Securing a security tag into an article

Information

  • Patent Grant
  • 11869324
  • Patent Number
    11,869,324
  • Date Filed
    Thursday, December 23, 2021
    2 years ago
  • Date Issued
    Tuesday, January 9, 2024
    4 months ago
Abstract
A method for securing a security tag into an article of clothing includes positioning an end of the security tag into a first opening to an interface space between two layers of the article of clothing. The two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag. The security tag is fully moved into the interface space. Also described herein is a security tag specially configured for placement into the interface space between two layers of the article of clothing.
Description
FIELD

The present disclosure relates generally to security tags, such as an electronic article surveillance tag, which may be attached to or incorporated into an article, such as a textile or other items. More particularly, the present disclosure relates to a method for securing a security tag into an article, and a security tag configured to perform such a method.


BACKGROUND

Electronic Article Surveillance (EAS) systems are commonly used in retail stores and other settings to prevent the unauthorized removal of goods from a protected area. Typically, a detection system is configured at an exit from the protected area, which comprises one or more transmitters and antennas (“pedestals”) capable of generating an electromagnetic field across the exit, known as the “interrogation zone.” Articles to be protected are tagged with a security tag (such as an RFID and/or an acousto-magnetic (AM) tag), also known as an EAS marker, that, when active, generates a response signal when passed through this interrogation zone. An antenna and receiver in the same or another “pedestal” detects this response signal and generates an alarm.


Additionally, permanent hidden/embedded tags in goods could be used for other purposes, such as, but not limited to circular economy applications (new business models like renting clothes, or selling second hand clothes with known authenticity and pedigree). In many cases the same tag can be used for multiple purposes: security (anti-theft) circular economy, supply chain management and inventory management.


One drawback of tagging goods with EAS markers and other security tags for purposes of theft prevention is that the tag itself is often visible to thieves. Shoplifters in many cases are able to locate the EAS marker and simply remove, disable, or shield an EAS marker element to evade detection by the detection system.


Thus, improvements in security tags are needed.


SUMMARY

The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.


The present disclosure provides systems, apparatuses, and methods for providing security tags that are inserted into apparel items.


In an aspect, a method for securing a security tag into an article of clothing includes positioning an end of the security tag into a first opening to an interface space between two layers of the article of clothing, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag; and moving the security tag fully into the interface space.


In another aspect, a security tag includes an elongated substrate; an antenna formed on the elongated substrate; and a radio frequency identifier (RFID) circuit mounted to the antenna. An end of the security tag is configured to be positioned into a first opening to an interface space between two layers of the article of clothing, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag.


Another aspect relates to an article of clothing, comprising at least two overlapping layers of material, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag, and a security tag having an end configured to be positioned into a first opening to the interface space between the two layers.


To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:



FIG. 1 is an illustration of an illustrative architecture for a system according to some present aspects;



FIG. 2 is an illustration of an illustrative architecture for a security tag according to some present aspects;



FIG. 3 is an illustration of an illustrative architecture for a tag reader according to some present aspects;



FIG. 4 is a side view of an example architecture for a tag according to some present aspects;



FIG. 5 is a top view of the architecture of FIG. 4;



FIG. 6 is a multi-layered security tag 600 according to some present aspects;



FIG. 7 is a schematic perspective view of a method of manufacturing respective strips of a plurality of security tags from a plurality of elongated material and/or component layers, which are shown above the respective strips in magnified views, according to some present aspects;



FIG. 8 is a schematic top view of a method of manufacturing respective strips of a plurality of security tags from a plurality of elongated material and/or component layers, which are shown above the respective strips in magnified views, similar to FIG. 7 but with the layers extending in a different direction;



FIG. 9 is a front view of a portion of an example article, such as an article of clothing having two fixedly connected overlapping layers of material, including a security tag positioned through an opening into an interface space between the two layers of material of the article;



FIG. 10 is a cross-sectional edge view of the article and security tag along line 10-10 of FIG. 9;



FIG. 11 is a cross-sectional side view of the article and security tag along line 11-11 of FIG. 9;



FIG. 12 is a front view of a portion of another example article, such as an article of clothing having two fixedly connected overlapping layers of material with one layer having a notch, including a security tag positioned through the notch into an interface space between the two layers of material of the article;



FIG. 13 is a cross-sectional view of the article and security tag along line 10-10 of FIG. 12;



FIG. 14 is a cross-sectional view of the article and security tag along line 11-11 of FIG. 12;



FIGS. 15A-15H provide illustrations of a method for securing a security tag into an article of clothing using a tool according to some present aspects; and



FIGS. 16A-16B provide illustrations of an insertion notch designed into the article of clothing pattern to facilitate insertion of the sensor into the article of clothing according to some present aspects.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known components may be shown in block diagram form in order to avoid obscuring such concepts.


Aspects of the present disclosure provide a security tag, such as a passive RFID tag, which is designed to be physically capable of withstanding a variety of the tensile and abrasive forces which occur while positioning the security tag into a sewn item. The security tag, which optionally may be flexible and water-resistant, is configured to be incorporated into an interface between different layers of a textile item, such as a garment or article of clothing. Moreover, the security tag can be discreetly disposed within the item so as to be concealed from view. In some aspects, the security tag is designed to be attached to a tool configured to pull the security tag through the garment and having physical dimensions to fit through existing stitching of the garment.


Turning now to the figures, example aspects are depicted with reference to one or more components described herein, where components in dashed lines may be optional.


Referring now to FIG. 1, there is provided a schematic illustration of an illustrative system 100 that is useful for understanding the present solution. The present solution is described herein in relation to a retail store environment. The present solution is not limited in this regard and can be used in other environments. For example, the present solution can be used in distribution centers, factories and other commercial environments. Notably, the present solution can be employed in any environment in which objects and/or items need to be located and/or tracked.


The system 100 is generally configured to allow (a) improved inventory counts and surveillance of objects and/or items located within a facility, and (b) improved customer experiences. As shown in FIG. 1, system 100 comprises a Retail Store Facility (“RSF”) 128 in which display equipment 1021-102M is disposed. The display equipment is provided for displaying objects (or items) 1101-110N, 1161-116x to customers of the retail store. The display equipment can include, but is not limited to, shelves, article display cabinets, promotional displays, fixtures, and/or equipment securing areas of the RSF 128. The RSF 128 can also include emergency equipment (not shown), checkout counters, video cameras, people counters, and conventional EAS systems well known in the art, and therefore will not be described herein.


At least one tag reader 120 is provided to assist in counting and tracking locations of the objects 1101-110N, 1161-116x within the RSF 128. The tag reader 120 comprises an RFID reader configured to read RFID tags.


RFID tags 1121-112N, 1181-118x are respectively inserted into the objects 1101-110N, 1161-116x as described below. This insertion is achieved via an insertion tool, and/or special cuts or notches designed into the garment to improve the ease of inserting, and/or a structural configuration of the RFID tag to enable the insertion. The RFID tags 1121-112N, 1181-118x can alternatively or additionally comprise dual-technology tags that have both EAS and RFID capabilities as described herein. In examples of the technology disclosed herein, the elements of an RFID tag are inserted into an article, for example into an interface between layers of the fabric/cloth of the article, which may be clothing or which may be another retail item, such as a handbag, a backpack, and the like.


Notably, the tag reader 120 is strategically placed at a known location within the RSF 128, for example, at an exit/entrance. By correlating the tag reader's RFID tag reads and the tag reader's known location within the RSF 128, it is possible to determine the general location of objects 1101, . . . , 110N, 1161, . . . , 116x within the RSF 128. The tag reader's known coverage area also facilitates object location determinations. Accordingly, RFID tag read information and tag reader location information is stored in a datastore 126. This information can be stored in the datastore 126 using a server 124 and network 144 (e.g., an Intranet and/or Internet). System 100 also comprises a Mobile Communication Device (“MCD”) 130. MCD 130 includes, but is not limited to, a cell phone, a smart phone, a table computer, a personal digital assistant, and/or a wearable device (e.g., a smart watch). In accordance with some examples, the MCD 130 has a software application installed thereon that is operative to: facilitate the provision of various information 134-142 to the individual 152 and/or to facilitate a purchase transaction.


The MCD 130 is generally configured to provide a visual and/or auditory output of item level information 134, accessory information 136, related product information 138, discount information 140, and/or customer related information 142.


The MCD 130 can also be configured to read barcodes and/or RFID tags. Information obtained from the barcode and/or RFID tag reads may be communicated from the MCD 130 to the server 124 via network 144. Similarly, the stored information 134-142 is provided from the server 124 to the MCD 130 via network 144. The network 144 includes an Intranet and/or the Internet.


Server 124 can be local to the facility 128 as shown in FIG. 1 or remote from the facility 128. It should be understood that server 124 is configured to: write data to and read data from datastore 126, RFID tags 1121-112N, 1181-118x, and/or MCD 130; perform language and currency conversion operations using item level information 134 and/or accessory information 136 obtained from the datastore 126, RFID tags 1121-112N, 1181-118x, and/or MCD 130 perform data analytics based on inventory information 134, tag read information, MCD tacking information, and/or information 134-142; perform image processing using images captured by camera(s) 148; and/or determine locations of RFID tags 1121-112N, 1181-118x and/or MCDs 130 in the RSF 128 using beacon(s) 146, tag reader 120 or other devices having known locations and/or antenna patterns.


In some examples, one or more beacons 146 transmitting an RF signal (e.g., a second RF signal that is non-RFID) other than the RFID interrogation signal are placed to cover a zone of interest also covered by a tag reader 120 placed to cover an RFID interrogation zone, e.g., at a portal of the retail facility 128. The system 100 can detect and derive any number of relevant indicators based on second RF signal. The tag 112/118 response to the second RF signal is analyzed and compared to data collected by the RFID signal response that occurred concurrently with the tag's passage through the portal.


The server 124 facilitates, updates the information 134-142 output from the MCD 130. Such information updating can be performed periodically, in response to instructions received from an associate (e.g., a retail store employee 132), in response to a detected change in the item level 134, accessory 136 and/or related product information 138, in response to a detection that an individual is in proximity to an RFID tag, and/or in response to any motion or movement of the RFID tag. For example, if a certain product is placed on sale, then the sale price for that product is transmitted to MCD 130 via network 144 and/or RFID tag 112/118. The sale price is then output from the MCD 130. The present solution is not limited to the particulars of this example.


Although a single MCD 130 and/or a single server 124 is (are) shown in FIG. 1, the present solution is not limited in this regard. It is contemplated that more than one computing device can be implemented. In addition, the present solution is not limited to the illustrative system architecture described in relation to FIG. 1.


During operation of system 100, the content displayed on the display screen of the MCD 130 is dynamically controlled based upon various tag or item related information and/or customer related information (e.g., mobile device identifier, mobile device location in RSF 128, and/or customer loyalty level). Tag or item level information 134 includes, but is not limited to, first information indicating that an RFID tag 112/118 is in motion or that an object is being handled by an individual 152, second information indicating a current location of the RFID tag 112/118 and/or the MCD 130, third information indicating an accessory or related product of the object to which the moving RFID tag is coupled, and/or fourth information indicating the relative locations of the accessory and the moving RFID tag 112/118 and/or the relative locations of the related product and the moving RFID tag 112/118. The first, second and fourth information can be derived based on sensor data generated by sensors local to the RFID tag. Accordingly, the RFID tags 1121-112N, 1181-118x include one or more sensors to detect their current locations, detect any individual in proximity thereto, and/or detect any motion or movement thereof. The sensors include, but are not limited to, an Inertial Measurement Unit (“IMU”), a vibration sensor, a light sensor, an accelerometer, a gyroscope, a proximity sensor, a microphone, and/or a beacon communication device. The third information can be stored local to the RFID tag(s) or in a remote datastore 126 as information 136, 138.


In some scenarios, the MCD 130 facilitates the server's 124 (a) detection of when the individual 152 enters the RSF 128, (b) tracking of the individual's movement through the RSF 128, (c) detection of when the individual 152 is in proximity to an object to which an RFID tag 112/118 is coupled, (d) determination that an RFID tag 112/118 is being handled or moved by the individual 152 based on a time stamped pattern of MCD 130 movement and a timestamped pattern of RFID tag 112/118 movement, and/or (e) determination of an association of moving RFID tags 112/118 and the individual 152.


When a detection is made that an RFID tag 112/118 is being moved, the server 124 can, in some scenarios, obtain customer related information (such as a loyalty level) 142 associated with the individual 152. This information can be obtained from the individual's MCD 130 and/or the datastore 126. The customer related information 142 is then used to retrieve discount information 140 for the object to which the RFID tag 112/118 is coupled. The retrieved discount information is then communicated from the server 124 to the individual's MCD 130. The individual's MCD 130 can output the discount information in a visual format and/or an auditory format. Other information may also be communicated from the server 124 to the individual's MCD 130. The other information includes, but is not limited to, item level information 134, accessory information 136, and/or related product information 138.


In those or other scenarios, a sensor embedded in the RFID tag 112/118 detects when an individual 152 is handling the object in which the RFID tag 112/118 is inserted. When such a detection is made, the RFID tag 112/118 retrieves the object's unique identifier from its local memory, and wirelessly communicates the same to the tag reader 120. The tag reader 120 then passes the information to the server 124. The server 124 uses the object's unique identifier and the item/accessory relationship information (e.g., table) 136 to determine if there are any accessories associated therewith. If no accessories exist for the object, the server 124 uses the item level information 134 to determine one or more characteristics of the object. For example, the object includes a product of a specific brand. The server 124 then uses the item/related product information (e.g., table) 138 to identify: other products of the same type with the same characteristics; and/or other products that are typically used in conjunction with the object. Related product information for the identified related products is then retrieved and provided to the MCD 130. The MCD 130 can output the related product information in a visual format and/or an auditory format. The individual 152 can perform user-software interactions with the MCD 130 to obtain further information related to the product of interest. The present solution is not limited to the particulars of this scenario.


Referring now to FIG. 2, there is an illustration of an illustrative architecture for a security tag 200. RFID tags 1121-112N, 1181-118x are the same as or similar to security tag 200. As such, the discussion of security tag 200 is sufficient for understanding the RFID tags 1121-112N, 1181-118x of FIG. 1. In some implementations, security tag 200 may be configured to perform operations such as but not limited to (a) minimize power usage so as to extend a power source's life (e.g., a battery or a capacitor), (b) minimize collisions with other tags so that the tag of interest can be seen at given times, (c) optimize useful information within an inventory system (e.g., communicate useful change information to a tag reader), and/or (d) optimize local feature functions.


The security tag 200 can include more or less components than that shown in FIG. 2.


However, the components shown are sufficient to disclose an illustrative aspect implementing the present solution. Some or all of the components of the security tag 200 can be implemented in hardware, software and/or a combination of hardware and software. The hardware includes, but is not limited to, one or more electronic circuits. The electronic circuit(s) may comprise passive components (e.g., capacitors and resistors) and active components (e.g., processors) arranged and/or programmed to implement the methods disclosed herein.


The hardware architecture of FIG. 2 is representative of a security tag 200 configured to facilitate improved inventory management/surveillance and customer experience. In this regard, the security tag 200 is configured for allowing data to be exchanged with an external device (e.g., tag reader 120 of FIG. 1, a beacon 146 of FIG. 1, a Mobile Communication Device (“MCD”) 130 of FIG. 1, and/or server 124 of FIG. 1) via wireless communication technology. The wireless communication technology can include, but is not limited to, a RFID technology, a Near Field Communication (“NFC”) technology, and/or a Short Range Communication (“SRC”) technology. For example, one or more of the following wireless communication technologies (is) are employed: Radio Frequency (“RF”) communication technology; Bluetooth technology (including Bluetooth Low Energy (LE)); WiFi technology; beacon technology; and/or LiFi technology. Each of the listed wireless communication technologies is well known in the art, and therefore will not be described in detail herein. Any known or to be known wireless communication technology or other wireless communication technology can be used herein without limitation.


The components 206-214 shown in FIG. 2 may be collectively referred to herein as a communication enabled device 204 and include a memory 208 and a clock/timer 214. Memory 208 may be a volatile memory and/or a non-volatile memory. For example, the memory 208 can include, but is not limited to, Random Access Memory (“RAM”), Dynamic RAM (“DRAM”), Static RAM (“SRAM”), Read Only Memory (“ROM”), and flash memory. The memory 208 may also comprise unsecure memory and/or secure memory.


In some scenarios, the communication enabled device 204 comprises a Software.


Defined Radio (“SDR”). SDRs are well known in the art, and therefore will not be described in detail herein. However, it should be noted that the SDR can be programmatically assigned any communication protocol that is chosen by a user (e.g., RFID, WiFi, LiFi, Bluetooth, BLE, Nest, ZWave, Zigbee, etc.). The communication protocols are part of the device's firmware and reside in memory 208. Notably, the communication protocols can be downloaded to the device at any given time. The initial/default role (being an RFID, WiFi, LiFi, etc. tag) can be assigned at the deployment thereof. If the user desires to use another protocol later, the user can remotely change the communication protocol of the deployed security tag 200. The update of the firmware, in case of issues, can also be performed remotely.


As shown in FIG. 2, the communication enabled device 204 comprises at least one antenna 202, 216 for allowing data to be exchanged with the external device via a wireless communication technology (e.g., an RFID technology, an NFC technology, a SRC technology, and/or a beacon technology). The antenna 202, 216 is configured to receive signals from the external device and/or transmit signals generated by the communication enabled device 204. The antenna 202, 216 can comprise a near-field or far-field antenna. The antennas include, but are not limited to, a chip antenna or a loop antenna.


The communication enabled device 204 also comprises a communication device (e.g., a transceiver or transmitter) 206. Communication devices (e.g., transceivers or transmitters) are well known in the art, and therefore will not be described herein. However, it should be understood that the communication device 206 generates and transmits signals (e.g., RF carrier signals) to external devices, as well as receives signals (e.g., RF signals) transmitted from external devices. In this way, the communication enabled device 204 facilitates the registration, identification, location and/or tracking of an item (e.g., object 110 or 116 of FIG. 1) in which the security tag 200 is inserted.


The communication enabled device 204 is configured so that it: communicates (transmits and receives) in accordance with a time slot communication scheme; and selectively enables/disables/bypasses the communication device (e.g., transceiver) or at least one communications operation based on output of a motion sensor 250. In some scenarios, the communication enabled device 204 selects: one or more time slots from a plurality of time slots based on the tag's unique identifier 224 (e.g., an Electronic Product Code (“EPC”)); and/or determines a Window Of Time (“WOT”) during which the communication device (e.g., transceiver) 206 is to be turned on or at least one communications operation is be enabled subsequent to when motion is detected by the motion sensor 250. The WOT can be determined based on environmental conditions (e.g., humidity, temperature, time of day, relative distance to a location device (e.g., beacon or location tag), etc.) and/or system conditions (e.g., amount of traffic, interference occurrences, etc.). In this regard, the security tag 200 can include additional sensors not shown in FIG. 2.


The communication enabled device 204 also facilitates the automatic and dynamic modification of item level information 226 that is being or is to be output from the security tag 200 in response to certain trigger events. The trigger events can include, but are not limited to, the tag's arrival at a particular facility (e.g., RSF 128 of FIG. 1), the tag's arrival in a particular country or geographic region, a date occurrence, a time occurrence, a price change, and/or the reception of user instructions.


Item level information 226 and a unique identifier (“ID”) 224 for the security tag 200 can be stored in memory 208 of the communication enabled device 204 and/or communicated to other external devices (e.g., tag reader 120 of FIG. 1, beacon 146 of FIG. 1, MCD 130 of FIG. 1, and/or server 124 of FIG. 1) via communication device (e.g., transceiver) 206 and/or interface 240 (e.g., an Internet Protocol or cellular network interface). For example, the communication enabled device 204 can communicate information specifying a timestamp, a unique identifier for an item, item description, item price, a currency symbol and/or location information to an external device. The external device (e.g., server 124 or MCD 130) can then store the information in a database (e.g., datastore 126 of FIG. 1) and/or use the information for various purposes.


The communication enabled device 204 also comprises a controller 210 (e.g., a CPU) and input/output devices 212. The controller 210 can execute instructions 222 implementing methods for facilitating inventory counts and management. In this regard, the controller 210 includes a processor (or logic circuitry that responds to instructions) and the memory 208 includes a computer-readable storage medium on which is stored one or more sets of instructions 222 (e.g., software code) configured to implement one or more of the methodologies, procedures, or functions described herein. The instructions 222 can also reside, completely or at least partially, within the controller 210 during execution thereof by the security tag 200. The memory 208 and the controller 210 also can constitute machine-readable media. The term “machine-readable media,” as used here, refers to a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 222. The term “machine-readable media,” as used here, also refers to any medium that is capable of storing, encoding, or carrying a set of instructions 222 for execution by the security tag 200 and that cause the security tag 200 to perform any one or more of the methodologies of the present disclosure.


The input/output devices can include, but are not limited to, a display (e.g., an LCD display and/or an active matrix display), a speaker, a keypad, and/or light emitting diodes. The display is used to present item level information 226 in a textual format and/or graphical format. Similarly, the speaker may be used to output item level information 226 in an auditory format. The speaker and/or light emitting diodes may be used to output alerts for drawing a person's attention to the security tag 200 (e.g., when motion thereof has been detected) and/or for notifying the person of a particular pricing status (e.g., on sale status) of the item in which the tag is inserted.


The clock/timer 214 is configured to determine a date, a time, and/or an expiration of a predefined period of time. Technique for determining these listed items are well known in the art, and therefore will not be described herein. Any known or to be known technique for determining these listed items can be used herein without limitation.


The security tag 200 also comprises an optional location module 230. The location module 230 is generally configured to determine the geographic location of the tag at any given time. For example, in some scenarios, the location module 230 employs Global Positioning System (“GPS”) technology and/or Internet based local time acquisition technology. The present solution is not limited to the particulars of this example. Any known or to be known technique for determining a geographic location can be used herein without limitation including relative positioning within a facility or structure.


The security tag 200 can also include a power source 236, an optional Electronic Article Surveillance (“EAS”) component 244, and/or a passive/active/semi-passive RFID component 246. Each of the listed components 236, 244, 246 is well known in the art, and therefore will not be described herein. Any known or to be known battery, EAS component and/or RFID component can be used herein without limitation. The power source 236 can include, but is not limited to, a rechargeable battery and/or a capacitor.


As described herein, in some aspects, the EAS component 244 disposed in the security tag 200 may be any type of article surveillance mechanism, or combinations thereof. For example, in an aspect, the EAS component 244 may be an EAS sensor and/or an RFID sensor. In some further aspects, the EAS component 244 may include more than one sensor of the same type or of different types. For example, in one non-limiting aspect, the security tag 200 may have dual technology functionality (both RFID and EAS).


In an aspect, the EAS sensor may be a sensor of the type used in Acousto Magnetic (AM) systems. In one non-limiting aspect, for example, the detectors in an AM system emit periodic bursts at 58 KHz, which causes a detectable resonant response in an AM tag. A security tag in a 58 KHz system may also be implemented as an electric circuit resonant at 58 kHz. In an aspect, the EAS sensor to be incorporated into the security tag 200 may have a small and substantially flat form factor, and may have a degree of flexibility.


As shown in FIG. 2, the security tag 200 further comprises an energy harvesting circuit 232 and a power management circuit 234 for ensuring continuous operation of the security tag 200 without the need to change the rechargeable power source (e.g., a battery). In some scenarios, the energy harvesting circuit 232 is configured to harvest energy from one or more sources (e.g., heat, light, vibration, magnetic field, and/or RF energy) and to generate a relatively low amount of output power from the harvested energy. By employing multiple sources for harvesting, the device can continue to charge despite the depletion of a source of energy. Energy harvesting circuits are well known in the art, and therefore will not be described herein. Any known or to be known energy harvesting circuit can be used herein without limitation.


As noted above, the security tag 200 may also include a motion sensor 250. Motion sensors are well known in the art, and therefore will not be described herein. Any known or to be known motion sensor can be used herein without limitation. For example, the motion sensor 250 includes, but is not limited to, a vibration sensor, an accelerometer, a gyroscope, a linear motion sensor, a Passive Infrared (“PIR”) sensor, a tilt sensor, and/or a rotation sensor.


The motion sensor 250 is communicatively coupled to the controller 210 such that it can notify the controller 210 when tag motion is detected. The motion sensor 250 also communicates sensor data to the controller 210. The sensor data is processed by the controller 210 to determine whether or not the motion is of a type for triggering enablement of the communication device (e.g., transceiver) 206 or at least one communications operation. For example, the sensor data can be compared to stored motion/gesture data 228 to determine if a match exists therebetween. More specifically, a motion/gesture pattern specified by the sensor data can be compared to a plurality of motion/gesture patterns specified by the stored motion/gesture data 228. The plurality of motion/gesture patterns can include, but are not limited to, a motion pattern for walking, a motion pattern for running, a motion pattern for vehicle transport, a motion pattern for vibration caused by equipment or machinery in proximity to the tag (e.g., an air conditioner or fan), a gesture for requesting assistance, a gesture for obtaining additional product information, and/or a gesture for product purchase. The type of movement (e.g., vibration or being carried) is then determined based on which stored motion/gesture data matches the sensor data. This feature of the present solution allows the security tag 200 to selectively enable the communication device 206 (e.g., transceiver) or at least one communications operation only when the tag's location within a facility is actually being changed (e.g., and not when a fan is causing the tag to simply vibrate).


In some scenarios, the security tag 200 can be also configured to enter a sleep state in which at least the motion sensor triggering of communication operations is disabled. This is desirable, for example, in scenarios when the security tag 200 is being shipped or transported from a distributor to a customer. In those or other scenarios, the security tag 200 can be further configured to enter the sleep state in response to its continuous detection of motion for a given period of time. The tag can be transitioned from its sleep state in response to expiration of a defined time period, the tag's reception of a control signal from an external device, and/or the tag's detection of no motion for a period of time.


The power management circuit 234 is generally configured to control the supply of power to components of the security tag 200. In the event all of the storage and harvesting resources deplete to a point where the security tag 200 is about to enter a shutdown/brownout state, the power management circuit 234 can cause an alert to be sent from the security tag 200 to a remote device (e.g., tag reader 120 or server 124 of FIG. 1). In response to the alert, the remote device can inform an associate (e.g., a store employee 132 of FIG. 1) so that (s) he can investigate why the security tag 200 is not recharging and/or holding charge.


The power management circuit 234 is also capable of redirecting an energy source to the security tag's 200 electronics based on the energy source's status. For example, if harvested energy is sufficient to run the security tag's 200 function, the power management circuit 234 confirms that all of the security tag's 200 storage sources are fully charged such that the security tag's 200 electronic components can be run directly from the harvested energy. This ensures that the security tag 200 always has stored energy in case harvesting source(s) disappear or lesser energy is harvested for reasons such as drop in RF, light or vibration power levels. If a sudden drop in any of the energy sources is detected, the power management circuit 234 can cause an alert condition to be sent from the security tag 200 to the remote device (e.g., tag reader 120 or server 124 of FIG. 1). At this point, an investigation may be required as to what caused this alarm. Accordingly, the remote device can inform the associate (e.g., a store employee 132 of FIG. 1) so that he/she can investigate the issue. It may be that other merchandise are obscuring the harvesting source or the item is being stolen.


The present solution is not limited to that shown in FIG. 2. The security tag 200 can have any architecture provided that it can perform the functions and operations described herein. For example, all of the components shown in FIG. 2 can comprise a single device (e.g., an Integrated Circuit (“IC”)). Alternatively, some of the components can comprise a first tag element (e.g., a Commercial Off The Shelf (“COTS”) tag) while the remaining components comprise a second tag element communicatively coupled to the first tag element. The second tag element can provide auxiliary functions (e.g., motion sensing, etc.) to the first tag element. The second tag element may also control operational states of the first tag element. For example, the second tag element can selectively (a) enable and disable one or more features/operations of the first tag element (e.g., transceiver operations), (b) couple or decouple an antenna to and from the first tag element, (c) bypass at least one communications device or operation, and/or (d) cause an operational state of the first tag element to be changed (e.g., cause transitioning the first tag element between a power save mode and non-power save mode). In some scenarios, the operational state change can be achieved by changing the binary value of at least one state bit (e.g., from 0 to 1, or vice versa) for causing certain communication control operations to be performed by the security tag 200. Additionally or alternatively, a switch can be actuated for creating a closed or open circuit. The present solution is not limited in this regard.


In some examples, security tag 200 includes an RFID subsystem, such as communication-enabled device 204 described above, operative to receive an RFID interrogation signal and respond with an RFID response. Such security tags 200 include a non-RFID RF subsystem, also incorporated into communication enabled device 204, operative to receive a non-RFID RF signal and respond by wirelessly indicating that the non-RFID subsystem received the non-RFID RF signal. In some such examples, the non-RFID subsystem responds that the non-RFID RF subsystem received the non-RFID RF signal by one of: allowing the RFID subsystem to respond to the RFID interrogation signal with an RFID response only upon the non-RFID RF subsystem having received a non-RFID RF signal concurrently; supplementing the RFID response with at least one information element indicating that the non-RFID RF subsystem received the non-RFID RF signal; and separately transmitting a non-RFID response. In some such examples, the non-RFID RF subsystem is a personal area network (PAN) signal. In some such examples, the PAN is a Bluetooth PAN.


The hardware architecture of FIG. 3 represents an illustration of a representative tag reader 300 configured to facilitate improved inventory counts and management within an RSF (e.g., RSF 128 of FIG. 1). In this regard, the tag reader 300 comprises an RF enabled device 350 for allowing data to be exchanged with an external device (e.g., RFID tags 1121-112N, 1181-118x of FIG. 1) via RF technology. The components 304-316 shown in FIG. 3 may be collectively referred to herein as the RF enabled device 350, and may include a power source 312 (e.g., a battery) or be connected to an external power source (e.g., an AC mains).


The RF enabled device 350 comprises an antenna 302 for allowing data to be exchanged with the external device via RF technology (e.g., RFID technology or other RF based technology). The external device may comprise RFID tags 1121-112N, 1181-118x of FIG. 1. In this case, the antenna 302 is configured to transmit RF carrier signals (e.g., interrogation signals) to the listed external devices, and/or transmit data response signals (e.g., authentication reply signals or an RFID response signal) generated by the RF enabled device 350. In this regard, the RF enabled device 350 comprises an RF transceiver 308. In an aspect, the RF transceiver 308 receives RF signals including information from the transmitting device, and forwards the same to a logic controller 310 for extracting the information therefrom.


The extracted information can be used to determine the presence, location, and/or type of movement of an RFID tag within a facility (e.g., RSF 128 of FIG. 1). Accordingly, the logic controller 310 can store the extracted information in memory 304, and execute algorithms using the extracted information. For example, the logic controller 310 can correlate tag reads with beacon reads to determine the location of the RFID tags within the facility. The logic controller 310 can also perform pattern recognition operations using sensor data received from RFID tags and comparison operations between recognized patterns and pre-stored patterns. The logic controller 310 can further select a time slot from a plurality of time slots based on a tag's unique identifier (e.g., an EPC), and communicate information specifying the selected time slot to the respective RFID tag. The logic controller 310 may additionally determine a WOT during which a given RFID tag's communication device (e.g., transceiver) or operation(s) is (are) to be turned on when motion is detected thereby, and communicate the same to the given RFID tag. The WOT can be determined based on environmental conditions (e.g., temperature, time of day, etc.) and/or system conditions (e.g., amount of traffic, interference occurrences, etc.). Other operations performed by the logic controller 310 will be apparent from the following discussion.


Notably, memory 304 may be a volatile memory and/or a non-volatile memory. For example, the memory 304 can include, but is not limited to, a RAM, a DRAM, an SRAM, a ROM, and a flash memory. The memory 304 may also comprise unsecure memory and/or secure memory. The phrase “unsecure memory,” as used herein, refers to memory configured to store data in a plain text form. The phrase “secure memory,” as used herein, refers to memory configured to store data in an encrypted form and/or memory having or being disposed in a secure or tamper-proof enclosure.


Instructions 322 are stored in memory for execution by the RF enabled device 350 and that cause the RF enabled device 350 to perform any one or more of the methodologies of the present disclosure. The instructions 322 are generally operative to facilitate determinations as to whether or not RFID tags are present within a facility, where the RFID tags are located within a facility, which RFID tags are in motion at any given time, and which RFID tags are also in zone of a second RF signal (e.g., a Bluetooth beacon or NFC or other SRC system).


Referring now to FIGS. 4 and 5, an illustrative architecture for a security tag 400 includes a configuration that enables insertion of the security tag 400 between layers of an article. Security tag 400 may be the same as or similar to tag 1121, . . . , 112N, 1181, . . . , 118x of FIG. 1 or security tag 200 of FIG. 2. As such, the discussion provided above in relation to tags 112, 118, 200 is sufficient for understanding the operations of security tag 400. Notably, the security tag 400 is designed to be relatively thin so that it is hard to feel when inserted into an item (e.g., item 1101, . . . , 110N, 1161, . . . , or 116x of FIG. 1), but thick enough to withstand a certain number (e.g., 2-5) of wash cycles. The item can include, but is not limited to, an article of clothing.


As shown in FIG. 4, security tag 400 comprises a substrate 402 on which electronic components 404 are mounted, attached or disposed. The electronic components 404 can be the same as or similar to electronic components of FIG. 2. Accordingly, the electronic components 404 can include antenna(s), a communication enabled device, and/or an EAS component.


In an example, the substrate 402 is a relatively thin, narrow, light-weight, recyclable and/or machine-washable substrate. In one aspect, the substrate 402 may be an elongated substrate 402. The substrate 402 can include, but is not limited to, any type of flexible material as described above, such as but not limited to a fabric, a silk, a cloth, a plastic, and/or a paper. In some aspects, the substrate 402 may comprise a polyester (e.g., PET) substrate. A thickness 408 of the substrate 402 is selected so that the substrate 402 has a physical strength that allows a threshold amount of tension to be maintained on the security tag 400 while inserting the tag into the item. For example, but not limited hereto, thickness 408 can have a value between 0.0004 inches and 0.008 inches. Further, for example but not limited hereto, a width of the substrate 402 can be between 0.1 inches and 0.2 inches, which is small enough so that the tag is not felt by humans when inserted into an item. The present solution is not limited to the particulars of this example.


In the present aspects, the security tag 400 may be flexible, bendable, stretchable, or otherwise configured and/or constructed to sustain deformations. Also, the flexibility of the security tag 400 allows for the security tag 400 to be constructed and arranged so that the aforementioned deformations do not negatively affect the functionality and operation of the electronic components 404 disposed within the security tag 400. In some aspects, the security tag 400 may be manufactured to satisfy standards of environmental sustainability. For example, in some aspects, a natural-fiber fabric may be used as the substrate layer 402 (or as a portion of the substrate layer 402) so that the security tag 400 incorporates less plastic material than conventional security tags. For example, the security tag 400 may be manufactured using natural-fiber fabric substrates that are sustainable in nature, particularly if the fabric is non-polyester. In some alternative aspects, the flexible fabric substrate may be made of a textile manufactured from recycled plastics, thus allowing the security tag 400 to be manufactured to satisfy sustainability requirements.


In some scenarios, the substrate 402 and electronic components 404 are coated with a layer of a flexible, fluid resistive material 406 for protecting the same from damage due to fluid exposure. The fluid resistive material 406 can be a plastic material. The plastic material may include, but is not limited to, a Thermoplastic Polyurethane (TPU) material, a Polyethylene terephthalate (PET) material, copolyamide, and/or copolyester. Generally, the fluid resistive material 406 may be any waterproof material to protect the electronic components (e.g., by sealing the electronic components hermetically), which can be laminated in industrial processes (such as heat lamination, adhesive lamination or extrusion lamination) and that is safe and acceptable in textile industry (for example Oeko-tex 100 certified materials). In addition, the selected fluid resistive material 406 should be able to withstand exposure to washing, bleaching and softening chemicals.


The fluid resistive material 406 can be applied to either or both sides of the substrate.


The fluid resistive material 406 may be colored to match the color of the item (e.g., item 1101, . . . , 110N, 1161, . . . , or 116x of FIG. 1) in which the security tag 400 is inserted. The fluid resistive material 406 can be altered in appearance via a heat source. The appearance may be altered by changing from one color and/or pattern to another one of a variety of colors and/or patterns. For example, but not limited hereto, the fluid resistive material 406 can be altered from a clear color to a purple and yellow polka dots.


Still referring to FIG. 4, in yet another alternative aspect, the substrate layer 402 may be made of fabric, or any other type of flexible, sewable material, and the substrate layer 402 may have a thin film of a plastic material, such as but not limited to a thermoplastic polyurethane (TPU) 406, applied to at least one side such that the TPU film 406 provides a substrate for the application of the EAS and/or RFID sensor. After the electronic components 404 are applied to the TPU film 406, another layer of TPU may be applied to provide the coating layer 406 and thereby encapsulate the sensor between two TPU layers.


As shown in FIG. 5, the security tag 400 has an insertion facilitation areas 510, 514 on at least one end, but in some cases both ends. Each insertion facilitation area 510, 514 is formed on an end portion of the security tag 400 and configured to enable insertion of the security tag 400 in between layers of an item. In some implementations, the insertion facilitation area 510 and/or 514 of the security tag 400 facilitates, for example, attachment of a tool to pull the security tag 400 through the opening between two layers and/or between two seams in the article (e.g., a garment) without interference with and/or causing damage to the antenna(s) and/or other electronic components. In other implementations, the insertion facilitation area 510 and/or 514 of the security tag 400 facilitates, for example, pushing the security tag 400 through the opening between two layers and/or between two seams in the article (e.g., a garment) without interference with and/or causing damage to the antenna(s) and/or other electronic components. In some scenarios, insertion facilitation areas 510, 514 may have different stiffness/flexibility from the remaining portion of the tag. The different stiffness/flexibility of the insertion facilitation areas 510, 514 of the security tag 400 may be selected based on whether the security tag 400 is configured to be pushed through or pulled through the opening in the article. In an aspect, greater flexibility of the insertion facilitation areas 510, 514 of the security tag 400 may be achieved, for example, by making the insertion facilitation areas 510, 514 thinner than the remaining portion of the security tag 400. In an aspect, the insertion facilitation areas 510, 514 could have plastic material coating 406 on one side only, while the remaining portion of the security tag 400 has plastic material coating on both sides. In an alternative aspect, the insertion facilitation areas 510, 514 could have no plastic material coating 406, while the remaining portion of the security tag 400 has plastic material coating on one side. In yet another alternative aspect, the insertion facilitation areas 510, 514 could have thinner plastic material coating 406 than the remaining portion of the security tag 400. In an aspect, to facilitate insertion of the security tag 400, the plastic material coating 406 may have flexular modulus (bending modulus of elasticity) of at least 2 GPa, width of at least 2 mm and thickness of at least 50 um.


In some scenarios, the antenna(s) of the electronic components 404 are formed as conductive trace(s) via ink printing and/or deposition (e.g., sputter deposition). The conductive trace/ink/layer, as used throughout may be, but are not limited to, silver, copper, gold, aluminum, nickel, or various forms of carbon, either suspended as particles or dissolved in a solution.


The antenna(s) can be linear or loop. In some scenarios, but not limited hereto, length 420 of the security tag 400 can be in the range of 60-150 mm when the antenna(s) is(are) loop antenna(s). A thickness of the antenna(s) should be as thin as possible provided that the security tag 400 has enough physical strength to withstand a given pulling/pushing force and/or a given number of wash cycles.


The antenna(s) may be designed so that the tag's operating frequency is in a range of 840-960 MHz (inclusive of 840 and 960), a range of 860-940 MHz (inclusive of 860 and 940), a range of 865-868 MHz (inclusive of 865 and 868), or a range of 902-928 MHz (inclusive of 902 and 928). The antenna(s) may additionally or alternatively comprise tuning area(s) 512, 516. Each tuning area 512, 516 comprises a portion of an antenna that can be modified for selectively and/or dynamically tuning an operating frequency of the tag.


In some scenarios, the antenna(s) are formed by coupling physical wire(s) or conductive fibers to the substrate 402. In some aspect, but not limited hereto, each wire may have a diameter between 0.1 mm and 1 mm, and a length between 100 mm and 160 mm.


Referring to FIGS. 6-8, one example of a multi-layered security tag 600, similar to the security tag 400 described in FIGS. 4 and 5, may be produced by combining different material and/or component layers, such as a base layer 602, an intermediate layer 604, and an outer layer 606. In one implementation, the base layer 602 includes an antenna stripe 608 attached to a substrate 610, the intermediate layer 604 includes a communication-enabled device 612 electrically connected to a loop antenna 614, both attached to a substrate 616 and electrically connectable with the antenna stripe 608, such as via inductive coupling, and the outer layer 606 includes a protective material 618 that covers the communication-enabled device 612, the loop antenna 614, and the antenna stripe 608. Although the outer layer 606 in this example is illustrated as a top layer, is should be understood that the outer layer may alternatively or additionally include a bottom layer.


Each of the layers 602, 604, and 606 may be an elongated film, for example stored on a roll, and extending in either a first direction 620 or a second direction 622, e.g., respectively parallel or perpendicular relative to a length of the antenna stripe 608 and/or the loop antenna 614.


In one implementation, for example, the substrate 610 of the base layer 602 includes a plastic material, such as a TPU, and the antenna stripe 608 is a metallic electrically conductive material adhered to or printed onto the TPU material. Further, regarding the intermediate layer 604, the communication-enabled device 612 may include an integrated circuit having an RFID chip, the loop antenna 614 is a metallic electrically conductive material adhered to or printed onto the substrate 616, and the substrate 616 may be a plastic material, such as a polyethylene terephthalate (PET). In some alternative or additional implementations, hotmelt adhesive may be used to mount the communication-enabled device 612 to the substrate 616. The outer layer 606 may be a plastic material, such as a TPU.


In one implementation, the intermediate layer 604 is in the form of a wet inlay that is applied onto the base layer 602, with the communication-enabled device 612 and the loop antenna 614 being electrically connected to, or inductively coupled with, the antenna stripe 608, and then the outer layer 606 is laminated, e.g., using heat, onto the base layer 602. It should be understood, however, that the various layers may be manufactured and/or assembled in a different manner and/or in a different order and/or by different entities (e.g., antenna manufacturer, tag manufacturer, tag converter entities). Thus, the methods and structures herein provide a flexible, fabric-like narrow security tag 600 that can be easily and efficiently positioned (pulled or pushed) into a space between seams that connect to adjacent layers of material of an article of clothing.


Referring specifically to FIG. 7, a strip 700 of security tags 600 is formed as described above with the layers 602, 604, and 606 extending in direction 620.


Referring specifically to FIG. 8, a strip 800 of security tags 600 is formed as described above with the layers 602, 604, and 606 extending in direction 620.


Referring to FIGS. 9-11, in one example, an article of clothing 900 having two fixedly connected overlapping layers of material 902 and 904 includes a security tag 906 positioned through at least one opening, such as opening 908 and/or 910, into an interface space 912 between the two layers 902 and 904. The security tag 906 may be the same as or similar to 112, 118, 200, 400, 600. The two overlapping layers of material 902 and 904 may be fixedly connected by one or more opposing connectors 914 and 916 that are spaced apart in a manner to form the interface space 912 sized to receive the security tag 906. For example, in one implementation, the one or more connectors 914 may extend along line 918 and the opposing one or more connector 916 may extend along line 920 to form the interface space 912 extending along a portion of the article of clothing 900. For example, the interface space 912 may be defined as a space extending along an interface plane 922 formed by opposing surfaces of the overlapping layers of material 902 and 904, and further bounded by the one or more opposing connectors 914 and 916. Further, as the layers of material 902 and 904 may be formed of a material that is flexible and/or elastic, the interface space 912 may expand and/or deform to accommodate receiving the security tag 906 upon insertion of the security tag 906, and/or to accommodate receiving a tool used to insert the security tag 906, into the interface space 912. Suitable examples of the layers of material 902 and 904 may include, but are not limited to, any natural and/or artificial fabric or material used to make clothing or other articles, such as but not limited to cotton, polyester, stretch fabric (e.g., neoprene, elastomerics, spandex, elastane), leather, silk, hemp, etc. Although lines 918 and 920 are illustrated as straight lines, it should be understood that they may be curved lines, or a combination of straight lines, curved lines, and/or straight and curved lines. The one or more opposing connectors 914 and 916 may be any type of device and/or mechanism able to fixedly attach layer of material 902 to layer of material 904. Suitable examples of the connectors 914 and 916 may include, but are not limited to, thread, adhesive, rivets, anchors, fasteners, welds (e.g., via sonic welding), and/or any other layer-connecting mechanism. In some cases, the connectors 914 and 916 may be a double-stitched seam, where each connector 914 and 916 is a separate seam. For instance, in this case, each seam may be formed from a stitch of thread, such as but not limited to a chain stitch.


In this example, the security tag 906, and/or a tool used to insert the security tag 906 into the interface space 912, is sized to fit within opening 908 and/or 910. For example, a width 924 of the security tag 906 (and/or a tool used to position the security tag 906) may be equal to or less than a width 926 of the opening 908 and/or 910, and a height 928 of the security tag 906 (and/or a tool used to position the security tag 906) may be equal to or less than a height 930 to which the interface space 912 may deform and/or expand. In one example, the opening 908 and/or 910 may be formed near an end of at least one of the overlapping layers of material 902 and 904 by a spacing between adjacent ones of the connectors 916, such as along line 920.


In some cases, referred to as push-through placement, the security tag 906 may be pushed into one of the openings 908 or 910 and positioned within the interface space 912. In other cases, referred to as pull-through placement, the security tag 906 may be pulled into one of the openings 908 or 910 and positioned within the interface space 912. For example, in one implementation of a pull-through placement, an elongated tool such as a bodkin or a needle may be inserted into a first opening, such as opening 908, extended through the interface space 912 and out of a second opening, such as opening 910, and connected to an end of the security tag 906. Then, the elongated tool with the security tag 906 attached may then be pulled back through the interface space 912 in order to position the security tag 906 within the interface space 912. In some cases, the elongated tool and an end of the security tag 906 attached to the elongated tool may be pulled out of the first opening, and then the security tag 906 is disconnected from the elongated tool and pushed back into the first opening in order to finally position the security tag 906 in the interface space 912. In some cases where both openings are present, the openings 908 and 910 may be spaced apart a distance greater than a length of the security tag 906, for example, to enable the elongated tool and the security tag 906 to be maneuvered into the interface space 912. In other implementations, the openings 908 and 910 may be spaced apart a distance less than a length of the security tag 906, for example, when the two fixedly connected overlapping layers of material 902 and 904 are sufficiently flexible and/or elastic and/or deformable, and/or when the security tag 906 is sufficiently flexible, to enable the elongated tool and the security tag 906 to be maneuvered into the interface space 912.


Referring to FIGS. 12-14, in another example, an article of clothing 1000 is similar to the article of clothing 900 (FIGS. 9-11) in that is has two fixedly connected overlapping layers of material 902 and 904 and includes the security tag 906 positioned through at least one opening into the interface space 912, but in this case the at least one opening 1008 is in the form of a notch in one of the layers of material, such as in layer 902. The opening 1008, also referred to as notch 1008, in one layer of material, such a layer of material 902, exposes an inner surface of the opposing layer of material 904, thereby enabling the security tag 906 to be positioned within the interface space 912. The notch 1008 may have any size and/or shape sufficient to accommodate insertion of the security tag 906. For instance, the notch 1008 includes an opening dimension 1012, such as a width or length, equal to or greater than a width 924 of the security tag 906. Although illustrated herein as having an angular shape, it should be understood that the notch 1008 may have any shape configured to allow insertion of the security tag 906 into the interface space 912. In some cases, such as in a push-through placement of the security tag 906, the article of clothing 1000 may only have a single opening or notch 1008. In an alternative or additional case, such as in a pull-through placement of the security tag 906, the article of clothing 1000 may have a second opening or notch 1010 spaced apart from the first opening or notch 1008. As noted above with respect to the openings 908 and 910 of FIG. 9, the notches 1008 and 1010 may be spaced apart a distance greater than or less than the length of the security tag 906. In an implementation where the spacing of the notches 1008 and 1010 is less than the length of the security tag 906, such spacing may reduce the likelihood of the security tag 906 being able to work its way out of one of the notches 1008 and 1010 once positioned within the interface space 912. The connectors 914 and 916 may be the same as those described above, but the use of the notch 1008 and/or 1010 may be particularly suited for use with the connectors 914 and 916 including an overlock sewn stitch, where otherwise it may be difficult to find an area that provides an opening to the interface space 912 sufficiently sized to receive the security tag 906.


Consequently, in some cases, the configuration of the article of clothing 1000 including one or both notches 1008 and 1010 improves the ease of inserting the security tag 906 and reduces the time required to insert the security tag 906 in between the two layers of layers of material 902 and 904, such as when connected with overlock sewn stitches. The notch 1008 and/or 1010 or cut can be designed into the clothing pattern and added to the manufacturing process either at a cutting table prior to fabric assembly, during the cut and sew production, or added after the article of clothing 1000 is sewn.


In some implementations, the notch 1008 and/or 1010 or cut provides a preset location for the tool used in the pull-through placement scenario, allowing the security tag 906 to be more easily inserted. The notch 1008 and/or 1010 or cut eases the insertion of the tool by providing a path through one material layer and using the second material layer to provide a backing to begin sliding the tool between the two material layers contained in the sewn article of clothing 1000.


Referring to FIGS. 15A-15H, in one example implementation of one or more aspects described herein, a method for securing a security tag into an article of clothing includes using a tool to position the security tag into the interface space between two overlapping and fixedly connected layers of material. In order to insert a security tag into clothing articles (such as sewn garments) quickly and cost effectively, a tool such as, but not limited to, an elongate needle or bodkin 904, illustrated in FIG. 9A, may be provided.


In the method illustrated in FIGS. 15A-15H, after the article of clothing 1502 is finished, e.g., sewn together, the bodkin 1504 or other tool is moved, e.g., pushed by hand, into a first opening 1505 between two stitching lines 1506a and 1506b that fixedly attach two overlapping layers of fabric. In some aspects, inserting the bodkin 1504 into the first opening 1505 includes inserting the bodkin 1504 between a loop of a stitch of thread.


Next, as shown in FIG. 15B, the bodkin 1504 may be turned approximately 90 degrees and further translated within the interface space between the two stitching lines 1506a and 1506b and between the two layers of fabric. In an aspect, the length of the bodkin 1504 may be equal to or greater than the length of the security tag 1508 being inserted to enable the bodkin 1504 to extend far enough through interface space and the two stitching lines 1506a and 1506b to attach to, and be detached from, the security tag 1508 (shown in FIG. 15D).


For example, the bodkin 1504 may be pushed through the first opening 1505, through the interface space between the two stitching lines 1506a and 1506b, and partially out of a second opening 1514, such that the opposing end of the bodkin 1504 are respectively extending out of the second opening 1514, as shown in FIG. 15C, and the first opening 1505. In some aspects, extending the bodkin 1504 out of the second opening 1514 includes inserting the bodkin 1504 between a loop of a stitch of thread.


Subsequently, referring to FIG. 15D, one end of the security tag 1508 may be passed through an eyelet 1510 of the bodkin 1504, e.g., at the end of the bodkin 1504 extending out of the first opening 1505. As noted above, the security tag 1508 may be flexible, bendable, stretchable, or otherwise configured/constructed to sustain deformations. The security tag 1508 may be the same as or similar to tag 1121, . . . , 112N, 1181, . . . , 118x of FIG. 1, security tag 200 of FIG. 2, security tag 400 of FIGS. 4 and 5, security tag 600 of FIGS. 6-8, security tag 900 of FIG. 9, or security tag 1000 of FIG. 10. As such, the discussion provided above in relation to the above-noted tags is sufficient for understanding the operations of security tag 1508. In an aspect, only the insertion facilitation areas 510, 514 of the security tag 1508 (shown, for example in FIG. 5) may be passed through the eyelet 1510 of the bodkin 1504 and folded over. Advantageously, the insertion facilitation areas 510, 514 contain no electronic components.


When the security tag 1508 is releasably connected to the bodkin 1504, the bodkin 1504 may be pulled through the second opening 1514, so that the security tag 1508 is moved fully into an interface space between the two stitching lines 1506a and 1506b, as shown in FIG. 15E.


In FIG. 15F, the bodkin 1504 may be pulled until the insertion facilitation area 510 of the security tag 1508 exits through the second opening 1514.


In FIG. 15G, the bodkin 1504 is disconnected from the security tag 1508, leaving the insertion facilitation area 510 extending out of the second opening 1514.


Subsequently, the insertion facilitation area 510 may be pulled back into the interface between the two stitching lines 1506a and 1506b through the second opening 1514.


In FIG. 15H, the end result of the disclosed method includes the security tag 1508 being completely concealed between the stitching lines 1506a and 1506b (and/or between two layers of fabric) of the article of clothing 1502.


Referring to FIGS. 16A-16B, in one example implementation of one or more aspects described herein, an insertion notch is configured in one layer of fabric of the article of clothing 1502 to facilitate insertion of the security tag 1508 into an interface space between overlapping layers of fabric fixedly connected with overlock stitches. In an aspect, to facilitate the insertion of the security tag 1508, the first opening may comprise a notch 1602 in a first layer of the two layers of the article of clothing 1502, as shown in FIG. 16A. The two layers of the article of clothing 1502 may be stitched together by overlock stitches. In various aspects, the notch 1602 may be designed into the article of clothing item 1502 pattern and added to the process either at the cutting line prior to fabric assembly, during the cut and sew production or may be carefully added after the article of clothing 1502 is sewn.


The notch 1602 constitutes a preset area of the article of clothing 1502 into which the tools used in the method described in FIGS. 15A-15H may be more easily inserted. FIG. 16B shows the entry of the tool (for example, bodkin tool 1504) at the notch 1602. The notch 1602 allows the bodkin tool 1504 to slide between the two fabric layers of the article of clothing 1502, providing cover for the security tag 1508. In other words, the notch 1602 may facilitate the insertion of the bodkin tool 1504 by providing a path through one fabric layer of the article of clothing 1502 and using the second fabric layer to provide a backing to begin sliding the bodkin tool 1504 between the corresponding fabric layers contained in the sewn article of clothing 1502. In an aspect, to facilitate the insertion of the security tag 1508, the second opening may comprise a second notch 1604. Advantageously, at least one of the notches 1602 and 1604 may effectively facilitate attachment of the security tag 1508 to the article of clothing 1502 using the method described above in conjunction with FIGS. 15A-15H.


In some aspects, the security tag 1508 described herein with reference to various aspects may be configured to be flexible and also impervious to detergents, water, grease, oil, dirt, harsh chemicals, etc. In some non-limiting aspects, for example, the security tag 1508 may include an RFID inlay that provides flexibility so that the chip and antenna of the RFID inlay can be repeatedly stretched and deformed without damaging the functionality of the security tag 1508.


In some non-limiting aspects, the security tag 1508 described herein with reference to various aspects may be inserted, or otherwise incorporated into, any type of apparel and garments, handbags, belts, shoes, caps, hats, scarves, ties and other accessory items, etc. For example, in one non-limiting aspect, the security tag 1508 may be hidden behind the seams of running shoes. The security tag 1508 may also be used for household-type textiles, such as bed furnishings, window curtains, pillows, furniture cushions, blinds, table cloths, napkins, etc. The security tag 1508 may also be incorporated into camping tents and textile utility items, such as tarps. The security tag 1508 is particularly suitable for attachment to goods of a flexible, pliant nature (such as textiles). It will be understood that a list of possible applications for the security tag 1508 would be exhaustive in nature, and are not limited to those mentioned herein.


In some aspects, the security tag 1508 described herein with reference to various aspects may be inserted into an article of clothing 1502 by hand in such a way that the security tag 1508 is hidden or wholly undetectable when inserted into the article of clothing 1502. The security tag 1508 may be constructed using a soft, flexible substrate (e.g., TPU and/or fabric) and a sealing layer which is a flexible material coating (e.g., TPU). Since the security tag 1508 is soft and flexible, a person wearing or handling the article of clothing 1502 into which the security tag 1508 is inserted may not feel the presence of the security tag 1508. This also ensures that the security tag 1508 will not irritate a person's skin by continued contact with protruding components.


In some aspects, the security tag may be affixed into a desired position within the item (e.g., within the interface space or seam) by heat sealing (with heated tool) or High Frequency (HF) welding (depending on exact material) of the security tag to one or both of the fixedly connected layers, e.g., to the fabric or other material. As such, the material of the security tag, such as the substrate and/or any outer layer, may be a material suitable for attachment to the material of one or both layers.


In some aspects, the location within the item for inserting the security tag 1508 may be optimized based on RF reading properties. Furthermore, some locations provide better protections for the security tag 1508 in the washing cycle, for example.


In some aspects, the security tag 1508 may be inserted into an item without any tools. In one example, the end (the insertion facilitation areas 510, 514) of the security tag 1508 may be attached to a string, yarn or cable. In this case, the security tag 1508 may be moved utilizing the string, yarn or cable. For example, the string, yarn or cable may be placed into the interface space before two layers of fabric are sewn, such as in a position where the opposing ends of the string, yarn or cable extend out of the first opening and the second opening, respectively, when the two layers are fixedly connected.


In some aspects, the security tag 1508 inserted into an article of clothing 1502 may be removed at a later time, for example, by inserting a tool between the stitch lines concealing the security tag 1508. In such case, the security tag 1508 may be reused and inserted into a different item as described above.


In some aspects, the width of the security tag 1508 may range between about 1 mm and about 5 mm and the length of the security tag 1508 may range between about 80 mm and about 140 mm.


In other words, one aspect of the method for securing a security tag into an article of clothing includes positioning an end of the security tag into a first opening to an interface space between two layers of the article of clothing. The two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag. The security tag is moved fully into the interface space.


In one or any combination of these aspects, the method further includes inserting a tool into a second opening to the interface space that is spaced apart from the first opening; moving the tool to extend out of the first opening; connecting the security tag to the tool; and moving the tool, with the security tag releasaby connected thereto, back out of the second opening.


In one or any combination of these aspects, inserting the tool into the second opening includes inserting the tool between a loop of a stitch of thread.


In one or any combination of these aspects, inserting the tool into the second opening includes inserting the tool into a notch in a first layer of the two layers of the article of clothing.


In one or any combination of these aspects, the method further includes disconnecting the tool from the end of the security tag.


In one or any combination of these aspects, the method further includes moving the end of the security tag back into the interface space.


In one or any combination of these aspects, the method further includes removing a portion of the end of the security tag extending from the second opening from the security tag.


In one or any combination of these aspects, connecting the end of the security tag to the tool includes releasably connecting the end of the security tag to the tool by passing the end of the security tag through an eyelet of the tool and folding the end of the security tag around the eyelet and the method further includes disconnecting the tool from the end of the security tag by unfolding the end of the security tag from the eyelet and passing the end of the security tag back out of the eyelet.


In one or any combination of these aspects, the tool includes a bodkin.


In one or any combination of these aspects, the end of the security tag includes a first end opposing a second end and the method further includes pushing the first end of the security tag through the first opening until the second end passes through the first opening.


In one or any combination of these aspects, the end of the security tag is attached to a string and the security tag is moved utilizing the string, yarn or cable.


In one or any combination of these aspects, the security tag includes at least one layer having a tensile strength greater than 425 cN.


In one or any combination of these aspects, the security tag has an elongated rectangular shape adapted for inserting the security tag into the interface space.


In one or any combination of these aspects, a plurality of electronic components of the security tag are positioned in a section of the security tag spaced apart from the end.


In one or any combination of these aspects, the security tag includes a coating layer covering an electronic article surveillance component of the security tag.


In one or any combination of these aspects, the coating layer comprises a plastic material layer, as described above, and such as but not limited to Oeko-tex 100 certified materials, nylon, TPU, polyesters and co-polyesters, polyamides, and/or any material that can hermetically seal the components of the security tag.


In one or any combination of these aspects, the first opening is defined in a notch formed on a first layer of the two layers of the article of clothing.


In one or any combination of these aspects, the first opening is between a loop in a stitch connecting the two layers of the article of clothing.


In one or any combination of these aspects, the interface space is defined by two spaced apart seams formed by two stitch lines.


In one or any combination of these aspects, the interface space is defined by an overlock stitch.


In an aspect, the present disclosure relates to an article of clothing, comprising at least two overlapping layers of material, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag, and a security tag having an end configured to be positioned into a first opening to the interface space between the two layers.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof”′ include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module,” “mechanism,” “element,” “device,” and the like may not be a substitute for the word “means.” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”

Claims
  • 1. A method for securing a security tag into an article of clothing, comprising: inserting a tool into a first opening to an interface space between two layers of the article of clothing, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag;moving the tool to extend out of a second opening of the interface space;connecting the security tag to the tool;positioning an end of the security tag into the second opening; andmoving the security tag fully into the interface space by moving the tool, with the security tag releasably connected thereto, back out of the first opening.
  • 2. The method of claim 1, wherein inserting the tool into the first opening includes inserting the tool between a loop of a stitch of thread.
  • 3. The method of claim 1, wherein inserting the tool into the first opening includes inserting the tool into a notch in a first layer of the two layers of the article of clothing.
  • 4. The method of claim 1, further comprising: disconnecting the tool from the end of the security tag.
  • 5. The method of claim 4, further comprising: moving the end of the security tag back into the interface space.
  • 6. The method of claim 4, further comprising: removing a portion of the end of the security tag extending from the first opening from the security tag.
  • 7. The method of claim 1, further comprising: wherein connecting the end of the security tag to the tool includes releasably connecting the end of the security tag to the tool by passing the end of the security tag through an eyelet of the tool and folding the end of the security tag around the eyelet; andwherein disconnecting the tool from the end of the security tag includes unfolding the end of the security tag from the eyelet and passing the end of the security tag back out of the eyelet.
  • 8. The method of claim 1, wherein the tool comprises a bodkin.
  • 9. The method of claim 1, wherein the end of the security tag comprises a first end opposing a second end, and further comprising: pushing the first end of the security tag through the second opening until the second end passes through the second opening.
  • 10. The method of claim 1, wherein the end of the security tag is attached to a string, yarn, or cable, and wherein the security tag is moved utilizing the string, yarn, or cable.
  • 11. The method of claim 1, wherein the security tag includes at least one layer having a tensile strength greater than 425cN.
  • 12. The method of claim 1, wherein the security tag has an elongated rectangular shape adapted for inserting the security tag into the interface space.
  • 13. The method of claim 1, wherein a plurality of electronic components of the security tag are positioned in a section of the security tag spaced apart from the end.
  • 14. The method of claim 1, wherein the security tag includes a coating layer covering an electronic article surveillance component of the security tag.
  • 15. The method of claim 14, wherein the coating layer comprises a plastic material layer.
  • 16. The method of claim 1, wherein the second opening is defined in a notch formed on a first layer of the two layers of the article of clothing.
  • 17. The method of claim 1, wherein the second opening is between a loop in a stitch connecting the two layers of the article of clothing.
  • 18. The method of claim 1, wherein the interface space is defined by two spaced apart seams formed by two stitch lines.
  • 19. The method of claim 1, wherein the interface space is defined by an overlock stitch.
  • 20. The method of claim 1, wherein the two layers are fixedly connected by at least one of: heat sealing with a heated tool or High Frequency (HF) welding.
  • 21. A security tag configured to be secured to an article of clothing, the security tag comprising: an elongated substrate;an antenna mounted on the elongated substrate;a radio frequency identification (RFID) circuit mounted to the antenna;wherein a tool is configured to be inserted into a first opening to an interface space between two layers of the article of clothing, wherein the two layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form the interface space sized to receive the security tag;wherein the tool is configured to be moved to extend out of a second opening of the interface space;wherein the security tag is configured to be connected to the tool;wherein an end of the security tag is configured to be positioned into the second opening; andwherein the security tag is configured to be moved fully into the interface space by moving the tool, with the security tag releasably connected thereto, back out of the first opening.
  • 22. The security tag of claim 21, further comprising a coating layer that covers the RFID circuit and the antenna.
  • 23. The security tag of claim 22, wherein the coating layer comprises a plastic material layer.
  • 24. The security tag of claim 21, further comprising: a coupling adhesive layer, wherein the coupling adhesive layer couples the RFID circuit, the antenna and the elongated substrate.
  • 25. The security tag of claim 23, wherein the security tag has a first end and a second end, wherein a first end of the antenna has a first spacing from the first end of the security tag and a second end of the antenna has a second spacing from the second end of the security tag, and wherein the second spacing is substantially greater than the first spacing.
  • 26. The security tag of claim 25, wherein the coating layer covering a portion of the security tag extending from the second end of the antenna is thinner than the coating layer covering a remaining portion of the security tag.
  • 27. The security tag of claim 25, wherein bending modulus of elasticity of the coating layer is greater than 2 GPa.
  • 28. The security tag of claim 25, wherein thickness of the coating layer is greater than 50 um.
  • 29. The security tag of claim 21, wherein the elongated substrate includes an end section spaced apart from the RFID circuit and the antenna, and wherein the end section has a tensile strength greater than 425 cN.
  • 30. An article of clothing, comprising: at least two overlapping layers of material, wherein the at least two overlapping layers are fixedly connected by one or more opposing connectors that are spaced apart in a manner to form an interface space sized to receive a security tag, wherein a tool is configured to be inserted into a first opening to the interface space, wherein the tool is configured to be moved to extend out of a second opening of the interface space; andthe security tag configured to be connected to the tool, the security tag having an end configured to be positioned into the second opening, wherein the security tag is configured to be moved fully into the interface space by moving the tool, with the security tag releasably connected thereto, back out of the first opening.
US Referenced Citations (806)
Number Name Date Kind
5963144 Kruest Oct 1999 A
6091333 Oshima Jul 2000 A
6147655 Roesner Nov 2000 A
6152348 Finn et al. Nov 2000 A
6229443 Roesner May 2001 B1
6265976 Roesner Jul 2001 B1
6646336 Marmaropoulos et al. Nov 2003 B1
6690264 Dalglish Feb 2004 B2
6967579 Elizondo Nov 2005 B1
6982190 Roesner Jan 2006 B2
7026935 Diorio et al. Apr 2006 B2
7026936 Roesner Apr 2006 B2
7030786 Kaplan et al. Apr 2006 B2
7038544 Diorio et al. May 2006 B2
7038573 Bann May 2006 B2
7038603 Diorio et al. May 2006 B2
7049964 Hyde et al. May 2006 B2
7054595 Bann May 2006 B2
7061324 Diorio et al. Jun 2006 B2
7064653 Dalglish Jun 2006 B2
7107022 Thomas et al. Sep 2006 B1
7116240 Hyde Oct 2006 B2
7119664 Roesner Oct 2006 B2
7120550 Diorio et al. Oct 2006 B2
7123171 Kaplan et al. Oct 2006 B2
7154283 Weakley et al. Dec 2006 B1
7158408 Roesner et al. Jan 2007 B2
7183926 Diorio et al. Feb 2007 B2
7187237 Diorio et al. Mar 2007 B1
7187290 Hyde et al. Mar 2007 B2
7199456 Krappe et al. Apr 2007 B2
7199663 Diorio et al. Apr 2007 B2
7212446 Diorio et al. May 2007 B2
7215251 Hyde May 2007 B2
D543976 Oliver Jun 2007 S
D546819 Oliver Jul 2007 S
D546820 Oliver Jul 2007 S
D546821 Oliver Jul 2007 S
D546822 Oliver Jul 2007 S
D547306 Oliver Jul 2007 S
D547754 Oliver Jul 2007 S
7245213 Esterberg et al. Jul 2007 B1
7246751 Diorio et al. Jul 2007 B2
7247214 Chamandy et al. Jul 2007 B2
D548225 Oliver Aug 2007 S
7253719 Diorio et al. Aug 2007 B2
7253735 Gengel et al. Aug 2007 B2
7283037 Diorio et al. Oct 2007 B2
7304579 Diorio et al. Dec 2007 B2
7307528 Glidden et al. Dec 2007 B2
7307529 Gutnik et al. Dec 2007 B2
7307534 Pesavento Dec 2007 B2
7312622 Hyde et al. Dec 2007 B2
D562810 Oliver Feb 2008 S
D563397 Oliver Mar 2008 S
7375626 Ening May 2008 B2
7380190 Hara et al. May 2008 B2
D570337 Oliver Jun 2008 S
7382257 Thomas et al. Jun 2008 B2
7388468 Diorio et al. Jun 2008 B2
7389101 Diorio et al. Jun 2008 B2
7391329 Humes et al. Jun 2008 B2
7394324 Diorio et al. Jul 2008 B2
7400255 Horch Jul 2008 B2
7405659 Hyde Jul 2008 B1
7405660 Diorio et al. Jul 2008 B2
D574369 Oliver Aug 2008 S
D574370 Oliver Aug 2008 S
7408466 Diorio et al. Aug 2008 B2
7417548 Kavounas et al. Aug 2008 B2
7419096 Esterberg et al. Sep 2008 B2
7420469 Oliver Sep 2008 B1
7423539 Hyde et al. Sep 2008 B2
D578114 Oliver Oct 2008 S
7432814 Dietrich et al. Oct 2008 B2
7436308 Sundstrom et al. Oct 2008 B2
7448547 Esterberg Nov 2008 B2
7469126 Miettinen et al. Dec 2008 B2
7472835 Diorio et al. Jan 2009 B2
D586336 Oliver Feb 2009 S
7489248 Gengel et al. Feb 2009 B2
7492164 Hanhikorpi et al. Feb 2009 B2
D587691 Oliver Mar 2009 S
7501953 Diorio et al. Mar 2009 B2
7510117 Esterberg Mar 2009 B2
7518516 Azevedo et al. Apr 2009 B2
7525438 Hyde et al. Apr 2009 B2
D592192 Oliver May 2009 S
7528724 Horch May 2009 B2
7528728 Oliver et al. May 2009 B2
7541843 Hyde et al. Jun 2009 B1
7561866 Oliver et al. Jul 2009 B2
7589618 Diorio et al. Sep 2009 B2
7592897 Diorio et al. Sep 2009 B2
D605641 Oliver Dec 2009 S
D606056 Oliver Dec 2009 S
D606057 Oliver Dec 2009 S
7633376 Diorio et al. Dec 2009 B2
7651882 Bockorick et al. Jan 2010 B1
D610576 Oliver Feb 2010 S
7667231 Hyde et al. Feb 2010 B2
7667589 Desmons et al. Feb 2010 B2
D611037 Oliver Mar 2010 S
7679957 Ma et al. Mar 2010 B2
D613276 Oliver Apr 2010 S
7696882 Rahimi et al. Apr 2010 B1
7696947 Gallschuetz et al. Apr 2010 B2
7714593 Varpula et al. May 2010 B2
7715236 Hyde May 2010 B2
7719406 Bajahr May 2010 B2
D617320 Oliver Jun 2010 S
7733227 Pesavento et al. Jun 2010 B1
D620484 Oliver Jul 2010 S
D620928 Oliver Aug 2010 S
7768248 Hyde Aug 2010 B1
7768406 Peach et al. Aug 2010 B1
7787837 Mikuteit Aug 2010 B2
7804411 Copeland Sep 2010 B2
7808387 Kuhn Oct 2010 B1
7808823 Ma et al. Oct 2010 B2
7812729 Copeland Oct 2010 B2
7830262 Diorio et al. Nov 2010 B1
7830322 Oliver et al. Nov 2010 B1
7843399 Stobbe Nov 2010 B2
7872582 Diorio Jan 2011 B1
7884725 Kruest et al. Feb 2011 B2
7907899 Oliver Mar 2011 B1
7917088 Hyde et al. Mar 2011 B2
7920046 Aiouaz et al. Apr 2011 B1
7969364 Kriebel et al. Jun 2011 B2
7973643 Hyde et al. Jul 2011 B2
7973645 Moretti et al. Jul 2011 B1
7973661 Copeland Jul 2011 B2
7975414 Ritamäki et al. Jul 2011 B2
7978005 Hyde et al. Jul 2011 B1
7982611 Picasso et al. Jul 2011 B1
7990249 Hyde et al. Aug 2011 B1
7994897 Azevedo et al. Aug 2011 B2
7999675 Diorio et al. Aug 2011 B2
3044774 Diorio Oct 2011 A1
8028923 Shafran et al. Oct 2011 B2
8044801 Hyde et al. Oct 2011 B1
8056814 Martin et al. Nov 2011 B2
8063740 Diorio et al. Nov 2011 B1
8072327 Enyedy et al. Dec 2011 B2
8072329 Srinivas et al. Dec 2011 B1
8072332 Forster Dec 2011 B2
8077013 Cooper Dec 2011 B2
8082556 Aiouaz et al. Dec 2011 B1
8093617 Vicard et al. Jan 2012 B2
8093996 Heurtier Jan 2012 B2
8098134 Azevedo et al. Jan 2012 B2
8115590 Diorio et al. Feb 2012 B1
8115597 Oliver et al. Feb 2012 B1
8115632 Rahimi et al. Feb 2012 B1
8120494 Aiouaz et al. Feb 2012 B1
8134451 Diorio Mar 2012 B1
8154385 Aiouaz et al. Apr 2012 B2
8174367 Diorio May 2012 B1
8179265 Elizondo et al. May 2012 B2
8188867 Rietzler May 2012 B2
8188927 Koepp et al. May 2012 B1
8193912 Gutnik et al. Jun 2012 B1
8201748 Koepp et al. Jun 2012 B2
8224610 Diorio et al. Jul 2012 B2
8228175 Diorio et al. Jul 2012 B1
8237562 Picasso et al. Aug 2012 B1
8244201 Oliver et al. Aug 2012 B2
8258918 Diorio et al. Sep 2012 B1
8258955 Hyde et al. Sep 2012 B1
8260241 Hyde Sep 2012 B1
8279045 Diorio et al. Oct 2012 B2
8294582 Humes et al. Oct 2012 B1
8303389 Wilm Nov 2012 B2
8305764 Rietzler Nov 2012 B2
8325014 Sundstrom et al. Dec 2012 B1
8325042 Hyde et al. Dec 2012 B1
8326256 Kuhn Dec 2012 B1
8334751 Azevedo et al. Dec 2012 B2
8342402 Kriebel et al. Jan 2013 B2
8344857 Oliver et al. Jan 2013 B1
8350665 Sundstrom et al. Jan 2013 B1
8350702 Copeland et al. Jan 2013 B2
8354917 Diorio et al. Jan 2013 B2
8390425 Cooper et al. Mar 2013 B1
8390430 Sundstrom et al. Mar 2013 B1
8390431 Diorio Mar 2013 B1
8391785 Hyde et al. Mar 2013 B2
8427315 Aiouaz et al. Apr 2013 B2
8428515 Oliver Apr 2013 B1
8446258 Diorio et al. May 2013 B2
8448874 Koskelainen May 2013 B2
8451095 Azevedo et al. May 2013 B2
8451119 Rahimi et al. May 2013 B1
8451673 Pesavento et al. May 2013 B1
8471708 Diorio et al. Jun 2013 B1
8471773 Vicard et al. Jun 2013 B2
8511569 Koepp et al. Aug 2013 B1
8536075 Leonard Sep 2013 B2
8570157 Diorio et al. Oct 2013 B1
8587411 Diorio Nov 2013 B1
8593257 Diorio et al. Nov 2013 B1
D695278 Koskelainen Dec 2013 S
8600298 Hyde et al. Dec 2013 B1
8610580 Elizondo et al. Dec 2013 B2
8614506 Fassett et al. Dec 2013 B1
8616459 Sykko et al. Dec 2013 B2
8661652 Koepp et al. Mar 2014 B1
8665074 Diorio et al. Mar 2014 B1
8669872 Stanford et al. Mar 2014 B1
8669874 Kruest et al. Mar 2014 B2
8680973 Kruest et al. Mar 2014 B2
8698629 Stanford et al. Apr 2014 B1
8717145 Ho et al. May 2014 B2
D710337 Koskelainen Aug 2014 S
8796865 Fassett et al. Aug 2014 B1
8810376 Picasso et al. Aug 2014 B1
8814054 Brun et al. Aug 2014 B2
8816909 Jiang et al. Aug 2014 B2
8830038 Stanford et al. Sep 2014 B1
8830064 Stanford et al. Sep 2014 B1
8830065 Stanford et al. Sep 2014 B1
8866594 Diorio et al. Oct 2014 B1
8866595 Diorio et al. Oct 2014 B1
8866596 Diorio et al. Oct 2014 B1
8872636 Diorio et al. Oct 2014 B1
8881373 Koepp et al. Nov 2014 B1
8902627 Pesavento et al. Dec 2014 B1
8907795 Soto et al. Dec 2014 B2
8917179 Alicot et al. Dec 2014 B2
8917219 Semar et al. Dec 2014 B2
8952792 Srinivas et al. Feb 2015 B1
8967486 Chandramowle et al. Mar 2015 B2
8988199 Moretti et al. Mar 2015 B1
8991714 Elizondo et al. Mar 2015 B2
8998097 Launiainen Apr 2015 B2
9000835 Peach et al. Apr 2015 B1
D729780 Koskelainen et al. May 2015 S
9024729 Diorio et al. May 2015 B1
9024731 Diorio et al. May 2015 B1
9031504 Hyde et al. May 2015 B1
9035748 Greefkes May 2015 B2
9053400 Diorio et al. Jun 2015 B2
9058554 Kervinen et al. Jun 2015 B2
9064196 Gutnik et al. Jun 2015 B1
9064199 Nitta Jun 2015 B2
9070066 Oliver et al. Jun 2015 B1
9076049 Moretti et al. Jul 2015 B1
9087281 Maguire et al. Jul 2015 B2
9087282 Hyde et al. Jul 2015 B1
9104923 Stanford et al. Aug 2015 B1
9111283 Diorio et al. Aug 2015 B1
9129168 Diorio et al. Sep 2015 B1
9129169 Diorio et al. Sep 2015 B1
9135476 Virtanen Sep 2015 B2
9142881 Oliver et al. Sep 2015 B1
9165170 Gutnik et al. Oct 2015 B1
9178277 Moretti et al. Nov 2015 B1
9183717 Diorio et al. Nov 2015 B1
9189904 Diorio et al. Nov 2015 B1
9197294 Alicot et al. Nov 2015 B2
9202093 Nummila et al. Dec 2015 B2
9213870 Diorio et al. Dec 2015 B1
9213871 Diorio et al. Dec 2015 B1
9215809 Nieland et al. Dec 2015 B2
9239941 Diorio Jan 2016 B1
9247634 Kruest et al. Jan 2016 B2
9253876 Elizondo et al. Feb 2016 B2
9281552 Virtanen Mar 2016 B2
9299586 West et al. Mar 2016 B1
9305195 Diorio et al. Apr 2016 B1
9317799 Koepp et al. Apr 2016 B1
9325053 Virtanen et al. Apr 2016 B2
9330284 Diorio May 2016 B1
9342775 Forster May 2016 B2
9349032 Diorio et al. May 2016 B1
9349090 Srinivas et al. May 2016 B1
9373012 Pesavento et al. Jun 2016 B2
9390603 Li et al. Jul 2016 B2
9405945 Diorio et al. Aug 2016 B1
9430683 Hyde Aug 2016 B1
9454680 Diorio Sep 2016 B1
9460380 Koepp et al. Oct 2016 B1
9471816 Hyde et al. Oct 2016 B1
9489611 Diorio et al. Nov 2016 B1
9495631 Koepp et al. Nov 2016 B1
9501675 Diorio et al. Nov 2016 B1
9501736 Elizondo et al. Nov 2016 B2
9503160 Hyde Nov 2016 B1
9542636 Buehler Jan 2017 B2
9565022 Robshaw et al. Feb 2017 B1
9582690 Rietzler Feb 2017 B2
9589224 Patterson et al. Mar 2017 B2
9607191 Peach et al. Mar 2017 B1
9607286 Diorio Mar 2017 B1
9626619 Kruest et al. Apr 2017 B2
9633302 Heinrich Apr 2017 B1
9646186 Hyde et al. May 2017 B1
9652643 Pesavento et al. May 2017 B1
9690949 Diorio et al. Jun 2017 B1
9691243 Diorio et al. Jun 2017 B1
9697387 Bowman et al. Jul 2017 B1
9715605 Sundstrom et al. Jul 2017 B1
9740891 Robshaw et al. Aug 2017 B1
9747542 Elizondo et al. Aug 2017 B2
9767333 Diorio et al. Sep 2017 B1
9773133 Oliver et al. Sep 2017 B2
9773201 Shafran et al. Sep 2017 B2
9779599 Sharpy et al. Oct 2017 B2
9792472 Robshaw et al. Oct 2017 B1
9792543 Kuschewski et al. Oct 2017 B2
9805223 Bowman et al. Oct 2017 B1
9805235 Kruest et al. Oct 2017 B2
9818084 Diorio et al. Nov 2017 B1
9831724 Copeland et al. Nov 2017 B2
9846794 Greefkes Dec 2017 B2
9846833 Koepp et al. Dec 2017 B1
9852319 Pesavento et al. Dec 2017 B1
9875438 Diorio et al. Jan 2018 B1
9881186 Sundstrom et al. Jan 2018 B1
9881473 Diorio et al. Jan 2018 B1
9886658 Stanford et al. Feb 2018 B1
9887843 Robshaw et al. Feb 2018 B1
9911017 Uhl et al. Mar 2018 B2
9911018 Heinrich et al. Mar 2018 B1
9916483 Robshaw et al. Mar 2018 B1
9916484 Pesavento et al. Mar 2018 B2
9922215 Huhtasalo et al. Mar 2018 B2
9928388 Bowman et al. Mar 2018 B1
9928390 Diorio et al. Mar 2018 B1
9940490 Robshaw et al. Apr 2018 B1
9953198 Kohler et al. Apr 2018 B2
9954278 Moretti et al. Apr 2018 B1
9959435 Diorio et al. May 2018 B1
9959494 Shyamkumar et al. May 2018 B1
9977932 Rietzler May 2018 B2
10002266 Hyde et al. Jun 2018 B1
10013587 Pesavento et al. Jul 2018 B1
10037444 Sundstrom et al. Jul 2018 B1
10043046 Robshaw et al. Aug 2018 B1
10049317 Diorio et al. Aug 2018 B1
10061950 Pesavento et al. Aug 2018 B1
10068167 Huhtasalo Sep 2018 B2
10084597 Robshaw et al. Sep 2018 B1
10116033 Koepp et al. Oct 2018 B1
10121033 Robshaw et al. Nov 2018 B1
10133894 Kruest et al. Nov 2018 B2
10146969 Diorio et al. Dec 2018 B1
10169625 Diorio et al. Jan 2019 B1
10186127 Diorio et al. Jan 2019 B1
10204245 Diorio et al. Feb 2019 B1
10204246 Maguire et al. Feb 2019 B1
10235545 Kruest et al. Mar 2019 B2
10262167 Nyalamadugu et al. Apr 2019 B2
10311351 Diorio et al. Jun 2019 B1
10311353 Diorio et al. Jun 2019 B1
10325125 Pesavento et al. Jun 2019 B1
10331993 Koepp et al. Jun 2019 B1
10339436 Huhtasalo Jul 2019 B2
10373038 Stanford Aug 2019 B1
10373115 Diorio et al. Aug 2019 B1
10402710 Diorio et al. Sep 2019 B1
10417085 Diorio Sep 2019 B1
10417464 Huhtasalo et al. Sep 2019 B2
10430623 Pesavento et al. Oct 2019 B1
10445535 Hyde et al. Oct 2019 B1
D865726 Oliver Nov 2019 S
10474851 Greefkes Nov 2019 B2
RE47755 Hyde et al. Dec 2019 E
10521768 Diorio et al. Dec 2019 B1
10546162 Diorio Jan 2020 B1
10558828 Martinez De Velasco Cortina et al. Feb 2020 B2
10572703 Shyamkumar et al. Feb 2020 B1
10572789 Stanford et al. Feb 2020 B1
D879077 Oliver Mar 2020 S
10600298 Diorio et al. Mar 2020 B1
10650201 Maguire et al. May 2020 B1
10650202 Robshaw et al. May 2020 B1
10650346 Pesavento et al. May 2020 B1
10664670 Diorio et al. May 2020 B1
D887400 Oliver Jun 2020 S
10679019 Thomas et al. Jun 2020 B1
10679115 Huhtasalo Jun 2020 B2
10699178 Diorio et al. Jun 2020 B1
10713453 Diorio et al. Jul 2020 B1
10713549 Peach et al. Jul 2020 B1
10719671 Robshaw et al. Jul 2020 B1
10720700 Moretti et al. Jul 2020 B1
10733395 Diorio et al. Aug 2020 B1
10740574 Stanford et al. Aug 2020 B1
10776198 Diorio Sep 2020 B1
10783424 Trivelpiece et al. Sep 2020 B1
10790160 Singleton et al. Sep 2020 B2
10819319 Hyde Oct 2020 B1
10824824 Diorio Nov 2020 B1
10846583 Koepp et al. Nov 2020 B1
10860819 Pesavento et al. Dec 2020 B1
10878371 Stanford et al. Dec 2020 B1
10878685 Diorio et al. Dec 2020 B1
10885417 Stanford et al. Jan 2021 B1
10885421 Diorio et al. Jan 2021 B1
10902308 Gire et al. Jan 2021 B2
10916114 Diorio et al. Feb 2021 B1
10929734 Hyde et al. Feb 2021 B1
10936929 Diorio et al. Mar 2021 B1
10956693 Shyamkumar et al. Mar 2021 B1
10995523 Claeys et al. May 2021 B2
11017187 Thomas et al. May 2021 B1
11017349 Diorio et al. May 2021 B1
11024936 Koepp et al. Jun 2021 B1
11062190 Diorio et al. Jul 2021 B1
11107034 Pesavento et al. Aug 2021 B1
D929975 Abdul Rahman Sep 2021 S
11120320 Robshaw et al. Sep 2021 B1
11132589 Chandramowle et al. Sep 2021 B2
11188803 Patil et al. Nov 2021 B1
11200387 Stanford et al. Dec 2021 B1
11232340 Diorio et al. Jan 2022 B1
11244282 Diorio et al. Feb 2022 B1
11259443 Kunasekaran et al. Feb 2022 B1
11282357 Claeys et al. Mar 2022 B2
11288564 Koepp et al. Mar 2022 B1
11300467 Boellaard et al. Apr 2022 B2
11321547 Pesavento et al. May 2022 B1
11341343 Diorio May 2022 B1
11341837 Diorio et al. May 2022 B1
11361174 Robshaw et al. Jun 2022 B1
11403505 Diorio et al. Aug 2022 B1
11423278 Koepp et al. Aug 2022 B1
11443160 Trivelpiece et al. Sep 2022 B2
11461570 Shyamkumar et al. Oct 2022 B1
11481591 Peach et al. Oct 2022 B1
11481592 Diorio et al. Oct 2022 B1
11514254 Diorio Nov 2022 B1
11514255 Thomas et al. Nov 2022 B1
11519200 Claeys et al. Dec 2022 B2
20010034063 Saunders et al. Oct 2001 A1
20020088154 Sandt et al. Jul 2002 A1
20020097143 Dalglish Jul 2002 A1
20030136503 Green et al. Jul 2003 A1
20040026754 Liu et al. Feb 2004 A1
20040125040 Ferguson et al. Jul 2004 A1
20040192011 Roesner Sep 2004 A1
20040195593 Diorio et al. Oct 2004 A1
20040200061 Coleman et al. Oct 2004 A1
20050001785 Ferguson et al. Jan 2005 A1
20050052281 Bann Mar 2005 A1
20050054293 Bann Mar 2005 A1
20050057341 Roesner Mar 2005 A1
20050058292 Diorio et al. Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050068180 Miettinen et al. Mar 2005 A1
20050093690 Miglionico May 2005 A1
20050099269 Diorio et al. May 2005 A1
20050099270 Diorio et al. May 2005 A1
20050140448 Diorio et al. Jun 2005 A1
20050140449 Diorio et al. Jun 2005 A1
20050162233 Diorio et al. Jul 2005 A1
20050185460 Roesner et al. Aug 2005 A1
20050200402 Diorio et al. Sep 2005 A1
20050200415 Diorio et al. Sep 2005 A1
20050200416 Diorio et al. Sep 2005 A1
20050200417 Diorio et al. Sep 2005 A1
20050212674 Desmons et al. Sep 2005 A1
20050223286 Forster Oct 2005 A1
20050225433 Diorio et al. Oct 2005 A1
20050225434 Diorio et al. Oct 2005 A1
20050225435 Diorio et al. Oct 2005 A1
20050225436 Diorio et al. Oct 2005 A1
20050225447 Diorio et al. Oct 2005 A1
20050237157 Cooper et al. Oct 2005 A1
20050237158 Cooper et al. Oct 2005 A1
20050237159 Cooper et al. Oct 2005 A1
20050237162 Hyde et al. Oct 2005 A1
20050237843 Hyde Oct 2005 A1
20050237844 Hiyde Oct 2005 A1
20050240369 Diorio et al. Oct 2005 A1
20050240370 Diorio et al. Oct 2005 A1
20050240739 Pesavento Oct 2005 A1
20050269408 Esterberg et al. Dec 2005 A1
20050270141 Dalglish Dec 2005 A1
20050270185 Esterberg Dec 2005 A1
20050270189 Kaplan et al. Dec 2005 A1
20050275533 Hanhikorpi et al. Dec 2005 A1
20050280505 Humes et al. Dec 2005 A1
20050280506 Lobanov et al. Dec 2005 A1
20050280507 Diorio et al. Dec 2005 A1
20050282495 Forster Dec 2005 A1
20060033622 Hyde et al. Feb 2006 A1
20060043198 Forster Mar 2006 A1
20060044769 Forster et al. Mar 2006 A1
20060049917 Hyde et al. Mar 2006 A1
20060049928 Ening Mar 2006 A1
20060055620 Oliver et al. Mar 2006 A1
20060063323 Munn Mar 2006 A1
20060071758 Cooper et al. Apr 2006 A1
20060071759 Cooper et al. Apr 2006 A1
20060071793 Pesavento Apr 2006 A1
20060071796 Korzeniewski Apr 2006 A1
20060082442 Sundstrom Apr 2006 A1
20060086810 Diorio et al. Apr 2006 A1
20060098765 Thomas et al. May 2006 A1
20060125505 Glidden et al. Jun 2006 A1
20060125506 Hara et al. Jun 2006 A1
20060125507 Hyde et al. Jun 2006 A1
20060125508 Glidden et al. Jun 2006 A1
20060125641 Forster Jun 2006 A1
20060133140 Gutnik et al. Jun 2006 A1
20060133175 Gutnik et al. Jun 2006 A1
20060145710 Puleston et al. Jul 2006 A1
20060145855 Diorio et al. Jul 2006 A1
20060145861 Forster et al. Jul 2006 A1
20060145864 Jacober et al. Jul 2006 A1
20060163370 Diorio et al. Jul 2006 A1
20060164214 Bajahr Jul 2006 A1
20060186960 Diorio et al. Aug 2006 A1
20060187031 Moretti et al. Aug 2006 A1
20060187094 Kaplan et al. Aug 2006 A1
20060197668 Oliver et al. Sep 2006 A1
20060199551 Thomas et al. Sep 2006 A1
20060202705 Forster Sep 2006 A1
20060202831 Horch Sep 2006 A1
20060206277 Horch Sep 2006 A1
20060211386 Thomas et al. Sep 2006 A1
20060220639 Hyde Oct 2006 A1
20060220865 Babine et al. Oct 2006 A1
20060221715 Ma et al. Oct 2006 A1
20060224647 Gutnik Oct 2006 A1
20060226982 Forster Oct 2006 A1
20060226983 Forster et al. Oct 2006 A1
20060236203 Diorio et al. Oct 2006 A1
20060238345 Ferguson et al. Oct 2006 A1
20060244598 Hyde et al. Nov 2006 A1
20060250245 Forster Nov 2006 A1
20060250246 Forster Nov 2006 A1
20060252182 Wang et al. Nov 2006 A1
20060261950 Arneson Nov 2006 A1
20060261952 Kavounas et al. Nov 2006 A1
20060261953 Diorio et al. Nov 2006 A1
20060261954 Dietrich et al. Nov 2006 A1
20060261955 Humes et al. Nov 2006 A1
20060261956 Sundstrom et al. Nov 2006 A1
20060271328 Forster Nov 2006 A1
20060273170 Forster et al. Dec 2006 A1
20070001856 Diorio et al. Jan 2007 A1
20070008238 Liu et al. Jan 2007 A1
20070024446 Hyde et al. Feb 2007 A1
20070035466 Coleman et al. Feb 2007 A1
20070039687 Hamilton et al. Feb 2007 A1
20070046432 Aiouaz et al. Mar 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070060075 Mikuteit Mar 2007 A1
20070085685 Phaneuf et al. Apr 2007 A1
20070109129 Sundstrom et al. May 2007 A1
20070126584 Hyde et al. Jun 2007 A1
20070136583 Diorio et al. Jun 2007 A1
20070136584 Diorio et al. Jun 2007 A1
20070136585 Diorio et al. Jun 2007 A1
20070141760 Ferguson et al. Jun 2007 A1
20070144662 Armijo et al. Jun 2007 A1
20070152073 Esterberg Jul 2007 A1
20070156281 Eung et al. Jul 2007 A1
20070164851 Cooper Jul 2007 A1
20070171129 Coleman et al. Jul 2007 A1
20070172966 Hyde et al. Jul 2007 A1
20070177738 Diorio et al. Aug 2007 A1
20070180009 Gutnik Aug 2007 A1
20070216533 Hyde et al. Sep 2007 A1
20070218571 Stoughton et al. Sep 2007 A1
20070220737 Stoughton et al. Sep 2007 A1
20070221737 Diorio et al. Sep 2007 A2
20070236331 Thompson et al. Oct 2007 A1
20070236335 Aiouaz et al. Oct 2007 A1
20070241762 Varpula et al. Oct 2007 A1
20070296590 Diorio et al. Dec 2007 A1
20070296603 Diorio et al. Dec 2007 A1
20080006702 Diorio et al. Jan 2008 A2
20080018489 Kruest et al. Jan 2008 A1
20080024273 Kruest et al. Jan 2008 A1
20080030342 Elizondo et al. Feb 2008 A1
20080046492 Sundstrom Feb 2008 A1
20080048833 Oliver Feb 2008 A1
20080048867 Oliver et al. Feb 2008 A1
20080084275 Azevedo et al. Apr 2008 A1
20080094214 Azevedo et al. Apr 2008 A1
20080136602 Ma et al. Jun 2008 A1
20080180217 Isabell Jul 2008 A1
20080180255 Isabell Jul 2008 A1
20080197978 Diorio et al. Aug 2008 A1
20080197979 Enyedy et al. Aug 2008 A1
20080204195 Diorio et al. Aug 2008 A1
20080232883 Klein et al. Sep 2008 A1
20080232894 Neuhard Sep 2008 A1
20080258878 Dietrich et al. Oct 2008 A1
20080258916 Diorio et al. Oct 2008 A1
20080266098 Aiouaz et al. Oct 2008 A1
20080297421 Kriebel et al. Dec 2008 A1
20080314990 Rietzler Dec 2008 A1
20080315992 Forster Dec 2008 A1
20090002132 Diorio et al. Jan 2009 A1
20090015382 Greefkes Jan 2009 A1
20090027173 Forster Jan 2009 A1
20090033495 Abraham et al. Feb 2009 A1
20090038735 Kian Feb 2009 A1
20090091424 Rietzler Apr 2009 A1
20090123704 Shafran et al. May 2009 A1
20090146785 Forster Jun 2009 A1
20090184824 Forster Jul 2009 A1
20090189770 Wirrig et al. Jul 2009 A1
20090194588 Blanchard et al. Aug 2009 A1
20090200066 Vicard et al. Aug 2009 A1
20090212919 Selgrath et al. Aug 2009 A1
20090237220 Oliver et al. Sep 2009 A1
20090251293 Azevedo et al. Oct 2009 A1
20100032900 Wilm Feb 2010 A1
20100033297 Patovirta Feb 2010 A1
20100050487 Weightman et al. Mar 2010 A1
20100060456 Forster Mar 2010 A1
20100060459 Stole et al. Mar 2010 A1
20100079286 Phaneuf Apr 2010 A1
20100079287 Forster et al. Apr 2010 A1
20100079290 Phaneuf Apr 2010 A1
20100126000 Forster May 2010 A1
20100155492 Forster Jun 2010 A1
20100156640 Forster Jun 2010 A1
20100182129 Hyde et al. Jul 2010 A1
20100226107 Rietzler Sep 2010 A1
20100245182 Vicard et al. Sep 2010 A1
20100259392 Chamandy et al. Oct 2010 A1
20100270382 Koepp et al. Oct 2010 A1
20110000970 Abraham Jan 2011 A1
20110062236 Kriebel et al. Mar 2011 A1
20110114734 Tiedmann et al. May 2011 A1
20110121082 Phaneuf May 2011 A1
20110121972 Phaneuf et al. May 2011 A1
20110155811 Rietzler Jun 2011 A1
20110155813 Forster Jun 2011 A1
20110160548 Forster Jun 2011 A1
20110163849 Kruest et al. Jul 2011 A1
20110163879 Kruest et al. Jul 2011 A1
20110175735 Forster Jul 2011 A1
20110185607 Forster et al. Aug 2011 A1
20110253794 Koskelainen Oct 2011 A1
20110256357 Forster Oct 2011 A1
20110267254 Semar et al. Nov 2011 A1
20110285511 Maguire et al. Nov 2011 A1
20110289023 Forster et al. Nov 2011 A1
20110289647 Chiao et al. Dec 2011 A1
20110307309 Forster et al. Dec 2011 A1
20120019358 Azevedo et al. Jan 2012 A1
20120038461 Forster Feb 2012 A1
20120050011 Forster Mar 2012 A1
20120061473 Forster et al. Mar 2012 A1
20120118975 Forster May 2012 A1
20120154121 Azevedo et al. Jun 2012 A1
20120164405 Webb et al. Jun 2012 A1
20120173440 Dehlinger et al. Jul 2012 A1
20120175621 Backlund et al. Jul 2012 A1
20120182147 Forster Jul 2012 A1
20120234921 Tiedmann et al. Sep 2012 A1
20120235870 Forster Sep 2012 A1
20120261477 Elizondo et al. Oct 2012 A1
20120274448 Marcus et al. Nov 2012 A1
20120279100 Burout et al. Nov 2012 A1
20120290440 Hoffman et al. Nov 2012 A1
20120292399 Launiainen Nov 2012 A1
20130059534 Sobalvarro et al. Mar 2013 A1
20130075481 Raymond et al. Mar 2013 A1
20130082113 Cooper Apr 2013 A1
20130092742 Brun et al. Apr 2013 A1
20130105586 Sykköet al. May 2013 A1
20130107042 Forster May 2013 A1
20130113627 Tiedmann May 2013 A1
20130135080 Virtanen May 2013 A1
20130135104 Nikkanen May 2013 A1
20130141222 Garcia Jun 2013 A1
20130161382 Bauer et al. Jun 2013 A1
20130163640 Aiouaz et al. Jun 2013 A1
20130265139 Nummila et al. Oct 2013 A1
20130277432 Katworapattra et al. Oct 2013 A1
20130285795 Virtanen et al. Oct 2013 A1
20130291375 Virtanen et al. Nov 2013 A1
20140070010 Diorio et al. Mar 2014 A1
20140070923 Forster et al. Mar 2014 A1
20140073071 Diorio et al. Mar 2014 A1
20140084460 Nieland et al. Mar 2014 A1
20140103119 Elizondo et al. Apr 2014 A1
20140111314 Rietzler Apr 2014 A1
20140144992 Diorio et al. May 2014 A1
20140158777 Gladstone Jun 2014 A1
20140191043 Forster Jul 2014 A1
20140209694 Forster Jul 2014 A1
20140263655 Forster Sep 2014 A1
20140263659 Kervinen et al. Sep 2014 A1
20140266633 Marcus Sep 2014 A1
20140317909 Virtanen Oct 2014 A1
20150022323 Kruest et al. Jan 2015 A1
20150024523 Virtanen Jan 2015 A1
20150032569 Stromberg Jan 2015 A1
20150048170 Forster Feb 2015 A1
20150076238 Koskelainen Mar 2015 A1
20150107092 Bashan et al. Apr 2015 A1
20150115038 Kuschewski et al. Apr 2015 A1
20150181696 Elizondo et al. Jun 2015 A1
20150227832 Diorio et al. Aug 2015 A1
20150235062 Greefkes Aug 2015 A1
20150248604 Diorio et al. Sep 2015 A1
20150262053 Buehler Sep 2015 A1
20150328871 de Castro Nov 2015 A1
20150351689 Adams et al. Dec 2015 A1
20150353292 Roth Dec 2015 A1
20150356395 Haring et al. Dec 2015 A1
20160019452 Forster Jan 2016 A1
20160027022 Benoit et al. Jan 2016 A1
20160034728 Oliver et al. Feb 2016 A1
20160042206 Pesavento Feb 2016 A1
20160137396 Brownfield May 2016 A1
20160154618 Duckett Jun 2016 A1
20160157348 Elizondo et al. Jun 2016 A1
20160162776 Kruest et al. Jun 2016 A1
20160172742 Forster Jun 2016 A1
20160172743 Forster Jun 2016 A1
20160189020 Duckett et al. Jun 2016 A1
20160203395 Huhtasalo Jul 2016 A1
20160214422 Deyoung et al. Jul 2016 A1
20160233188 Kriebel et al. Aug 2016 A1
20160253732 Brown Sep 2016 A1
20160321479 Uhl et al. Nov 2016 A1
20160336198 Singleton et al. Nov 2016 A1
20160342821 Nyalamadugu et al. Nov 2016 A1
20160342883 Huhtasalo Nov 2016 A1
20160364589 Roth Dec 2016 A1
20170011664 Forster et al. Jan 2017 A1
20170068882 Elizondo et al. Mar 2017 A1
20170091498 Forster et al. Mar 2017 A1
20170098393 Duckett et al. Apr 2017 A1
20170124363 Rietzler May 2017 A1
20170161601 Sevaux Jun 2017 A1
20170169263 Kohler et al. Jun 2017 A1
20170235982 Kruest et al. Aug 2017 A1
20170243032 Pesavento et al. Aug 2017 A1
20170286819 Huhtasalo Oct 2017 A9
20170305068 Caldwell et al. Oct 2017 A1
20170364716 Huhtasalo et al. Dec 2017 A1
20180032774 Kruest et al. Feb 2018 A1
20180096176 Greefkes Apr 2018 A1
20180101759 Forster Apr 2018 A1
20180121690 Forster et al. May 2018 A1
20180123220 Forster May 2018 A1
20180137314 Roth May 2018 A1
20180157873 Roth Jun 2018 A1
20180157874 Huhtasalo et al. Jun 2018 A1
20180157879 Forster Jun 2018 A1
20180165485 Martinez De Velasco Cortina et al. Jun 2018 A1
20180268175 Rietzler Sep 2018 A1
20180336383 Roth Nov 2018 A1
20190026616 Bourque et al. Jan 2019 A1
20190057289 Bauer et al. Feb 2019 A1
20190087705 Bourque et al. Mar 2019 A1
20190147773 Cockerell May 2019 A1
20190205724 Roth Jul 2019 A1
20190220724 Huhtasalo Jul 2019 A1
20190244072 Forster Aug 2019 A1
20190251411 Gire et al. Aug 2019 A1
20190266464 Forster Aug 2019 A1
20190389613 Colarossi Dec 2019 A1
20190391560 Arene et al. Dec 2019 A1
20200006840 Forster Jan 2020 A1
20200051463 Melo Feb 2020 A1
20200126454 Sevaux Apr 2020 A1
20200134408 Law Apr 2020 A1
20200151401 Dyche et al. May 2020 A1
20200160142 Roth May 2020 A1
20200193260 Forster Jun 2020 A1
20200193261 de Backer Jun 2020 A1
20200193455 Hoffman et al. Jun 2020 A1
20200202294 Duckett et al. Jun 2020 A1
20200207116 Raphael et al. Jul 2020 A1
20200249109 Singleton et al. Aug 2020 A1
20200265446 Vargas Aug 2020 A1
20200335475 Rolland et al. Oct 2020 A1
20200381829 Andia Vera et al. Dec 2020 A1
20200394697 Paolella et al. Dec 2020 A1
20210158114 Chandramowle et al. May 2021 A1
20210215562 Boellaard et al. Jul 2021 A1
20210241063 Thirappa et al. Aug 2021 A1
20210312471 Iyer Oct 2021 A1
20220012439 Duckett et al. Jan 2022 A1
20220171951 Vargas et al. Jun 2022 A1
20220180014 Barr et al. Jun 2022 A1
20220196500 Singleton et al. Jun 2022 A1
20220215353 Duckett Jul 2022 A1
20220223019 Shakedd Jul 2022 A1
20220230134 Pursell et al. Jul 2022 A1
20220269919 de Backer Aug 2022 A1
20220277152 Forster Sep 2022 A1
20220284253 Garcia et al. Sep 2022 A1
20220318532 Roth Oct 2022 A1
20220358337 Diorio et al. Nov 2022 A1
20220358339 Forster et al. Nov 2022 A1
20220358340 Sowle et al. Nov 2022 A1
20220391654 Forster Dec 2022 A1
20220398424 Forster Dec 2022 A1
20220398425 Roth Dec 2022 A1
20220414356 Roth Dec 2022 A1
20220414411 Forster Dec 2022 A1
Foreign Referenced Citations (42)
Number Date Country
101523605 Sep 2009 CN
101711430 May 2010 CN
103080392 May 2013 CN
110326100 Oct 2019 CN
110945716 Mar 2020 CN
102006051379 Apr 2008 DE
102007001411 Jul 2008 DE
2057687 May 2009 EP
2158604 Mar 2010 EP
2405054 Feb 2013 EP
2585628 May 2013 EP
3319168 May 2018 EP
3574521 Dec 2019 EP
3662534 Jun 2020 EP
3796225 Mar 2021 EP
3923195 Dec 2021 EP
2905518 Mar 2008 FR
2917895 Dec 2008 FR
2961947 Dec 2011 FR
3058579 May 2018 FR
3062515 Aug 2018 FR
3069962 Feb 2019 FR
3078980 Sep 2019 FR
3103043 May 2021 FR
3103044 May 2021 FR
3103630 May 2021 FR
2010502030 Jan 2010 JP
2010530630 Sep 2010 JP
5059110 Oct 2012 JP
2013529807 Jul 2013 JP
5405457 Feb 2014 JP
5815692 Nov 2015 JP
2017125274 Jul 2017 JP
6417461 Nov 2018 JP
2020505714 Feb 2020 JP
2007104634 Sep 2007 WO
2008025889 Mar 2008 WO
2009004243 Jan 2009 WO
2011161336 Dec 2011 WO
2018138437 Aug 2018 WO
2019025683 Feb 2019 WO
2019175509 Sep 2019 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion issued in International Patent Application No. PCT/US2022/081964 dated Apr. 21, 2023.
Related Publications (1)
Number Date Country
20230206739 A1 Jun 2023 US