This invention relates to the use of mobile devices for making payments for store and web purchases
Credit cards have been around for nearly five decades (starting in 1950 with Diners Club) in the same form and seem to have missed the latest developments in technology. They have largely remained resistant to change in form (plastic card, rectangular shape etc.) and function (making payments).
There has been a flurry of activity recently in the payments industry to allow users to use different types of devices to make the payments. Most prominent amongst them are RFID enabled tags (which can be attached to mobile phones). All of these devices create a new ID (associated to the RFID device) in place of the credit card number and at the payment network, associate it with the credit account of the user. When the user brings these devices in close proximity to the reader at the checkout, this ID is transmitted wirelessly and the transaction is authorized against the credit account of the user.
The focus of all these new forms is the payment network. All these new forms are targetted to drive users to one or the other network. There is little effort to aggregate these different networks and let the user chose whichever network they wish to use for their payments. There is another kind of aggregation that is needed at the checkout. That is for the coupons/discounts that a person can use for the items purchased.
The current invention attempts to create a system which will do the aggregation discussed in [0005]. It will segregate the network identity of the user (their credit account) from their own identity. It will redefine the role of one's cellphone/mobile number as the core of ones identity. Use of the cellphone number instead of a complicated random large number is much easier for the user and allows for creating a payment-network-neutral ID. This ID can be associated to the different payment networks, the user is associated with. This same ID can be associated with all the discounts a person is eligible for and can be applied electronically.
There are obvious security issues with using a common ID such as ones cell phone number for purchases. The invention addresses all these security concerns in its design and in effect creates a system that is much more secure than any other alternative. It uses the two-factor authentication and allows for even three-factor authentication (what a person is, what a person has, what a person knows).
Credit cards need a makeover. They have been around for nearly five decades (started in 1950 with Diners Club) in the same form and seem to have missed the latest developments in technology. They have largely remained resistant to change in form (plastic card, rectangular shape etc.) and function (making payments). This resistance was justified even few years ago before mobile phones became prevalent. Then, a plastic card was the smallest form factor a person could carry with them that could convey their identity to a merchant. It was also not possible to verify that identity with a trusted third party without the phone line based POS systems. This is not the case today. Not only do people carry a device (mobile phones) with them that uniquely identifies them (mobile numbers are unique, just as a credit card number) but this device is capable of communicating voice and data. So, ideally one should not need a credit card to convey their identity. It should be possible for merchants to charge one's credit/charge card account by knowing just their phone number.
There is no current system that allows users to complete their purchases using their cellphone numbers. This document describes a new system (LivewirePay) that will allow users to pay for their purchases only using their mobile phones or other such devices that uniquely identify them and can communicate over the wireless networks. Not only will this system allow users to carry a lighter wallet (or no wallet) but also will let them make purchases using a number they can easily remember (their mobile phone number). Other than the usual identity management, this system will allow users to navigate between their multiple credit cards and other accounts.
Other Approaches and their Limits
Some solutions in the mobile payment space are being attempted through RFID (Radio Frequency IDentification) tags inserted in mobile phones. These employ NFC (Near Field communication) technology to read data stored on the RFID tags. NFC works within a very small range (about 4 inches). Those solutions are mainly aimed at automating/speeding-up the checkout process. They use the RFID tags to establish the financial identity.
There are also some experiments being done to let users pay for their small online purchases using their mobile phones. In those cases, the phone company bills the purchase to the buyer on a monthly basis. These are a step in the right direction but they do not address the credit risk associated with a typical store transaction. In this model, Phone Company is the last entity left with credit risk. While it works for small transactions, it cannot work for regular day-to-day credit transactions because phone companies do not have the infrastructure to evaluate or carry the amount of credit risk inherent in regular credit transactions.
These approaches are payment network focused and are trying to address the mechanics of data exchange for a given network. Many of them are not inter-operable. For example, RFID tags provided by one network (say VISA) will not be applicable to another (say American Express). A system is needed that could aggregate various payment identities. The proposed system (LivewirePay) is one such system. It is customer focused and segregates the personal identity of the user (their phone number) and the payment network identity. It aggregates various payment network identities under the personal identity of the user. It identifies the importance of credit risk underlying this data exchange. The system can be built over the existing credit under-writing infrastructure. Issue of credit risk can be by-passed by attaching a checking account to the phone number.
The LivewirePay system is software (see
Inside LivewirePay's secure database, the user's phone number is associated with one or more validated payment methods (credit card, checking accounts etc). The system stores user's preferences for financial incentives (rewards, minimize interest payments, delay cash outflow etc) and assigns a numeric weight to each. Payment method attributes are identified which contribute to each preference. Each payment method is scored according to its different attribute values. An aggregate metric (relevancy score) is calculated for each payment method, that fairly represents all of user's preferences in a comprehensive manner. The payment method with the highest score is used. Here is an example.
Based on the above preferences, system calculates the aggregate metric (weighted product in this example) for each credit card. Relevancy score of CC1 for user 1 is
User 1 should use CC1 and User 2 should use CC2.
Notice that the scores for CC1 and CC2 for user 1 are tied (14). We use user 1's first preference to break that tie. User 1's first preference is to Delay cash outflow, so we select the credit card ranking highest on the attribute associated to this preference (payment due date).
Here is the transaction flow that enables LivewirePay to complete transactions (See
LivewirePay receives a phone number and the transaction information (merchant, merchandise, category, quantity, price etc.) as the input. Upon receiving the information, LivewirePay validates merchant's identity and sends user's personal details to merchant's POS. Then it tries to authenticate the user's identity. The user may input their authentication information/PIN at the POS terminal. Alternatively, the authentication could be done using user's phone. Phone based authentication can be done either through Smart App, SMS, text, email or an automated voice response call depending upon the type of mobile device the user is carrying. The payment method is also confirmed at the same time. The actual account number of the user is never accessed before the financial transaction. The minimum possible information about the financial identity is sent outside the LivewirePay system (only last few digits of a credit card etc.). This minimum information is considered a part of personal information since it lets user indicate their choice of payment method.
The authentication process is multi-moded, in the sense that there is not one key or password alone. While there are a passkey and PIN number, there also are unique shapes, small puzzles and biometric data (finger print and Iris scans etc) that only the user can produce. The LivewirePay system utilizes this information to challenge the user while authenticating their identity. LivewirePay system does not send answers of the authentication questions out on the network (either to POS or to user's cellphone). It only sends question(s) and expects the answers back. It uses a combination of transaction history and the current context to chose one or more methods (PIN, question set, images etc) to authenticate the user. The system aims to strike a balance between the quickest and safest means of authentication appropriate for the circumstance. User can also chose a different account to charge during this authentication step. The LivewirePay system can store various coupons electronically and get those applied to the purchase in this step.
After user authentication, LivewirePay proceeds to authorize the transaction with the selected payment system (selected by the LivewirePay system or user's choice during authentication). Once the transaction is authorized, it returns an approval code to the merchant, who then prints the checkout receipt.
LivewirePay system can be created as a new system or as an improvement to an existing payment system. The following changes will need to be made to the existing infrastructure of payment processing (see
LiveWirePay is an easy, robust and secure method to allow users to make purchases and pay for them using just their mobile phone number. In addition to the ease of use, this solution allows users to make their purchases across different payment methods (credit cards, checking accounts etc) according to their preferences.
The main idea here is to securely authenticate the user first and only then access their payment network identity. The current credit and debit products merge the two problems. They access the user's payment account directly through the swipe of a card. They assume that the person swiping the card is the user. The two processes (identify the user and complete the transaction) need to be segregated. The advent of mobile phones and the easy availability of computing power and network access make such a segregation of concerns not only desirable but possible.
One way to implement such a system (of separating concerns) is by keeping user's personal, authentication, financial and transaction information separate and accessing it in sequence (
The possibility of employing multi-factor authentication (using something user has, something user knows and something user is) for LivewirePay system makes this an ideal system for applications where such authentication may be necessary. In this system, in order to complete a transaction, the user needs to HAVE the cellphone, KNOW their personal key/answer etc and BE the person (whose name/picture appears on the POS) to authenticate their identity.
We have thus far described a system where the user explicitly provides the merchant with their phone number or another unique ID, which is separate from their financial identity (account number). The system uses this ID to identify and authenticate the user. Only after authenticating the user, the system conducts a transaction using appropriate financial identity. The rest of the document describes a way to eliminate the step of explicitly providing the unique ID to the merchant. It proposes a method of detecting this unique ID from a distance. This other mode (automatic cell-phone registration) makes the system more user friendly and much more secure.
The LivewirePay system will also include an automatic mode of cellphone number detection. In this mode, the automatic identification of phone numbers (or another unique ID) will ensure that the correct device/phone is used to make the payment. This mode will be activated if the user's cell phone has the LivewirePay RFID (Radio Frequency IDentification) tag attached in (embedded with) the cellphone and the merchant has a POS terminal or a separate module (CRS) equipped with the RFID reader running LivewirePay protocol. CRS is a machine which communicates with the RFID tag, the POS and the LivewirePay system to create a seamless experience of transaction processing (see
RFID tag is one of the means of reading the cellphone number over a distance. RFID uses radio frequency electromagnetic fields to transfer data from a tag to the reader. The data stored in the tag is transmitted wirelessly when the tag comes in the range of the reader. The same could be done using other wireless technologies like IR, bluetooth, ultrasonic communication etc. RFID is the ideal fit for this type of application, because it works without a direct line of sight between the tag and the reader and has a range of 100 meters (sufficient to provide meaningful distance for reads).
With CRS, the POS or merchant side module can detect the phone number of the user and initiate the call to LivewirePay automatically without any input from the user. We describe below a system and a protocol to identify the user based on just their cellphone number, read wirelessly over a distance.
A protocol is designed to distinguish the registered cellphone numbers from amongst a multitude of other cellphones that could be present around the POS. The protocol works not only with the phone number but ANY unique ID that may be associated with the mobile device as long as the ID is registered with LivewirePay. Phone number is the preferred ID though. Phone number makes for an easy identifier and the protocol ensures that the transaction environment is secure.
Cellphone registering system (CRS) may be embedded within the POS system or kept in close proximity to the POS (see
CRS works by communicating with the RFID tag associated with (attached or located inside) the cellphone. RFID tag transmits the phone number to the RFID tag reader. The cellphone number is part of application data that gets exchanged between the RFID tag and the reader. This communication is fast and secure (application data/phone number is encrypted). RFID reader is designed to read the cell phone numbers within a predetermined radius of the POS/CRS. This radius could be modified by changing the RFID reader's field strength. It is possible for a CRS to identify multiple cellphone numbers present nearby. There is an additional protocol followed to sort the cell phones according to their distance from the CRS.
Once the system is able to successfully “Identify” (detect) a number in its range, it acquires a “lock” on that number (see
Here are the various states a phone number goes through in this protocol. Each subsequent state (except for the ‘Excluded’) subsumes the previous one and follows in a sequence.
The authentication score returned by LivewirePay system as part of the initial response, is a critical part of the system. Authentication score is a numerical value indicating LivewirePay system's confidence in the cellphone number belonging to the person carrying it. Different merchants could use different thresholds (possibly different for different CRS at the same merchant) to request a fresh authentication. If merchant receives an authentication score higher than their pre-determined threshold, the transaction goes through automatically, without any authentication step. Authentication score is a means to avoid user having to authenticate every time they want to transact. Here is a sample list of what different Authentication scores could mean
The use of an authentication score provided by a trusted system makes it possible for merchants to avoid authenticating a user who has already authenticated within parameters acceptable to them. After authenticating a user with a strong method (like biometric or multiple questions) the LivewirePay system returns the highest possible authentication score that decays with time and transactions. After a sufficiently long interval or after a number or type of transactions, without any further authentication, the authentication score becomes small enough that some merchant or LivewirePay system itself has to request a fresh authentication. The set of questions returned with the initial response also indicate the effect on authentication score their correct answers will have. CRS makes use of this data to select the appropriate question(s).
By this time, CRS has detected a user and stored the personal details of the user. Any time after this, when the checkout clerk has checked out all the items and pressed the check-out key, transaction information is passed to CRS, which applies it to the user. POS/CRS screen displays last few digits of the detected phone numbers along with the photographs/names. The buyer or checkout clerk touches the appropriate name or photograph. In case a photograph is used to validate the transaction, there will be no need for user to authenticate the transaction. The same is true in the case of a displayed name, which can be authenticated against the user's driving license. There may be an additional capability for the buyer to just touch the screen thereby authenticating with their finger print (
Some POS/CRS may not display user's information even after detecting them. Examples are self checkouts and ATMs. In these cases, the POS/CRS will just store the information and the user will be expected to enter some information that matches the information already and stored within POS/CRS. The POS/CRS will display a message (e.g. Please enter your initials to start or Please touch with your Index finger to start etc.). The user enters their Initials and/or touches the screen. The POS/CRS checks whether the information for this user already exists (their cellphone has been detected within range) and upon successful match goes on to complete the financial transaction (See
The system described here for accessing the user's partial identity (cellphone number) is different from other RFID/NFC based approaches. There are two main differences, identifier used and the distance. Other approaches work by bringing the RFID tag very close (about 4 inches) to the reader. In those approaches, it is of paramount importance to be absolutely sure of the person closest to the POS terminal, because the identity stored in the RFID tag is the network identity (account) of the user. In that situation, the distance is kept very small to reduce the chances of error. In LivewirePay, since the personal identity is separate from network identity, we can afford to be lenient in the solution of this problem (finding the user closest to the POS). We do not have to know the user closest to the POS/CRS, because we are not transacting based on the identifier in the RFID tag. We just use the identifier (cellphone number) to find the personal details of the user and after getting those, we authenticate the user (using name, photograph, set of questions, finger print etc) before transacting. From a distance perspective, only problem we are interested in solving is finding the relative distance of users from POS/CRS. We are satisfied if we know that user A is closer to the terminal than user B.
This system is different from a Location based service, which identifies a person within a range of a specific geographic location based on the cellphone's GPS. Location based service requires much more computational rigour to achieve the point accuracy that is built into RFID approach by definition. Another difference is that Location based service has to know the location of the user at all times, in order to detect them at a specific location, which could trigger privacy issues. Privacy is not much of an issue with LivewirePay approach because the user is being detected upon entering a merchant's store.
In LivewirePay, since cellphones can be detected by CRS over a larger distance, the scope of possible applications increases.
LiveWirePay system could also be used in a remote key application. In this manifestation, the CRS is embedded in a lock. The lock could be set to look for specific/configurable phone numbers (which become the keys to the lock). When the system registers the right phone number in proximity, it could open automatically or could initiate the authentication steps outlined earlier (See
Another potential use of this system is in airline check-in at the gates. This system could detect LivewirePay registered cellphone numbers at the gate and check-in matching passengers automatically or after authentication.
This Divisional application claims the benefit of non-provisional application Ser. No. 13/589,159 (filed on Aug. 19, 2012) which is entirely incorporated here in by reference.
| Number | Date | Country | |
|---|---|---|---|
| Parent | 13589159 | Aug 2012 | US |
| Child | 15283365 | US |