The present invention relates to a securing device which is adapted for running along an elongate securing means on a person to be secured. The present invention relates to a method for securing a person with a securing device which is adapted for running along an elongate securing means on a person to be secured.
For cleaning and maintenance work on higher buildings, climbing aids, in particular ladders, are frequently provided with a securing rail or a securing cable, whereon a fall arrester is guided displaceably or in a co-running manner. The fall arrester can be connected to a harness worn by the person to be secured so that this person is secured against falling. When ascending or descending on the ladder, the fall arrester virtually necessarily follows the person to be secured. The harness worn by the person to be secured is either directly or indirectly connected via a safety lanyard to a brake actuating member for actuating a brake or a locking apparatus of the fall arrester. If the brake actuating member is subjected to a larger force in the downward direction, which is the case for example when the person to be secured falls, the fall arrester is necessarily locked on the rail or clamps the safety lanyard.
It is an object of the present invention to provide a robust and simple-to-operate cable securing device for securing a climber on a securing means.
The object is solved with a securing device and with a method for securing a person with a securing device according to the independent claims.
According to a first aspect of the present invention, a securing device is described which is adapted for running along an elongate securing means on a person to be secured. The securing device comprises a base body having a guide element, a receiving body, which has a longitudinal axis, a housing, which is fastened movably on the base body and a securing element having a first securing bolt.
The receiving body is disposed on the base body in such a manner that the securing means is guidable, e.g. in a groove of the receiving body, between the receiving body and the guide element. The securing element is fastened rotatably about a first axis of rotation on the base body. The first securing bolt is coupled to the housing in such a manner that during a movement of the housing relative to the base body the securing element is rotatable about the first axis of rotation so that as a result of a first rotation one end of the securing element is movable in the direction of the receiving body (e.g. in the direction of the groove) so that the securing means is clampable between the receiving body and the securing element.
According to a further aspect of the present invention, a method for securing a person with the securing device described above is described, which is adapted for running along an elongate securing means on a person to be secured. According to the method, the securing means is guided between the receiving body and the guide element, for example, if the person to be secured or the climber climbs with the securing device along the securing means.
A cable, a belt or a retaining rod can be described as securing means within the framework of the present application. The person to be secured is fastened to the securing means by the securing device, where by the securing device the person to be secured can move along the securing means or can climb along said means.
The base body, for example, has a plate-shaped geometry. The base body is designed to be solid and stable or undeformable. The climber can be coupled directly or indirectly to the base body. The base body is configured to be solid in such a manner that, for example, more than the body weight of the climber can be received in the base body without resulting in deformations of the base body. The climber can be fastened to the base body, for example, by a retaining cable or by a brake cable.
The base body further comprises, for example, a first (e.g. plate-shaped) base element and a second (e.g. plate-shaped) base element. The first base element and the second base element are formed at a distance from one another and rigidly connected to one another by connecting elements so that a cavity is formed between the first base element and the second base element. The bolts or pivot pins described in the following can be fastened in the first base element and the second base element and run through the cavity. A more stable mounting of the bolts or pivot pins is thus created since these are each fastened to the base body at two fastening points.
Furthermore, the base body has the guide element. If the securing means is inserted between the receiving body and the guide element, the securing element rests on the guide element and can slide along the guide element or move relative to the guide element. The guide element can, for example, be configured as a cable guide roller. Furthermore the guide element can have a coated surface so that small frictional forces are produced between the securing means and the guide element.
The receiving body can, for example, comprise a cylindrical or rod-shaped body shape or a piston shape. The receiving body has a longitudinal axis which, for example, forms an axis of symmetry of the receiving body.
The receiving body can comprise a groove which is configured in such a manner that the securing means can be inserted at least partially into the groove. The groove in particular has a rectilinear, non-curved profile. The groove extends along a direction which runs, for example, parallel to the direction of the longitudinal axis. The securing means is, for example, inserted between the guide element and the groove of the receiving body so that the securing device can be displaced relative to the securing means. The receiving body can comprise a first and a second receiving element. The first and the second receiving element each have a first and a second part of the groove.
The securing element is, for example, a securing lever which is fastened rotatably about the first axis of rotation on the base body. The first securing bolt is fastened on the securing element. The securing bolt is in particular disposed at a distance from the first axis of rotation on the securing element or disposed eccentrically. If a force is exerted on the securing bolt which does not run completely along a line between the bolt and the first axis of rotation, this results in a rotation of the securing element about the first axis of rotation. In particular, a force which has a component in the tangential direction of direction of movement of the securing bolt in the circumferential direction about the axis of rotation, results in a rotation of the securing element.
The securing element (e.g. the securing lever) for example has a first end. Through rotation of the securing element the first end is pivoted in the direction of the receiving body or that of the groove until a clamping is produced between the securing element and the receiving body. This clamping leads to a high friction between the securing means and the receiving body so that a relative movement of the securing device along the securing means is restricted. If the force acting on the securing bolt is increased, the clamping is strengthened in such a manner that a relative movement between the securing device and the securing means is prevented.
For exerting this force on the first securing bolt, this is coupled to the housing. During a movement of the housing relative to the base body (on which base body the securing element is rotatably fastened), the first securing bolt is moved according to the movement of the housing relative to the base body so that a rotation of the securing element about the first axis of rotation is brought about. This rotation of the securing element which is initiated by the movement of the housing enables a clamping or a release of the securing means between the receiving body and the securing element.
The housing thus forms an actuating device. The person to be secured can grip the housing and move accordingly in order to thus bring about the rotation of the securing element and produce a specific clamping of the securing means on the securing device. The housing can for example at least partially surround the base body and the securing element. The housing is coupled to the base body in such a manner that the housing can move relative to the base body along a translational direction of motion and/or a rotational direction of motion. Exemplary embodiments depicted in the following show an exemplary coupling of the housing to the base body in order to enable a translational and/or rotational movement of the housing relative to the base body.
Furthermore, by flexible application of force on the housing, the person to be secured can specifically control the clamping action or braking action between the securing device and the securing means.
An effective securing device is thus provided with the present invention in which the person to be secured can flexibly control the clamping action or the braking action. The securing device according to the invention has only a few components for implementing the braking or clamping effect so that the risk of defects or the probability of failure of the securing device is thereby reduced and a robust securing device can be provided.
According to a further exemplary embodiment, the securing device comprises a pivot pin. The housing is fastened rotatably about a second axis of rotation by the pivot pin on the base body. The first securing bolt of the securing element is coupled to the housing in such a manner that during a rotation of the housing about the second axis of rotation the rotation of the securing element about the first axis of rotation is generatable relative to the base body.
With the exemplary embodiment described, a rotation of the housing about the second axis of rotation has the result that the first securing bolt is moved and thus the rotation of the securing element about the first axis of rotation is initiated. To this end in particular the coupling position of the first securing bolt with the housing is spaced apart from the coupling position of the pivot pin with the housing.
According to a further exemplary embodiment, the housing has a first guide groove. The pivot pin is coupled to the first guide groove in such a manner that the housing is fastened displaceably relative to the base body. The first guide groove can, for example, be formed by an oblong hole in the housing. The pivot pin can move along the first guide groove according to the relative movement between the housing and the base body.
According to a further exemplary embodiment, the first guide groove is configured in such a manner that during a displacement, i.e. during a translational movement, of the housing relative to the base body the first securing bolt is movable by the displacement of the housing in such a manner that the securing element is rotatable about the first axis of rotation.
The first guide groove can in particular have a rectilinear profile. If the housing is thus moved with the translational movement relative to the base body, the pivot pin is displaced along the guide groove. The first securing bolt is coupled to the housing in such a manner that as a result of the translational movement of the housing, a rotational movement of the securing element is produced. The translational movement of the housing leads to an application of force onto the first securing bolt, which force has a component in the direction of the circumferential direction about the first axis of rotation of the securing element so that a rotation of the securing element is brought about.
In particular in the event of a fall of the person to be secured or in a panic situation, the person to be secured can simply rest on the housing in order to bring about a rotation of the securing element. Furthermore, the person to be secured can simply exert a pressure with his body or his hand on the housing in order to bring about a (translational or rotational) movement of the housing and in order to thus bring about a rotation of the securing element.
According to a further exemplary embodiment, the housing has a second guide groove in which the first securing bolt is guided. The first securing bolt is coupled displaceably in the second guide groove. Thus, a smoother-running mechanism can be provided, in particular if the housing undergoes a relative displacement relative to the base body and as a result the securing element rotates about the first axis of rotation. During the rotation of the securing element, the first securing bolt can be displaced along the second guide groove in order to avoid any clamping in the movement sequence between the housing, the base body and the securing element. By the second guide groove, for example, a link guidance is provided by which a translational movement of the housing is converted into a rotational movement of the securing element.
According to a further exemplary embodiment, the securing element has a second securing bolt. The housing for example has a further second guide groove, which is configured at an angle to the second guide groove. The further second guide groove is configured in such a manner, and the second securing bolt is coupled to the further second guide groove in such a manner, that during the movement of the housing relative to the base body the securing element is rotatable about the first axis of rotation.
The second securing bolt is in particular located at a distance from the first axis of rotation and the first securing bolt on the securing element. The introduction of a further securing bolt on the securing element leads to a more robust coupling between the securing element and the housing. Furthermore, by a specific arrangement of the first securing bolt and the second securing bolt on the securing element it can be ensured that, for example, during a rotational movement of the housing the force for displacement of the securing element is exerted on the first securing bolt and during a translational movement of the housing the force for rotation of the securing element is applied to the second securing bolt. Furthermore, as a result of the provision of a second securing bolt a redundant system can be provided so that in the event of a defect (e.g. breaking) of one of the securing bolts, a clamping of the securing device with the securing means is nevertheless made possible.
According to a further exemplary embodiment, the securing device comprises a spring element which is coupled to the base body and the housing. In an initial position of the base body relative to the housing, the securing element allows a movement of the securing means in the groove. The spring element is adapted in such a manner that by a spring force of the spring element the housing can be provided in the initial position of the base body relative to the housing.
In other words, the spring element is adapted in such a manner that the spring force urges the housing or securing element into the initial position. In other words, the spring force acts against the force which causes the securing element to rotate in order to produce a clamping between the securing means the securing device. In other words, the spring force increases the distance between receiving body and the first end of the securing element.
The spring force can, for example, comprise a spiral spring which is disposed on the pivot pin or a further pivot pin which rotatably mounts the securing element on the base body. Furthermore, the spring element can comprise a helical spring which is disposed between the base body on the one hand and the housing or the securing element on the other hand.
According to a further exemplary embodiment, the securing device further comprises a brake lever which is fastened rotatably on the base body. A coupling region for coupling on the person to be secured is formed at a first end of the brake lever and a clamping region is formed at a second end of the brake lever, which is formed opposite the first end. The brake lever is disposed rotatably on the base body in such a manner that the clamping region is movable in the direction of the receiving body in such a manner or the groove so that a clamping of the securing means can be produced between the receiving body and the brake lever. The brake lever is in particular fastened rotatably about a further axis of rotation on the base body, where the first end of the brake lever is formed relative to the further axis of rotation on an opposite end relative to the second end of the brake lever. Furthermore, the brake lever is in particular fastened rotatably on the base body in such a manner that in the event of a pull in a substantially vertical direction (e.g. in a direction parallel to the longitudinal axis) on the coupling region a rotation of the brake lever is initiated until the clamping region is moved so far in the direction of the receiving body that the securing means is clamped between the receiving body and the brake lever.
By the arrangement of the brake lever, a further securing mechanism is introduced so that in the event of a fall of the person to be secured, a vertical pull in the direction of the gravitational force automatically and independently, i.e. without action of the person to be secured accomplishes a clamping of the securing device and the securing means. A fall of the person to be secured is thus intercepted without this person actively operating the securing device or the brake lever.
According to a further exemplary embodiment, the receiving body has a groove, wherein the receiving body is disposed on the base body in such a manner that the securing means is guidable in the groove between the receiving body and the guide element.
According to a further exemplary embodiment, the groove has a V-shaped cross-section.
The groove with the V-shaped cross-section in particular has two opposite flanks which each extend from the surface of the receiving body in the direction of the longitudinal axis (central axis) of the receiving body along a cross-sectional plane of the cross-section of the receiving body. A spacing of the flanks is reduced along a profile (along a cross-sectional plane of the receiving body) from the surface of the receiving body in the direction of the longitudinal axis (e.g. central axis) of the receiving body. The flanks can come in contact at a shortest distance from one another in the receiving body (zero spacing) or be spaced apart (trapezoidal groove). The term “V-shaped” cross-section is hereinafter therefore understood as trapezoidal groove. The greatest spacing of the flanks is given in the region of the surface (circumference) of the receiving body so that the securing means can be inserted and when pressing in the securing means in the direction of the longitudinal axis of the receiving body, a clamping of the securing means is generated in the groove.
As a result of the V-shaped cross-section of the groove, the clamping force between the securing means and the securing device can be effectively generated. A securing means having a round cross-section such as, for example, a cable can be inserted in the wedge-shaped or V-shaped groove. As a result of the wedge-shaped cross-sectional shape of the groove, clamping forces at at least contact points on the flanks of the groove can be transferred to the securing element. A clamping between the securing element and the groove can thus be effectively enabled. In contrast to a flat contact surface between the receiving body and the securing means, a lower clamping force is required when inserting the securing means into the described groove in order to provide a clamping of the securing means on the receiving body. In other words a small force is required to press the cable element into the groove and thereby achieve a clamping.
According to a further exemplary embodiment, the guide element has a further groove having a further wedge-shaped (V-shaped) cross-section or having a round cross-section (U-shaped cross-section). The securing means can be guided in the further groove.
According to a further exemplary embodiment, the guide means in particular is a roller.
According to a further exemplary embodiment, the receiving means has a fluted or structured surface at least in the groove, i.e. at least on a contact surface of the securing means on the receiving body. As a result, a friction between receiving body and securing means can be increased.
According to a further exemplary embodiment, the receiving body is disposed rotatably about its longitudinal axis on the base body in such a manner that the receiving body is rotatable from a closed position into an open position. In the open position (e.g. in the groove) the securing means is insertable between the receiving body and the guide element and in the closed position a withdrawal of the securing means (e.g. from the groove) between the receiving body and the guide element can be prevented.
In other words, the receiving body is disposed rotatably about its longitudinal axis on the base body in such a manner that in the open position a distance between the receiving body and the guide element is greater than the diameter of the securing means so that this can be inserted and withdrawn.
In the closed position the receiving body and the guide element surround the securing means in such a manner that this cannot be withdrawn, for example, through a gap between the receiving body and the guide element. Thus, during operation the receiving body can be placed in the closed position so that an undesired removal of the securing device from the securing element is prevented. The safety of the securing device is thereby increased.
In a further exemplary embodiment, the base body comprises a coupling element. The coupling element couples the receiving body to the base body in such a manner that the receiving body is fastened rotatably between the open position and the closed position on the base body.
The coupling element can, for example, at least partially surround the receiving body. For example, the coupling element can comprise a type of socket in which the receiving body is fastened rotatably. In particular the coupling element can fasten the receiving body in such a manner that the receiving body is movable relative to the coupling element translationally along the longitudinal axis and at the same time is movable rotationally about the longitudinal axis.
According to a further exemplary embodiment, a coupling groove is formed in the coupling element. The receiving body has a coupling bolt which is coupled in the coupling groove. The coupling groove in the coupling element of the receiving body is formed in such a manner that the coupling bolt is guided along the coupling groove during rotation of the receiving body about the longitudinal axis.
With the exemplary embodiment described, the person to be secured can, for example, rotate the receiving body about the longitudinal axis in order to change between the open position and the closed position. At the same time, the coupling groove predefines the rotational movement so that an unintentional slipping of the receiving body out from the coupling element is prevented.
According to a further exemplary embodiment, the coupling groove further has a helical course about the longitudinal axis so that during application of a force on the receiving body along the longitudinal axis the receiving body is movable in the longitudinal direction and at the same time the receiving body is rotatable about the longitudinal axis.
The helical profile of the coupling groove describes a profile which one component has in the circumferential direction about the longitudinal axis and one component has parallel to the longitudinal axis. The person to be secured can thus exert a force on the receiving body along a translational movement so that the receiving body moves with a translational movement along the longitudinal axis. At the same time the helical profile of the coupling groove induces a rotational movement of the receiving body about the axis of rotation. Thus, a rotation of the receiving body about the longitudinal axis can be produced by exerting a translational force on the receiving body. This has the result that for changing between the open position into the closed position a simple operation is made possible, namely whereby the person to be secured simply, for example, applies a compressive force to the receiving body. It is therefore not necessary to manually exert a more complex rotating movement of the receiving body.
According to a further exemplary embodiment, the securing device has a further spring element which is disposed between the base body and the receiving body in such a manner that a further spring force of the further spring element acts in the direction of a first direction of rotation of the receiving body. The first direction of rotation here describes a rotation of the receiving body from the open position into the closed position.
It is thereby ensured that without the person to be secured intentionally exerting a force on the receiving body, this is urged into the closed position as a result of the further spring force. For turning the receiving element from the closed position into the open position, a force must therefore be exerted which is contrary to the spring force and which is greater than the further spring force in order to turn the receiving body into the open position.
According to a further exemplary embodiment, the securing device comprises a securing flap which is disposed rotatably on the base body in such a manner that a centre of gravity of the securing flap is spaced apart from a third axis of rotation of the securing flap about the base body so that a gravity-based rotation of the securing flap can be provided based on the alignment of the base body. The securing flap is disposed rotatably on the base body in such a manner that in an incorrect position of the base body relative to the securing means the securing flap is rotatable in a gravity-based manner into a locking position in which an insertion of the securing means between the receiving body and the guide element or into the groove is blocked.
With the securing flap a safety mechanism is provided which prevents the person to be secured from fastening the securing device, for example, the wrong way round with respect to the securing means. If the securing device is for example aligned the wrong way round with respect to the securing means, the securing flap turns in the direction of the receiving body as a result of gravity so that the insertion of the securing element between the receiving body and the guide element e.g. into the groove is prevented.
This increases the operating safety of the securing device since, for example if the securing device is incorrectly positioned with respect to the securing element, the securing functions (e.g. function of the brake lever or the securing element) of the securing device can be disturbed.
It is pointed out that the embodiments described here merely constitute a limited selection of possible embodiments of the invention. Thus, it is possible to combine the features of individual embodiments in a suitable manner with one another so that for the person skilled in the art, with the explicit embodiments here, a plurality of different embodiments are to be considered to be obviously disclosed.
In the following for further explanation and for better understanding of the present invention exemplary embodiments are described in detail by reference to the appended figures. In the figures:
The same or similar components are provided with the same reference numbers in the figures. The diagrams in the figures are schematic and not to scale.
A guide element 111, such as for example a rotatably mounted cable guide roller is disposed on a base body 110. Furthermore, a receiving body 120 is disposed on the base body 110. The receiving body 120 has a longitudinal axis 121. The receiving body 120 further has a groove 122. The groove 122 in particular has a longitudinal extension where the longitudinal extension runs parallel to the longitudinal axis 121 of the receiving body 120. The receiving body 120 can, as shown in
The receiving body 120 can, as shown in
The coupling element 116 can in this case form an open profile in cross-section and surround the receiving body 120 at least partially. The receiving body 120 can, for example have two coupling bolts 123, 123′ which are coupled in corresponding coupling grooves 117, 117′ of the coupling element 116.
In an operating state of the securing device 100, as shown in
Furthermore the securing device 100 has a securing element 140 with a first securing bolt 141. The securing element 140 is fastened rotatably about a first axis of rotation 142 on the base body 110, for example, by a pivot pin.
Furthermore, a housing 130 is fastened rotatably and/or displaceably on the base body 110. The housing 130 can, for example, surround the base body 110 and the securing element 140 at least partially.
The housing 130 is further coupled to the securing bolt 141 in such a manner that during a movement of the housing 130 relative to the base body 110 the securing element 140 is rotatable about the first axis of rotation 142 so that as a result of a first rotation 101 one end 143 of the securing element 140 is movable in the direction of the groove 122 so that the securing means 150 can be clamped between the receiving body 120 and the securing element 140.
It should further be noted that for better clarity in
The housing 130 can be fastened rotatably about a second axis of rotation 112 on the base body 110, for example, by a pivot pin 113 which is fastened on the base body 110. The first securing bolt 141 of the securing element 140 is in this case coupled to the housing 130 in such a manner that during a second rotation 102 of the housing 130 about the second axis of rotation 112 relative to the base body 110, the rotation 101 of the securing element 140 about the first axis of rotation 142 can be produced.
A person to be secured can be coupled, for example, by the fastening region 118 (e.g. an eye) of the base body 110 to the securing device 100.
A braking action or a clamping between the securing device 100 and the securing means 150 can be achieved, for example, manually by the securing element 140 whereby the person to be secured turns the housing 130, for example, about the second axis of rotation. This can be accomplished, for example by the person to be secured enclosing the housing 130 and the coupling element 116 with his hand and pressing together both elements (coupling element 116 and housing 130). As a result of the rotation of the housing 130 about the second axis of rotation 112, the first securing bolt 141 is moved along a tangential direction relative to the second axis of rotation 112. As a result of the movement of the securing bolt 141 along the tangential direction relative to the second axis of rotation 112, the first rotation 101 of the securing element 140 about the first axis of rotation 142 is produced. In other words, the securing element 140 thus rotates in the direction of the securing groove 122 of the receiving body 120.
As shown in
In particular
Furthermore
The possibility of the displacement 103 of the housing 130 relative to the base body 110 has the effect that the person to be secured can, for example, when viewed from above in
In order to effect a smooth movement sequence between the housing 130 and the securing element 140 in particular when exerting the displacement 103 of the housing 130, a further second guide groove 133 can be formed in the housing 130. Furthermore, the securing element 140 can comprise the second securing bolt 144. As shown in
During a displacement 103 of the housing 130 relative to the base body 110, a force is exerted in the direction of the displacement 103 and in particular a tangential component of the force relative to the first axis of rotations 142 on the second securing bolt 144. The securing bolt 144 is configured to be at a distance from the first axis of rotation 142. The displacement 103 of the housing 130 transmits a tangential component of the force relative to the first axis of rotation 142. As a result during displacement 103 of the housing 130 the securing element 140 rotates from the free-running position I (
In the exemplary embodiment as shown in
Furthermore a stop 115 can be disposed at a suitable point of the base body 110 in order to specifically limit the rotation of the securing element 140 or the rotation of the housing 130.
Furthermore spring elements 114, 114′ can be provided which couple the base body 110 and the housing 130. The spring elements 114, 114′ in this case produce a spring force which is directed in such a manner that an initial position of the base body 110 relative to the housing 130 is set when the person to be secured exerts no force on the housing 130. In the initial position a movement of the securing means 150 in the groove 122 is possible.
In addition, the securing device 100 in
A retaining cable can be fastened, for example at the coupling region, which is fastened to a harness of the person to be secured. If the person to be secured ascends, for example, along a first direction (upwards viewed in
In the event of a fall of the person to be secured along a second direction (downwards viewed in
Since the centre of gravity S of the securing flap 310 is at a distance from the third axis of rotation, a gravity-based rotation of the securing flap 310 based on the alignment of the base body 110 is possible. In
Assuming that the securing device 100 is twisted with respect to the alignment shown in
Furthermore a further stop 301 can be provided on the base body which prevents an overrotation or an undesired displacement of the brake lever 320 or the securing flap 310.
The coupling element 116 has an open profile in cross-section and at least partially surrounds the receiving body 120. The receiving body 120 is rotatable about the longitudinal axis 121 as the axis of rotation relative to the coupling element 116. The receiving body 120 for example has a coupling bolt 123 which is guided in a coupling groove 117 (not shown in
Furthermore, in
In particular the base body 110 is configured with two plate-shaped base elements 411, 412. The first base element 411 and the second base element 412 are formed at a distance from one another and rigidly connected to one another by connecting elements (not shown) so that a cavity is formed between the first base element 411 and the second base element 412. The bolts or pivot pins 113 described can be fastened in the first base element 411 and the second base element 412 and run through the cavity. Thus, a more stable mounting of the bolt or pivot pin is provided since these are fastened to the base body 110 in each case at two fastening points. The housing 130 is, for example, fastened to the pivot pin 113 where the pivot pin 113 is fastened to the first base element 411 and the second base element 412.
The groove 122 is, for example, formed with a V-shaped profile shape 401 as shown in
As shown in
A further exemplary embodiment of the securing device 100 is shown in
For this purpose, for example, the coupling element 116 has two coupling grooves 117, 117′. The receiving body 120 has two corresponding coupling bolts 123, 123′ which are each coupled in the corresponding coupling grooves 117, 117′. The coupling grooves 117, 117′ have a helical profile or the profile of a helical line about the longitudinal axis 121.
Furthermore, a further spring element can be provided between the coupling element 116 or the base body 110 and the receiving body 120, where the further spring element with its spring force forces the receiving body 120 against the rotation 701 of the receiving body 120 and/or acts against the force F along the longitudinal axis 121 in order to force the receiving body 120 into the closed position according to
In particular the receiving body 120 comprises a first receiving element 821 and a second receiving element 822. The first and the second receiving element 821, 822 each comprise a first and a second part of the groove. Furthermore the receiving elements 821, 822 are rotatable independently of one another about the axis of rotation 821.
Furthermore, for example, the coupling element 116 has the two coupling grooves 117, 117′. The first receiving element 821 comprises the coupling bolt 123 and the second receiving element 822 comprises the coupling bolt 123′. The coupling bolts 117, 117′ are each coupled in the corresponding coupling grooves 117, 117′. The coupling grooves 117, 117′ have an opposed helical profile. In other words, the second coupling groove 117′ (or its longitudinal extension) is disposed twisted by approximately 90° degrees with respect to the first coupling groove 117 (or its longitudinal extension) (see
Here, for example, a first force F1 is applied to the first receiving element 821 and a second force F2, which is opposite to the first force F1, is applied to the second receiving element 822. As a result of the opposite helical profiles of the coupling grooves 117, 117′, the receiving elements 821, 822 rotate about the same direction of rotation 701 about the longitudinal axis 121 despite different force directions of the forces F1, F2.
For turning the first receiving element 821 and the second receiving element 822 into the open position, the first receiving element 821 and the second receiving element 822 must be (simultaneously) compressed. As a result of the coupling grooves 117, 117′, the receiving elements 821, 822 rotate into the open position when these are compressed.
It is thus prevented that in the event that one of the receiving elements 821, 822 is unintentionally rotated or pressed, the securing means 150 can be removed since the other non-twisted receiving element 821, 822 still remains in the closed position.
Furthermore the first spring element can be disposed between the first receiving element 821 and the second receiving element 822 where the further spring element with its spring force presses the first receiving element 821 and the second receiving element 822 apart in order to force the first receiving element 821 and the second receiving element 822 into the closed position. It is thus prevented that the first receiving element 821 and the second receiving element 822 are moved independently from the closed position into the open position, i.e. without application of a force F1 or F2.
Furthermore the pivot pin 113 is shown which on the one hand is coupled to the base body 110 and on the other hand is coupled to the housing 130 in the first guide groove 131. The housing 130 further comprises the second guide groove 132 and the further second guide groove 133 disposed at right angles to the second guide groove 132. The first securing bolt 141 is coupled in the second guide groove 132 and the second securing bolt 144 is coupled in the further second guide groove 133. The securing element 140 is shown in the free-running position I in
The receiving body 120 is rotatably coupled via the coupling bolts 123, 123′ in corresponding coupling grooves 117, 117′ (not shown in
In addition, it should be pointed out that “comprising” does not exclude other elements or steps and “a” or “one” does not exclude a plurality. It should further be noted that features or steps which are described by reference to one of the above exemplary embodiments can also be used in combination with other features or steps or other exemplary embodiments described above. Reference numbers in the claims should not be seen as a restriction.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 207 223.3 | Apr 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/059053 | 4/30/2013 | WO | 00 |