container was tampered with or if any sensors exceeded threshold. Alternatively, the LED can flash green if there was no tampering during shipment, or alternatively can turn on an amber color LED to signal the package is not yet sealed. Finally, since the shipment container is a portable device, we include a battery 513 with the electronic monitoring unit 500.
As part of the shipping process, the server 704 will in turn send a message with information to the recipient’s mobile phone 707 or the recipients PC 705. This information can be a URL link needed to reach the server to obtain the encryption key, serial number0 of the package shipped and other related shipment information. The recipient will then use the PC 705 and the RFID reader 706, or a Mobile phone 707 to connect with the received shipping container 701b. The PC 705 with the RFID reader 706 or the cell phone 707 will then connect with the RFID tag 512 of the container. The container RFID tag 512 will only respond to the tag reader 706 or the cell phone 707 reader if the reader sends the encryption key. If the encryption key is provided, then the container 701b will relay information about the shipment such as status of the environmental sensors, and if the container was ever opened during transport from the shipping source.
Alternatively, if the recipient of the shipment does not have computing capabilities, they can look over the porthole 305 on the top of the container to determine if any sensor thresholds were exceeded or if the container was tampered with during shipment. As described before, a green LED means good shipment, a red LED means either tampering or sensors exceeded threshold.
Various modifications to these embodiments, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the present technology. Thus, the present technology is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
For example,
Thereafter, once the box is formed the shipping goods are placed in the box and afterwards the sections under vertical section 903 are folded at 909, 910, 911 to cover the box, and a wide piece of tape is applied to the top of the box.
Various aspects of the novel systems, apparatuses, and methods are described more fully hereinafter with reference to the accompanying drawings. The teachings disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the novel systems, apparatuses, and methods disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, a system or an apparatus may be implemented, or a method may be practiced using any one or more of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such a system, apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect disclosed herein may be set forth in one or more elements of a claim. Although some benefits and advantages of the preferred aspects are mentioned, the scope of the disclosure is not intended to be limited to particular benefits, uses, or objectives. The detailed description and drawings are merely illustrative of the disclosure rather than limiting, the scope of the disclosure being defined by the appended claims and equivalents thereof.
With respect to the use of plural vs. singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
When describing an absolute value of a characteristic or property of a thing or act described herein, the terms “substantial,” “substantially,” “essentially,” “approximately,” and/or other terms or phrases of degree may be used without the specific recitation of a numerical range. When applied to a characteristic or property of a thing or act described herein, these terms refer to a range of the characteristic or property that is consistent with providing a desired function associated with that characteristic or property.
In those cases where a single numerical value is given for a characteristic or property, it is intended to be interpreted as at least covering deviations of that value within one significant digit of the numerical value given.
If a numerical value or range of numerical values is provided to define a characteristic or property of a thing or act described herein, whether or not the value or range is qualified with a term of degree, a specific method of measuring the characteristic or property may be defined herein as well. In the event no specific method of measuring the characteristic or property is defined herein, and there are different generally accepted methods of measurement for the characteristic or property, then the measurement method should be interpreted as the method of measurement that would most likely be adopted by one of ordinary skill in the art given the description and context of the characteristic or property. In the further event there is more than one method of measurement that is equally likely to be adopted by one of ordinary skill in the art to measure the characteristic or property, the value or range of values should be interpreted as being met regardless of which method of measurement is chosen.
It will be understood by those within the art that terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are intended as “open” terms unless specifically indicated otherwise (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
In those instances where a convention analogous to “at least one of A, B, and C” is used, such a construction would include systems that have A alone, B alone, C alone, A and B together without C, A and C together without B, B and C together without A, as well as A, B, and C together. It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B″ will be understood to include A without B, B without A, as well as A and B together.”
Various modifications to the implementations described in this disclosure can be readily apparent to those skilled in the art, and generic principles defined herein can be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the claims, the principles and the novel features disclosed herein. The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features can be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination can be directed to a sub-combination or variation of a sub-combination.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
This application is a continuation of PCT Application Serial Number PCT/US2022/ filed on Oct. 17, 2022 and also claims priority to U.S. Provisional Application Serial Number 63/256,667, filed on Oct. 18, 2021, entitled Secure Shipment Container With Continuous Monitoring Using Sensors And Communication Channels. The entire disclosures of all the related applications set forth in this section are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
63256667 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/046896 | Oct 2022 | WO |
Child | 17968394 | US |