Securing industrial production from sophisticated attacks

Information

  • Patent Grant
  • 12039040
  • Patent Number
    12,039,040
  • Date Filed
    Friday, November 20, 2020
    4 years ago
  • Date Issued
    Tuesday, July 16, 2024
    6 months ago
Abstract
A manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to detect a cyberattack to the manufacturing system. The control module is configured to perform operations. The operations include receiving control values for a first station of the one or more stations. The operations further include determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms. The operations further include generating an alert to cease processing of the component. In some embodiments, the operations further include correcting errors caused by the cyberattack.
Description
FIELD OF DISCLOSURE

The present disclosure generally relates to a system, method, and media for manufacturing processes.


BACKGROUND

The past several decades of cyberattacks have witnessed a startling degree of proliferation, adaptation, specificity, and sophistication. Industrial and military security is the study of walls, physical and digital, which limit malicious insertion or removal of information. For high-security factories and military installations, this means creating systems that are removed from the global computer network and often removed from internal networks.


SUMMARY

In some embodiments, a manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to detect a cyberattack to the manufacturing system, the control module configured to perform operations. The operations include receiving control values for a first station of the one or more stations. The control values include attributes of the first processing station. The operations further include determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms. The operations further include, based on the determining, generating an alert to cease processing of the component.


In some embodiments, a computer-implemented method is disclosed herein. A computing system receives control values for a first station of one or more stations of a manufacturing system configured to process a component. The control values include attributes of the first station. The computing system determines that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms. The computing system generates an alert to cease processing of the component, based on the determining. The computing system generates a set of actions to correct for errors caused by the cyberattack. The set of actions is associated with downstream stations of the manufacturing system.


In some embodiments, a manufacturing system is disclosed herein. The manufacturing system includes one or more stations, a monitoring platform, and a control module. Each station of the one or more stations is configured to perform at least one step in a multi-step manufacturing process for a component. The monitoring platform is configured to monitor progression of the component throughout the multi-step manufacturing process. The control module is configured to detect a cyberattack to the manufacturing system, the control module configured to perform operations. The operations include receiving control values for a first station of the one or more stations. The control values include attributes of the first station. The operations further included determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms. The operations further include generating an alert to cease processing of the component, based on the determining. The operations further include generating, using one or more second machine learning algorithms, a set of actions to correct for errors caused by the cyberattack. The set of actions is associated with downstream stations of the manufacturing system.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.



FIG. 1 is a block diagram illustrating a manufacturing environment, according to example embodiments.



FIG. 2 is a block diagram illustrating architecture of a single-input, single-output system implementing Kalman Filter, according to example embodiments.



FIG. 3 is a block diagram illustrating architecture of a system implementing autoencoder, according to example embodiments.



FIG. 4 is a block diagram illustrating architecture of a system implementing a reinforcement learning approach using machine learning module, according to example embodiments.



FIG. 5 is a flow diagram illustrating a method of managing a cyberattack to a manufacturing process, according to example embodiments.



FIG. 6A illustrates a system bus computing system architecture, according to example embodiments.



FIG. 6B illustrates a computer system having a chipset architecture, according to example embodiments.





To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.


DETAILED DESCRIPTION

Manufacturing processes may be complex and include raw materials being processed by different process stations (or “stations”) until a final product is produced. In some embodiments, each process station receives an input for processing and may output an intermediate output that may be passed along to a subsequent (downstream) process station for additional processing. In some embodiments, a final process station may receive an input for processing and may output the final product or, more generally, the final output.


In some embodiments, each station may include one or more tools/equipment that may perform a set of process steps. Exemplary process stations may include, but are not limited to, conveyor belts, injection molding presses, cutting machines, die stamping machines, extruders, computer numerical control (CNC) mills, grinders, assembly stations, three-dimensional printers, quality control stations, validation stations, and the like.


In some embodiments, operations of each process station may be governed by one or more process controllers. In some embodiments, each process station may include one or more process controllers that may be programmed to control the operation of the process station. In some embodiments, an operator, or control algorithms, may provide the station controller with station controller setpoints that may represent the desired value, or range of values, for each control value. In some embodiments, values used for feedback or feed forward in a manufacturing process may be referred to as control values. Exemplary control values may include, but are not limited to: speed, temperature, pressure, vacuum, rotation, current, voltage, power, viscosity, materials/resources used at the station, throughput rate, outage time, noxious fumes, pH, light absorption, particle density, and geometric conformation, and the like.


Statistical process control (SPC) is a method of quality control which employs statistical methods to monitor and control a process. Generally, SPC calls for process standards to be established for each step in a manufacturing process and monitored throughout the production life cycle. The goal of SPC is to continuously improve the process through the life cycle.


For purpose of SPC, it is assumed that, as long as each node is operating within specification, the final product will also be within specification. The specifications may be set based on subject matter expertise and historical performance. The dependability and impact of one node onto the next or subsequent nodes is not directly adjusted in SPC; instead, each sub-process may be examined as an independent entity. This approach leads to wider margins for the operating condition of each node, preventing the system from even operating in the absolute highest efficiency or stability. From a security perspective, this margin may be targeted by sophisticated process cyberattacks. If a single node or several nodes in a system start to operate at the upper bounds (or lower bounds) of their specification, individual alarms will not be triggered, but the overall process quality will be affected. This especially holds for man-in-the-middle cyberattacks, where reported sensor signals, for example, are faked by the malicious code. The life cycle of the node will also be affected, thus requiring increased downtime for repair. Several layers of downstream nodes will also be affected and, over time, the continual drift of the system will tend toward non-compliance. By that point, the correction needed to recover the system would be massive and cost prohibitive.


One or more techniques provided herein are directed to a novel approach to industrial security by treating suspect malicious activity as a process variation and correcting it by actively tuning the operating parameters of the system. As threats to industrial systems increase in number and sophistication, conventional security methods need to be overlaid with advances in process control to reinforce the system as a whole.



FIG. 1 is a block diagram illustrating a manufacturing environment 100, according to example embodiments. Manufacturing environment 100 may include a manufacturing system 102, a monitoring platform 104, and a control module 106. Manufacturing system 102 may be broadly representative of a multi-step manufacturing system. In some embodiments, manufacturing system 102 may be representative of an assembly line system, where each processing station may be representative of a human worker. In some embodiments, manufacturing system 102 may be representative of a manufacturing system for use in additive manufacturing (e.g., 3D printing system). In some embodiments, manufacturing system 102 may be representative of a manufacturing system for use in subtractive manufacturing (e.g., CNC machining). In some embodiments, manufacturing system 102 may be representative of a manufacturing system for use in a combination of additive manufacturing and subtractive manufacturing. More generally, in some embodiments, manufacturing system 102 may be representative of a manufacturing system for use in a general manufacturing process.


Manufacturing system 102 may include one or more stations 108i-108n (generally, “station 108”). Each station 108 may be representative of a step and/or station in a multi-step manufacturing process. For example, each station 108 may be representative of a layer deposition operation in a 3D printing process (e.g., station 1081 may correspond to layer 1, station 1082 may correspond to layer 2, etc.). In another example, each station 108 may correspond to a specific processing station. In another example, each station 108 may correspond to a specific human operator performing a specific task in an assembly line manufacturing process.


Each station 108 may include a process controller 114 and control logic 116. Each process controller 1141-114n may be programmed to control the operation of each respective station 108. In some embodiments, control module 106 may provide each process controller 114 with station controller setpoints that may represent the desired value, or range of values, for each control value. Control logic 116 may refer to the attributes/parameters associated with a station's 108 process steps. In operation, control logic 116 for each station 108 may be dynamically updated throughout the manufacturing process by control module 106, depending on a current trajectory of a final quality metric.


Monitoring platform 104 may be configured to monitor each station 108 of manufacturing system 102. In some embodiments, monitoring platform 104 may be a component of manufacturing system 102. For example, monitoring platform 104 may be a component of a 3D printing system. In some embodiments, monitoring platform 104 may be independent of manufacturing system 102. For example, monitoring platform 104 may be retrofit onto an existing manufacturing system 102. In some embodiments, monitoring platform 104 may be representative of an imaging device configured to capture an image of a product or tooling (e.g., a worker or a process tool) at each step of a multi-step process. For example, monitoring platform 104 may be configured to capture an image of the component at each station 108 and/or an image of a component developing the product at each station 108 (e.g., tooling, human, etc.). Generally, monitoring platform 104 may be configured to capture information associated with production of a product (e.g., an image, a voltage reading, a speed reading, etc.) and/or tool (e.g., hand position, tooling position, etc.), and provide that information, as input, to control module 106 for evaluation.


Control module 106 may be in communication with manufacturing system 102 and monitoring platform 104 via one or more communication channels. In some embodiments, the one or more communication channels may be representative of individual connections via the Internet, such as cellular or Wi-Fi networks. In some embodiments, the one or more communication channels may connect terminals, services, and mobile devices using direct connections, such as radio frequency identification (RFID), near-field communication (NFC), Bluetooth™, low-energy Bluetooth™ (BLE), Wi-Fi™, ZigBee™, ambient backscatter communication (ABC) protocols, USB, WAN, or LAN.


Control module 106 may be configured to control each process controller of manufacturing system 102. For example, based on information captured by monitoring platform 104, control module 106 may be configured to adjust process controls associated with a specific station 108. In some embodiments, control module 106 may be configured to adjust process controls of a specific station 108 based on a projected final quality metric.


As discussed above, conventional approaches to detecting process attacks various SPC techniques. SPC is a static, non-interventional approach to process control, where well-defined statistical properties are passively observed to pass or fail at each node. It is only after the last node's processing that these conventional systems make a decision as to whether to keep or discard the manufactured product.


To improve upon conventional processes, control module 106 includes error detection module 130. Error detection module 130 may be configured to detect an error at a given station 108 or node of manufacturing system 102. For example, error detection module 130 used as part of a dynamic, interventional approach to process control, where each node subsequent to the node causing detected damage is woven into an optimization problem (e.g., a damage recovery problem) and actively controlled to instantiate a solution to it. In some embodiments, this process may be done in real-time or near real-time, and while each cycle is ongoing, rather than at the end of a given cycle.


To understand the one or more techniques implemented by error detection module 130, it is important to understand how control module 106 defines a manufacturing system (e.g., manufacturing system 102). A manufacturing system may be defined using a wide variety of topological schemes, including feedback and feedforward organization. In some embodiments, a manufacturing system, F, may be defined as a linear sequence of n process nodes (or stations 108), labeled 1, . . . , N, connected in a feed forward-linked chain. For example:

F:→1→2→ . . . →i→ . . . →n


Similarly, in some embodiments, a manufacturing system, F, may be defined as a non-linear sequence of n process nodes (or stations 108), labeled 1, . . . , N. In some embodiments, the processing done by each node i may have two attributed distributions: an expected distribution, Qi; and an observed distribution, Pi. Qi may be characterized by μQi, and σQi. If Qi=N(μQi, σQi2), then Qi may be completely characterized. Pi may be characterized by μPi and σPi. If Pi=N(μPi, σPi2), then Pi may be completely characterized.


In some embodiments, the damage caused by node i may be defined as the Kullback-Leibler divergence of Pi with respect to Qi:







d
i

=



D

K

L


(


P
i





Q
i



)

=




x

X





P
i

(
x
)



log

(


P

i

(
x
)




Q
i

(
x
)


)








In some embodiments, the damage may be cumulative, or additive across F. For example:







d
f

=




i
=
1

n


d
i






Referring back to error detection module 130, error detection module 130 may be configured to detect damage or an error at a given node, k of manufacturing system 102. For example, if error detection module 130 detects node k has caused damage (i.e., has produced a damaged or distorted distribution), then error detection module 130 may employ a control strategy that samples from Pk and generates all subsequent resulting distributions flowing from it, Pk+1, . . . , Pn, such that the remaining cumulative damage, dk+1, . . . , dk, may be reduced or minimized. Accordingly, the damage recovery problem for error detection module 130 may be formulated as:








arg

min


{


P

k
+
1


,


,

P
n


}




{




i
=

k
+
1


n



D

K

L


(


P
i





Q
i



)


}





In some embodiments, error detection module 130 may implement one or more techniques to identify or correct damage detected at a given node. In some embodiments, error detection module 130 may use a Kalman Filter 132 to detect damage or errors at a given processing node. In some embodiments, error detection module 130 may include an autoencoder 134 to detect damage or errors at a given processing node. In some embodiments, error detection module 130 may use machine learning module 136 deep reinforcement learning techniques to detect damage or errors at a given processing node and correct detected variations caused by the damage or errors at downstream nodes or stations 108. In some embodiments, error detection module 130 may use one or more of Kalman Filter 132, an autoencoder 134, or machine learning module 136 to detect damage or errors at a given processing node and/or correct detected variations caused by the damage or errors at downstream nodes or stations 108.


In some embodiments, error detection module 130 may implement Kalman Filter 132 to detect errors at a processing node. To generalize the distribution description from above, i.e., di, a single input, single-output system may be established in state-space form as:

custom character=Ai{right arrow over (x)}i+Biuε,i(t)
yi(t)=CiT{right arrow over (x)}i

for {right arrow over (x)}i defined as arbitrary states of the system, y defined as the output of the system, and A, B, C may be system matrices defining the ordinary differential equation of the underlying dynamics. The input of this system, uε, may be a noisy input signal defined by:

uε,i=ui(t)+εt

where εt may be the additive noise contributed by εt˜custom characterε,i, Ri). In some embodiments, the observed output, yv, may be a function of the system output as:

yv,i=yi(t)+custom charactert

for a similarly noisy signal measurement, with custom charactert˜custom characterv,i, σv,i2). In some embodiments, this notation may be reconciled by establishing that yv,i˜Qi for a given node, i, of a process. In an unaffected system, the mean of the noise contributions may be zero, such that με, iv,i=0. In a malicious cyberattack, however, the deviation may manifest as a non-zero mean input noise.


Generally, a Kalman Filter 132 may be reliant on zero mean noise; however, in the case of a malicious cyberattack, an offset of an input instruction may manifest as a non-zero mean additive noise. As such, a Kalman Filter 132 may be construed for the presumed time-invariant system of:

custom character=Ai{right arrow over (x)}i+Biuε,i(t)
yi(t)=CiT{right arrow over (x)}i


In some embodiments, Kalman Filter 132 may be constructed using measurements of output, yv,i(t) for a node or a process, and the canonical, untouched input instruction ui(t). If the process is correctly calibrated, the input/output sensor measurements of a station 108 or node should have zero mean noise. However, in the case of a malicious cyberattack, there would be a non-zero bias.


In some embodiments, Kalman Filter 132 may be construed as:

custom characteri,k=Aicustom characteri,k−1+Biui,k
Σi,k=AiΣi,k−1AiT+Ri
Ki,k=Σi,kCi(CiTΣi,kCiv,i2)−1
custom characteri,k=custom characteri,k+Ki,k(yv,i,k−CiTcustom characteri,k)
Σi,k=(I−Ki,kCiT)Σi,k

for the kth sample of a process node, i, where · may be the measurement update notation, Σi,k may be the covariance of the state prediction, Ri may be the covariance of the input noise, εt, and Ki,k may be the Kalman gains. With a large enough sample, the innovation distribution {tilde over (y)}i,k=yv,i,k−CiTcustom characteri,k should be {tilde over (y)}i,k˜custom characterý,i,k=0, CiTΣi,k|k−1Ci). However, with a malicious cyberattack, μ{tilde over (y)},i,k≠0, but this may occur naturally within minimal samples. Once a sample threshold may be met, k>kmin, an alarm may be established for {tilde over (y)}i,ki, where γi may be tuned for a process node. If the innovation error is non-zero and above the threshold γi, then error detection module 130 may determine that a malicious cyberattack may be occurring



FIG. 2 is a block diagram illustrating architecture of a single-input, single-output system (hereinafter “system 200”) implementing Kalman Filter 132, according to example embodiments.


As shown, system 200 may include a controller 202 (e.g., C(s)), a plant 204 (e.g., G(s)), a measurement 206 (e.g., H(s)), an attack 208 (e.g., A(s)), and Kalman Filter 132 (e.g., KF). In some embodiments, system 200 may include a second controller 202. In some embodiments, controller 202, plant 204, and measurement 206 may represent the basic constituents of the nodal control, while Kalman Filter 132 produced an innovation error.


In some embodiments, such as that shown in FIG. 2, a twin controller may be used as an unbiased reference for Kalman Filter 132.


Referring back to FIG. 1, in some embodiments, error detection module 130 may use an autoencoder 134 to detect anomalies corresponding to a cyberattack. For a sequence of measured outputs, {right arrow over (y)}v,i, an unsupervised autoencoder training can be instantiated to map an entropy of output observation on to a parameter set, θAE, such that

custom characterv,i=f({right arrow over (y)}v,iAE)


In some embodiments, the error of autoencoder 134 may be defined as:

custom characterv,i={right arrow over (y)}v,icustom characterv,i

and for a normal operation of, custom characterv,i˜custom character{tilde over (y)},i, Σ{tilde over (y)},i), where μ{tilde over (y)} and Σ{tilde over (y)},i may be fit to the distribution using maximum likelihood. Subsequently, an anomaly score, ai, for a sequence may be defined as:







a
i

=



(




y


˜


V
,
i
,

μ

y
~


,
i


,







y
˜

,
i



)


=



(




y


˜


V
,
i


-

μ


y
˜

,
i



)

T









y
˜

,
i


-
1




(




y


˜


V
,
i


-

μ


y
˜

,
i



)







Similar to the Kalman Filter 132, when the anomaly score, aii, error detection module 130 may detect an anomaly using autoencoder 134.



FIG. 3 is a block diagram illustrating architecture of a system 300 implementing autoencoder 134, according to some embodiments. As shown, system 300 may include a controller 302 (e.g., C(s)), a plant 304 (e.g., G(s)), a measurement 306 (e.g., H(s)), an attack 308 (e.g., A(s)), autoencoder 134 (e.g., AE), and an alarm 312 (e.g., custom character). Controller 302, plant 304, and measurement 306 may represent the basic constituents of the nodal control, while autoencoder 134 may detect errors. In some embodiments, error detection module 130 may trigger an alarm 312, based on a sufficient anomaly score.


Referring back to FIG. 1, in some embodiments, error detection module 130 may use one or more deep reinforcement learning techniques to identify an error or anomaly in the processing corresponding to a cyberattack. As provided above, given the definition of damage, di, a delayed reward function may be formulated for a reinforcement learning agent seeking to construct a set of distributions, Pk+1, . . . , Pn, to solve the damage recovery problem of








arg

min


{


P

k
+
1


,


,

P
n


}




{




i
=

k
+
1


n



D

K

L


(


P
i





Q
i



)


}






through its actions, {right arrow over (a)}ij, for i=k+1, . . . , n, over some set of iterations, j=1, . . . , m:







R

(


α


j

)

=





i
=

k
+
1


n




r
i

(


α


i
j

)



for




r
i

(


α


i
j

)



=



P
i

(


α


i
j

)


log




P
i

(


α


i
j

)



Q
i

(


α


i
j

)








In some embodiments, error detection module 130 may train an agent in an actor-critic modality, such that one network may produce an action, ai,k, given a state {right arrow over (x)}i,k for the kth sample of the ith node of a process, and another network may generate a prediction of Q-value, Qi,kπ({right arrow over (x)}i,k, ai,kQ,i), learned over parameters θQ,i, where πi({right arrow over (x)}i,k, θπ,i) may be a learned policy over parameters θπ,i. In some embodiments, the reward may be calculated using a Bellman formulation such that:

Qi({right arrow over (x)}i,k,ai,k)=ri,kiQi({right arrow over (x)}i,k+1i({right arrow over (x)}i,k+1)|θπ,i)


In some embodiments, the update law associated with the reinforcement learning technique may be:

−∇θπjJ=custom characterai,k˜p[∇aiQi({right arrow over (x)}i,k,ai,kπ,i)]


In some embodiments, the update law may reduce or minimize the Q-value, thereby minimizing damage, and may manifest in actions aimed at returning the distribution to its canonical shape. In some embodiments, one formulation of an action may be:


In some embodiments, a formulation of an action may be:

ui,k=ai,ku*i,k′

where ui,k may be the input of custom characteri=Ai{right arrow over (x)}i+Biuε,i(t) and yi(t)=CiT{right arrow over (x)}i, ai,k may be an instruction modifier, and u*i,k may be the instruction read for a particular sample, k, of node i. If this instruction is corrupted, and that corruption manifests in the states, then policy, πi,k, may act to correct it.


By utilizing a reinforcement learning approach, error detection module 130 may offer a new way to address system security by bundling process-based malicious cyberattacks into nominal process variations and offers direct control and correction for those variations. The approaches are not simply a method of detection or passive prevention; rather, a cyberattack may be assumed to manifest as a routine (e.g., probable) system variation, such as machine turning out of norm or raw material stock moving out of tight specification.



FIG. 4 is a block diagram illustrating architecture of a system 400 implementing a reinforcement learning approach using machine learning module 136, according to some embodiments. As shown, system 400 may be representative of a multi-node system, i=0, . . . , N. For each node i, there may exist a controller 4020, 4021, and 402N (e.g., C0(s), Ci(s), . . . CN(s)), a plant 4040, 404i, and 404N (e.g., G0(s), Gi(s), GN(s)), and a measurement 4000, 406i, and 406N (e.g., H0(s), Hi(s), HN(s)). Together, the nodes may be embedded in a policy-learning feedback loop governed by the state of system 400 at time k, Sk, sampled from data store 408 (e.g., Y), and the policy taking the current state 410 as input, π(Sk). An attack 412 may be represented for a single node, i, by block A(s).


In some embodiments, to identify a set of actions to take to correct the errors caused by a cyberattack, the state, Sk, for time sample, k, may be input into a nonlinear filter, whose weights may be chosen to minimize the subsequent damage for a time sample, k+n, given an observed artifact or component. In some embodiments, the output of the filter may be a scalar or vector, which modifies the prescribed process setpoint or control values. The transform from the state to the action may be referred to as the policy.



FIG. 5 is a flow diagram illustrating a method 500 of managing a cyberattack to a manufacturing process, according to example embodiments. Method 500 may begin as step 502.


At step 502, control module 106 may receive control values from a station 108 of manufacturing system 102. In some embodiments, control module 106 may receive the control values from a process controller associated with a given station 108. The process controller may generally be programmed to control the operations of station 108. Exemplary control values may include, but are not limited to: speed, temperature, pressure, vacuum, rotation, current, voltage, power, viscosity, materials/resources used at the station, throughput rate, outage time, noxious fumes, and the like. More generally, a control value may refer to an attribute of station 108, instead of an attribute of a component being processed by station 108.


At step 504, control module 106 may determine that a cyberattack is present, based on the control values received from station 108. For example, in some embodiments, error detection module 130 may use Kalman Filter 132 to generate an anomaly score for station 108 given the control values. If, for example, the anomaly score is greater than a predefined threshold value, then control module 106 may determine that a cyberattack is currently ongoing. In another example, error detection module 130 may use autoencoder 134 to generate an anomaly score for station 108 given the control values. If, for example, the anomaly score is greater than a predefined threshold, then control module 106 may determine that a cyberattack is currently ongoing. In another example, error detection module 130 may use machine learning module 136 to predict a Q value corresponding to station 108. If, for example, the Q value is outside of a range of acceptable values, then control module 106 may determine that a cyberattack is currently ongoing.


In some embodiments, method 500 may include step 506. At step 506, responsive to determining that a cyberattack is occurring, control module 106 may trigger an alert or alarm. In some embodiments, the alert or alarm may be a notification to a user overseeing manufacturing system 102. In some embodiments, the alert or alarm may be a signal that stops or ceases processing of each station 1081-108n of manufacturing system 102.


In some embodiments, method 500 may include steps 508-510. At step 508, responsive to determining that a cyberattack is occurring, control module 106 may generate one or more actions to correct for the damage caused by the cyberattack. For example, error detection module 130 may train an agent in an actor-critic modality, such that one network may produce an action, ai,k, given a state {right arrow over (x)}i,k for the kth sample of the ith node of a process, and another network may generate a prediction of Q-value, Qi,kπ({right arrow over (x)}i,k, ai,kQ,i), learned over parameters θQ,i, where πi({right arrow over (x)}i,k, θπ,i) may be a learned policy over parameters θπ,i. In some embodiments, the reward may be calculated using a Bellman formulation such that:

Qi({right arrow over (x)}i,k,ai,k)=ri,kiQi({right arrow over (x)}i,k+1i({right arrow over (x)}i,k+1)|θπ,i)


In some embodiments, the update law associated with the reinforcement learning technique may be:

−∇θπjJ=custom characterai,k˜p[∇aiQi({right arrow over (x)}i,k,ai,kπ,i)]


In some embodiments, the update law may reduce or minimize the Q-value, thereby minimizing damage, and may manifest in actions aimed at returning the distribution to its canonical shape. In some embodiments, one formulation of an action may be:


In some embodiments, a formulation of an action may be:

ui,k=ai,ku*i,k′

where ui,k may be the input of {right arrow over ({dot over (x)})}=Ai{right arrow over (x)}i+Biuε,i(t) and yi(t)=CiT{right arrow over (x)}i, ai,k may be an instruction modifier, and u*i,k may be the instruction read for a particular sample, k, of node i. If this instruction is corrupted, and that corruption manifests in the states, then policy, πi,k, may act to correct it.


At step 510, control module 106 may provide downstream stations 108 with the updated actions generated by machine learning module 136. In some embodiments, control module 106 may transmit updated instructions to process controllers of each downstream station 108.



FIG. 6A illustrates a system bus computing system architecture 600, according to example embodiments. One or more components of system 600 may be in electrical communication with each other using a bus 605. System 600 may include a processor (e.g., one or more CPUs, GPUs or other types of processors) 610 and a system bus 605 that couples various system components including the system memory 615, such as read only memory (ROM) 620 and random access memory (RAM) 625, to processor 610. System 600 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of processor 610. System 600 can copy data from memory 615 and/or storage device 630 to cache 612 for quick access by processor 610. In this way, cache 612 may provide a performance boost that avoids processor 610 delays while waiting for data. These and other modules can control or be configured to control processor 610 to perform various actions. Other system memory 615 may be available for use as well. Memory 615 may include multiple different types of memory with different performance characteristics. Processor 610 may be representative of a single processor or multiple processors. Processor 610 can include one or more of a general purpose processor or a hardware module or software module, such as service 1632, service 2634, and service 3636 stored in storage device 630, configured to control processor 610, as well as a special-purpose processor where software instructions are incorporated into the actual processor design. Processor 610 may essentially be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric.


To enable user interaction with the computing device 600, an input device 645 which can be any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 635 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with computing device 600. Communications interface 640 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.


Storage device 630 may be a non-volatile memory and can be a hard disk or other types of computer readable media that can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 625, read only memory (ROM) 620, and hybrids thereof.


Storage device 630 can include services 632, 634, and 636 for controlling the processor 610. Other hardware or software modules are contemplated. Storage device 630 can be connected to system bus 605. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as processor 610, bus 605, display 635, and so forth, to carry out the function.



FIG. 6B illustrates a computer system 650 having a chipset architecture, according to example embodiments. Computer system 650 may be an example of computer hardware, software, and firmware that can be used to implement the disclosed technology. System 650 can include one or more processors 655, representative of any number of physically and/or logically distinct resources capable of executing software, firmware, and hardware configured to perform identified computations. One or more processors 655 can communicate with a chipset 660 that can control input to and output from one or more processors 655. In this example, chipset 660 outputs information to output 665, such as a display, and can read and write information to storage device 670, which can include magnetic media, and solid state media, for example. Chipset 660 can also read data from and write data to RAM 675. A bridge 680 for interfacing with a variety of user interface components 685 can be provided for interfacing with chipset 660. Such user interface components 685 can include a keyboard, a microphone, touch detection and processing circuitry, a pointing device, such as a mouse, and so on. In general, inputs to system 650 can come from any of a variety of sources, machine generated and/or human generated.


Chipset 660 can also interface with one or more communication interfaces 690 that can have different physical interfaces. Such communication interfaces can include interfaces for wired and wireless local area networks, for broadband wireless networks, as well as personal area networks. Some applications of the methods for generating, displaying, and using the GUI disclosed herein can include receiving ordered datasets over the physical interface or be generated by the machine itself by one or more processors 655 analyzing data stored in storage 670 or 675. Further, the machine can receive inputs from a user through user interface components 685 and execute appropriate functions, such as browsing functions by interpreting these inputs using one or more processors 655.


It can be appreciated that example systems 600 and 650 can have more than one processor 610 or be part of a group or cluster of computing devices networked together to provide greater processing capability.


While the foregoing is directed to embodiments described herein, other and further embodiments may be devised without departing from the basic scope thereof. For example, aspects of the present disclosure may be implemented in hardware or software or a combination of hardware and software. One embodiment described herein may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory (ROM) devices within a computer, such as CD-ROM disks readably by a CD-ROM drive, flash memory, ROM chips, or any type of solid-state non-volatile memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid state random-access memory) on which alterable information is stored. Such computer-readable storage media, when carrying computer-readable instructions that direct the functions of the disclosed embodiments, are embodiments of the present disclosure.


It will be appreciated to those skilled in the art that the preceding examples are exemplary and not limiting. It is intended that all permutations, enhancements, equivalents, and improvements thereto are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present disclosure. It is therefore intended that the following appended claims include all such modifications, permutations, and equivalents as fall within the true spirit and scope of these teachings.

Claims
  • 1. A manufacturing system, comprising: one or more stations, each station configured to perform at least one step in a multi-step manufacturing process for a component;a monitoring platform configured to monitor progression of the component throughout the multi-step manufacturing process; anda control module configured to detect a cyberattack to the manufacturing system, the control module configured to perform operations, comprising: receiving control values for a first station of the one or more stations, the control values comprising attributes of the first station;determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms; andbased on the determining, generating one or more actions to correct damage caused by the cyberattack, the generating comprising: generating a plurality of possible actions to correct the damage caused by the cyberattack, andidentifying the one or more actions from the plurality of possible actions that yields a greatest correction in the damage caused by the cyberattack.
  • 2. The manufacturing system of claim 1, wherein the one or more machine learning algorithms comprise a Kalman Filter.
  • 3. The manufacturing system of claim 2, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the Kalman filter, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 4. The manufacturing system of claim 1, wherein the one or more machine learning algorithms comprise an autoencoder.
  • 5. The manufacturing system of claim 4, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the autoencoder, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 6. The manufacturing system of claim 1, wherein the one or more machine learning algorithms comprise a deep learning algorithm.
  • 7. The manufacturing system of claim 6, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating a predicted quality metric for the component based on the control values; anddetermining that the predicted quality metric falls outside a range of acceptable values.
  • 8. A computer-implemented method, comprising: receiving, by a computing system, control values for a first station of one or more stations of a manufacturing system configured to process a component, the control values comprising attributes of the first station;determining, by the computing system, that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms; andbased on the determining, generating, by the computing system, a set of actions to correct for errors caused by the cyberattack, the set of actions associated with downstream stations of the manufacturing system, the generating comprising: generating a plurality of possible actions to correct the errors caused by the cyberattack, andidentifying the set of actions from the plurality of possible actions that yields a greatest correction in the errors caused by the cyberattack.
  • 9. The computer-implemented method of claim 8, wherein the one or more machine learning algorithms comprise a Kalman Filter.
  • 10. The computer-implemented method of claim 9, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the Kalman filter, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 11. The computer-implemented method of claim 8, wherein the one or more machine learning algorithms comprise an autoencoder.
  • 12. The computer-implemented method of claim 11, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the autoencoder, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 13. The computer-implemented method of claim 8, wherein the one or more machine learning algorithms comprise a deep learning algorithm.
  • 14. The computer-implemented method of claim 13, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating a predicted quality metric for the component based on the control values; anddetermining that the predicted quality metric falls outside a range of acceptable values.
  • 15. A manufacturing system, comprising: one or more stations, each station configured to perform at least one step in a multi-step manufacturing process for a component;a monitoring platform configured to monitor progression of the component throughout the multi-step manufacturing process; anda control module configured to detect a cyberattack to the manufacturing system, the control module configured to perform operations, comprising: receiving control values for a first station of the one or more stations, the control values comprising attributes of the first station;determining that there is a cyberattack based on the control values for the first station using one or more machine learning algorithms;based on the determining, generating an alert to cease processing of the component; andgenerating, using one or more second machine learning algorithms, a set of actions to correct for errors caused by the cyberattack, the set of actions associated with downstream stations of the manufacturing system, the generating comprising: generating a plurality of possible actions to correct the errors caused by the cyberattack, andidentifying the set of actions from the plurality of possible actions that yields a greatest correction in the errors caused by the cyberattack.
  • 16. The manufacturing system of claim 15, wherein the one or more machine learning algorithms comprise a Kalman Filter and the one or more second machine learning algorithms comprise a deep learning algorithm.
  • 17. The manufacturing system of claim 16, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the Kalman filter, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 18. The manufacturing system of claim 15, wherein the one or more machine learning algorithms comprise an autoencoder.
  • 19. The manufacturing system of claim 18, wherein determining that there is a cyberattack based on the control values for the first station using the one or more machine learning algorithms comprises: generating, using the autoencoder, an anomaly score for the first station based on the control values; anddetermining that the anomaly score exceeds a threshold value indicative of a cyberattack.
  • 20. The manufacturing system of claim 15, wherein the one or more machine learning algorithms comprise a deep learning algorithm.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 62/938,158, filed Nov. 20, 2019, which is hereby incorporated by reference in its entireties.

US Referenced Citations (317)
Number Name Date Kind
4056716 Baxter et al. Nov 1977 A
4433385 De Gasperi et al. Feb 1984 A
5027295 Yotsuya Jun 1991 A
5808432 Inoue et al. Sep 1998 A
5815198 Vachtsevanos et al. Sep 1998 A
6240633 Kent et al. Jun 2001 B1
6266436 Bett et al. Jul 2001 B1
6650779 Vachtesvanos et al. Nov 2003 B2
6757571 Toyama Jun 2004 B1
7149337 Michaelis et al. Dec 2006 B2
7551274 Wornson et al. Jun 2009 B1
8185217 Thiele May 2012 B2
8612043 Moyne et al. Dec 2013 B2
8909926 Brandt et al. Dec 2014 B2
9945264 Wichmann et al. Apr 2018 B2
9977425 McCann et al. May 2018 B1
10061300 Coffman et al. Aug 2018 B1
10102495 Zhang et al. Oct 2018 B1
10481579 Putman et al. Nov 2019 B1
11117328 Hough et al. Sep 2021 B2
11156982 Putman et al. Oct 2021 B2
11156991 Putman et al. Oct 2021 B2
11156992 Putman et al. Oct 2021 B2
11209795 Putman et al. Dec 2021 B2
11675330 Putman et al. Jun 2023 B2
11703824 Putman et al. Jul 2023 B2
20020002414 Hsiung et al. Jan 2002 A1
20020143417 Ito et al. Oct 2002 A1
20030061004 Discenzo Mar 2003 A1
20040030431 Popp et al. Feb 2004 A1
20040070509 Grace et al. Apr 2004 A1
20050267607 Paik Dec 2005 A1
20060013505 Yau et al. Jan 2006 A1
20060058898 Emigholz et al. Mar 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070005525 Collette, III et al. Jan 2007 A1
20070036421 Toba et al. Feb 2007 A1
20070047797 Vilella Mar 2007 A1
20070177787 Maeda et al. Aug 2007 A1
20080100570 Friedrich et al. May 2008 A1
20080276128 Lin et al. Nov 2008 A1
20080300709 Collette, III et al. Dec 2008 A1
20090158577 Schweikle Jun 2009 A1
20090198464 Clarke et al. Aug 2009 A1
20090242513 Funk et al. Oct 2009 A1
20090281753 Noy Nov 2009 A1
20100106458 Leu et al. Apr 2010 A1
20100131202 Dannevik et al. May 2010 A1
20110141265 Holtkamp et al. Jun 2011 A1
20120151585 Lamastra et al. Jun 2012 A1
20120304007 Hanks et al. Nov 2012 A1
20130031037 Brandt et al. Jan 2013 A1
20130339919 Baseman et al. Dec 2013 A1
20140247347 McNeill et al. Sep 2014 A1
20140336785 Asenjo et al. Nov 2014 A1
20150045928 Perez et al. Feb 2015 A1
20150067844 Brandt et al. Mar 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150184549 Pamujula et al. Jul 2015 A1
20150185716 Wichmann et al. Jul 2015 A1
20150213369 Brandt et al. Jul 2015 A1
20150286202 Amano et al. Oct 2015 A1
20150324329 Blevins et al. Nov 2015 A1
20160170996 Frank et al. Jun 2016 A1
20160253618 Imazawa et al. Sep 2016 A1
20160259318 Vogt et al. Sep 2016 A1
20160261465 Gupta et al. Sep 2016 A1
20160300338 Zafar et al. Oct 2016 A1
20160330222 Brandt et al. Nov 2016 A1
20160352762 Friedlander et al. Dec 2016 A1
20170034205 Canedo Feb 2017 A1
20170093897 Cochin et al. Mar 2017 A1
20170102694 Enver et al. Apr 2017 A1
20170102696 Bell et al. Apr 2017 A1
20170109646 David Apr 2017 A1
20170149820 Ruvio et al. May 2017 A1
20170156674 Hochman Jun 2017 A1
20170169219 Ogawa Jun 2017 A1
20170255723 Asenjo et al. Sep 2017 A1
20170264629 Wei Sep 2017 A1
20180005083 Georgescu et al. Jan 2018 A1
20180033130 Kimura et al. Feb 2018 A1
20180079125 Perez et al. Mar 2018 A1
20180114121 Rana et al. Apr 2018 A1
20180144248 Lu et al. May 2018 A1
20180150070 Johnson et al. May 2018 A1
20180157831 Abbaszadeh Jun 2018 A1
20180165602 Van Seijen et al. Jun 2018 A1
20180180085 Watanabe et al. Jun 2018 A1
20180188704 Cella et al. Jul 2018 A1
20180188714 Cella et al. Jul 2018 A1
20180188715 Cella et al. Jul 2018 A1
20180210425 Cella et al. Jul 2018 A1
20180210426 Cella et al. Jul 2018 A1
20180210427 Cella et al. Jul 2018 A1
20180248905 Côtéet al. Aug 2018 A1
20180253073 Cella et al. Sep 2018 A1
20180253074 Cella et al. Sep 2018 A1
20180253075 Cella et al. Sep 2018 A1
20180253082 Asenjo et al. Sep 2018 A1
20180255374 Cella et al. Sep 2018 A1
20180255375 Cella et al. Sep 2018 A1
20180255376 Cella et al. Sep 2018 A1
20180255377 Cella et al. Sep 2018 A1
20180255378 Cella et al. Sep 2018 A1
20180255379 Cella et al. Sep 2018 A1
20180255380 Cella et al. Sep 2018 A1
20180255381 Cella et al. Sep 2018 A1
20180255382 Cella et al. Sep 2018 A1
20180255383 Cella et al. Sep 2018 A1
20180262528 Jain Sep 2018 A1
20180284735 Cella et al. Oct 2018 A1
20180284736 Cella et al. Oct 2018 A1
20180284737 Cella et al. Oct 2018 A1
20180284741 Cella et al. Oct 2018 A1
20180284742 Cella et al. Oct 2018 A1
20180284743 Cella et al. Oct 2018 A1
20180284744 Cella et al. Oct 2018 A1
20180284745 Cella et al. Oct 2018 A1
20180284746 Cella et al. Oct 2018 A1
20180284747 Cella et al. Oct 2018 A1
20180284749 Cella et al. Oct 2018 A1
20180284752 Cella et al. Oct 2018 A1
20180284753 Cella et al. Oct 2018 A1
20180284754 Cella et al. Oct 2018 A1
20180284755 Cella et al. Oct 2018 A1
20180284756 Cella et al. Oct 2018 A1
20180284757 Cella et al. Oct 2018 A1
20180284758 Cella et al. Oct 2018 A1
20180292811 Baseman et al. Oct 2018 A1
20180292812 Baseman et al. Oct 2018 A1
20180299878 Cella et al. Oct 2018 A1
20180316719 Schneider Nov 2018 A1
20180321666 Cella et al. Nov 2018 A1
20180321667 Cella Nov 2018 A1
20180321672 Cella et al. Nov 2018 A1
20180358271 David Dec 2018 A1
20180367550 Musuvathi et al. Dec 2018 A1
20180376067 Martineau Dec 2018 A1
20190020669 Glatfelter et al. Jan 2019 A1
20190025805 Cella et al. Jan 2019 A1
20190025806 Cella et al. Jan 2019 A1
20190025812 Cella et al. Jan 2019 A1
20190033845 Cella et al. Jan 2019 A1
20190033846 Cella et al. Jan 2019 A1
20190033847 Cella et al. Jan 2019 A1
20190033848 Cella et al. Jan 2019 A1
20190033849 Cella et al. Jan 2019 A1
20190041836 Cella et al. Feb 2019 A1
20190041840 Cella et al. Feb 2019 A1
20190041841 Cella et al. Feb 2019 A1
20190041843 Cella et al. Feb 2019 A1
20190041844 Cella et al. Feb 2019 A1
20190041845 Cella et al. Feb 2019 A1
20190041846 Cella et al. Feb 2019 A1
20190064766 Friebolin et al. Feb 2019 A1
20190064792 Cella et al. Feb 2019 A1
20190068618 Mestha et al. Feb 2019 A1
20190068620 Avrahami et al. Feb 2019 A1
20190072922 Cella et al. Mar 2019 A1
20190072923 Cella et al. Mar 2019 A1
20190072924 Cella et al. Mar 2019 A1
20190072925 Cella et al. Mar 2019 A1
20190072926 Cella et al. Mar 2019 A1
20190072928 Cella et al. Mar 2019 A1
20190073585 Pu et al. Mar 2019 A1
20190079483 Cella et al. Mar 2019 A1
20190089722 Ciocarlie et al. Mar 2019 A1
20190094829 Cella et al. Mar 2019 A1
20190094842 Lee et al. Mar 2019 A1
20190094843 Lee et al. Mar 2019 A1
20190107816 Cella et al. Apr 2019 A1
20190114756 Weiss et al. Apr 2019 A1
20190118300 Penny et al. Apr 2019 A1
20190121339 Cella et al. Apr 2019 A1
20190121340 Cella et al. Apr 2019 A1
20190121342 Cella et al. Apr 2019 A1
20190121343 Cella et al. Apr 2019 A1
20190121344 Cella et al. Apr 2019 A1
20190121345 Cella et al. Apr 2019 A1
20190121346 Cella et al. Apr 2019 A1
20190121347 Cella et al. Apr 2019 A1
20190121349 Cella et al. Apr 2019 A1
20190129404 Cella et al. May 2019 A1
20190129405 Cella et al. May 2019 A1
20190129406 Cella et al. May 2019 A1
20190129408 Cella et al. May 2019 A1
20190129409 Cella et al. May 2019 A1
20190137985 Cella et al. May 2019 A1
20190137987 Cella et al. May 2019 A1
20190137988 Cella et al. May 2019 A1
20190137989 Cella et al. May 2019 A1
20190138897 Xu et al. May 2019 A1
20190138932 Akella et al. May 2019 A1
20190146474 Cella et al. May 2019 A1
20190146476 Cella et al. May 2019 A1
20190146477 Cella et al. May 2019 A1
20190146481 Cella et al. May 2019 A1
20190146482 Cella et al. May 2019 A1
20190155272 Cella et al. May 2019 A1
20190179277 Cella et al. Jun 2019 A1
20190179278 Cella et al. Jun 2019 A1
20190179279 Cella et al. Jun 2019 A1
20190179300 Cella et al. Jun 2019 A1
20190179301 Cella et al. Jun 2019 A1
20190180153 Buckler et al. Jun 2019 A1
20190187646 Cella et al. Jun 2019 A1
20190187647 Cella et al. Jun 2019 A1
20190187648 Cella et al. Jun 2019 A1
20190187649 Cella et al. Jun 2019 A1
20190187650 Cella et al. Jun 2019 A1
20190187651 Cella et al. Jun 2019 A1
20190187652 Cella et al. Jun 2019 A1
20190187653 Cella et al. Jun 2019 A1
20190187654 Cella et al. Jun 2019 A1
20190187655 Cella et al. Jun 2019 A1
20190187656 Cella et al. Jun 2019 A1
20190187657 Cella et al. Jun 2019 A1
20190187680 Cella et al. Jun 2019 A1
20190187681 Cella et al. Jun 2019 A1
20190187682 Cella et al. Jun 2019 A1
20190187683 Cella et al. Jun 2019 A1
20190187684 Cella et al. Jun 2019 A1
20190187685 Cella et al. Jun 2019 A1
20190187686 Cella et al. Jun 2019 A1
20190187687 Cella et al. Jun 2019 A1
20190187688 Cella et al. Jun 2019 A1
20190187689 Cella et al. Jun 2019 A1
20190187690 Cella et al. Jun 2019 A1
20190197236 Niculescu-Mizil et al. Jun 2019 A1
20190213099 Schmidt et al. Jul 2019 A1
20190219995 Cella et al. Jul 2019 A1
20190219996 Cella et al. Jul 2019 A1
20190227536 Cella et al. Jul 2019 A1
20190227537 Cella et al. Jul 2019 A1
20190230099 Mestha Jul 2019 A1
20190230106 Abbaszadeh et al. Jul 2019 A1
20190235461 Cella et al. Aug 2019 A1
20190235462 Cella et al. Aug 2019 A1
20190238568 Goswami et al. Aug 2019 A1
20190243323 Cella et al. Aug 2019 A1
20190243346 Baseman et al. Aug 2019 A1
20190286111 Yennie et al. Sep 2019 A1
20190286892 Li et al. Sep 2019 A1
20190294869 Naphade et al. Sep 2019 A1
20190295887 Trickett et al. Sep 2019 A1
20190295890 Clark et al. Sep 2019 A1
20190295891 Clark et al. Sep 2019 A1
20190295906 Clark et al. Sep 2019 A1
20190299536 Putman et al. Oct 2019 A1
20190302707 Guo et al. Oct 2019 A1
20190339684 Cella et al. Nov 2019 A1
20190339685 Cella et al. Nov 2019 A1
20190339686 Cella et al. Nov 2019 A1
20190339687 Cella et al. Nov 2019 A1
20190362480 Diao et al. Nov 2019 A1
20190379677 Zenz et al. Dec 2019 A1
20190384250 Cella et al. Dec 2019 A1
20190386595 Fujita et al. Dec 2019 A1
20190391550 Cella et al. Dec 2019 A1
20190391551 Cella et al. Dec 2019 A1
20190391552 Cella et al. Dec 2019 A1
20200012248 Cella et al. Jan 2020 A1
20200013156 Weiss Jan 2020 A1
20200019154 Cella et al. Jan 2020 A1
20200019155 Cella et al. Jan 2020 A1
20200026270 Cella et al. Jan 2020 A1
20200076838 Mestha et al. Mar 2020 A1
20200081423 Clark et al. Mar 2020 A1
20200083070 Clark et al. Mar 2020 A1
20200083074 Clark et al. Mar 2020 A1
20200083080 Clark et al. Mar 2020 A1
20200096986 Cella et al. Mar 2020 A1
20200096987 Cella et al. Mar 2020 A1
20200096988 Cella et al. Mar 2020 A1
20200096989 Cella et al. Mar 2020 A1
20200096990 Cella et al. Mar 2020 A1
20200096992 Cella et al. Mar 2020 A1
20200096993 Cella et al. Mar 2020 A1
20200096994 Cella et al. Mar 2020 A1
20200096995 Cella et al. Mar 2020 A1
20200096996 Cella et al. Mar 2020 A1
20200096997 Cella et al. Mar 2020 A1
20200096998 Cella et al. Mar 2020 A1
20200099707 Abbaszadeh Mar 2020 A1
20200103890 Cella et al. Apr 2020 A1
20200103891 Cella et al. Apr 2020 A1
20200103892 Cella et al. Apr 2020 A1
20200103893 Cella et al. Apr 2020 A1
20200110398 Cella et al. Apr 2020 A1
20200110399 Cella et al. Apr 2020 A1
20200110400 Cella et al. Apr 2020 A1
20200110401 Cella et al. Apr 2020 A1
20200111689 Banna et al. Apr 2020 A1
20200117180 Cella et al. Apr 2020 A1
20200125978 Abbaszadeh Apr 2020 A1
20200166909 Noone et al. May 2020 A1
20200175171 Rieger et al. Jun 2020 A1
20200310380 Sun et al. Oct 2020 A1
20200314128 Hild Oct 2020 A1
20200333777 Maruyama Oct 2020 A1
20200401120 Putman et al. Dec 2020 A1
20210069990 Hough et al. Mar 2021 A1
20210118730 Clark et al. Apr 2021 A1
20210125863 Clark et al. Apr 2021 A1
20210132593 Sundstrom et al. May 2021 A1
20210138735 Limoge et al. May 2021 A1
20210168976 Kawai et al. Jun 2021 A1
20210192779 Putman et al. Jun 2021 A1
20210263495 Putman et al. Aug 2021 A1
20210311440 Sundstrom et al. Oct 2021 A1
20210378190 Limoge et al. Dec 2021 A1
20210394456 Hough et al. Dec 2021 A1
20220011727 Hlavac et al. Jan 2022 A1
20220236709 Cella et al. Jul 2022 A1
20220308653 Pu et al. Sep 2022 A1
20230182235 Penny et al. Jun 2023 A1
Foreign Referenced Citations (96)
Number Date Country
2002359881 Jul 2003 AU
1705938 Dec 2005 CN
101771702 Jul 2010 CN
102466566 May 2012 CN
102778858 Nov 2012 CN
104656602 May 2015 CN
105264640 Jan 2016 CN
105488806 Apr 2016 CN
105960777 Sep 2016 CN
106687981 May 2017 CN
106921676 Jul 2017 CN
107389701 Nov 2017 CN
107835982 Mar 2018 CN
107851047 Mar 2018 CN
107886500 Apr 2018 CN
107976969 May 2018 CN
108353078 Jul 2018 CN
108604393 Sep 2018 CN
108780314 Nov 2018 CN
109167796 Jan 2019 CN
109766992 May 2019 CN
110381045 Oct 2019 CN
110431503 Nov 2019 CN
110647414 Jan 2020 CN
110851834 Feb 2020 CN
0671677 Mar 1999 EP
2585248 Oct 2017 EP
4028228 Jul 2022 EP
5-108126 Apr 1993 JP
H05322789 Dec 1993 JP
2001100838 Apr 2001 JP
2002230337 Aug 2002 JP
2003167613 Jun 2003 JP
2004104576 Apr 2004 JP
2004178388 Jun 2004 JP
2005211105 Aug 2005 JP
2005250990 Sep 2005 JP
2007280366 Oct 2007 JP
2008009868 Jan 2008 JP
2008512792 Apr 2008 JP
2008146621 Jun 2008 JP
2009134623 Jun 2009 JP
2009282740 Dec 2009 JP
4601492 Dec 2010 JP
4621773 Jan 2011 JP
2015099022 May 2015 JP
2015181024 Oct 2015 JP
2016-157357 Sep 2016 JP
5984096 Sep 2016 JP
2017091091 May 2017 JP
6224873 Nov 2017 JP
2017211713 Nov 2017 JP
2018022210 Feb 2018 JP
2018-103309 Jul 2018 JP
2018139101 Sep 2018 JP
201961565 Apr 2019 JP
6527295 May 2019 JP
201995859 Jun 2019 JP
2019145042 Aug 2019 JP
2020-035420 Mar 2020 JP
2020114597 Jul 2020 JP
2022522159 Apr 2022 JP
10-2011-0069934 Jun 2011 KR
10-2015-0075742 Jul 2015 KR
101568879 Nov 2015 KR
10-2017-0127430 Nov 2017 KR
10-2019-0000182 Jan 2019 KR
454137 Sep 2001 TW
489443 Jun 2002 TW
200307972 Dec 2003 TW
200629117 Aug 2006 TW
200715080 Apr 2007 TW
200724237 Jul 2007 TW
201212140 Mar 2012 TW
I409658 Sep 2013 TW
201339069 Oct 2013 TW
201717144 May 2017 TW
201723914 Jul 2017 TW
201809640 Mar 2018 TW
201816717 May 2018 TW
201839626 Nov 2018 TW
201842403 Dec 2018 TW
201908896 Mar 2019 TW
201939634 Oct 2019 TW
201941194 Oct 2019 TW
201941328 Oct 2019 TW
202001678 Jan 2020 TW
2005093535 Nov 2005 WO
2018044410 Mar 2018 WO
2018055754 Mar 2018 WO
2018061842 Apr 2018 WO
2018062398 Apr 2018 WO
2019012653 Jan 2019 WO
2019058532 Mar 2019 WO
2019182913 Sep 2019 WO
2019195039 Oct 2019 WO
Non-Patent Literature Citations (95)
Entry
PCT International Application No. PCT/US20/61434, International Search Report and Written Opinion of the International Searching Authority, dated Feb. 22, 2021, 10 pages.
Office Action and Search Report from Taiwan Patent Application No. 111130991, dated May 17, 2023, 12 pages.
Office Action for Japanese Patent Application No. 2021575060, dated Jun. 2, 2023, 7 pages.
Office Action for Japanese Patent Application No. 2022520885, dated Jun. 30, 2023, 10 Pages.
Office Action for Japanese Patent Application No. 2022529027, dated Jun. 30, 2023, 5 pages.
Zhong R.Y., et al, “Intelligent Manufacturing in the Context of Industry 4.0: A Review,” Engineering, Mar. 31, 2017, vol. 3, No. 5, pp. 616-630.
Zhou C., et al., “Anomaly Detection with Robust Deep Autoencoders,” Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 13-17, 2017, pp. 665-674.
American Society for Quality: “What is Statistical Process Control?,” 2021, 07 Pages, [Retrieved on Jul. 23, 2019], Retrieved from URL: https://asq.org/quality-resources/statistical-process-control.
An J., etal, “Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability,” Special Lecture on IE 2.1,Dec. 27, 2015, pp. 1-18.
Bose A., et al., “Behavioral Detection of Malware on Mobile Handsets,” MobiSys, Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Jun. 17-20, 2008, pp. 225-238.
Evangelidis G.D., et al., “Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Oct. 2008, vol. 30, No. 10, pp. 1-8.
Extended European Search Report for European Application No. 19916905.3, dated Sep. 9, 2022, 10 Pages.
Extended European Search Report for European Application No. 20156940.7, dated Aug. 10, 2020, 12 Pages.
Extended European Search Report for European Application No. 20763956.8, dated Sep. 9, 2022, 11 Pages.
Extended European Search Report for European Application No. 20832713.0, dated Jan. 3, 2023, 10 Pages.
Fujimoto S., et al., “Addressing Function Approximation Error in Actor-critic Methods,” Proceedings of the 35th International Conference on Machine Learning Research, Oct. 22, 2018, 15 Pages.
Goodfellow I.J., et al., “Generative Adversarial Nets,” Proceedings of Advances in Neural Information Processing Systems, 2014, 9 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2019/053746, dated Sep. 10, 2021, 6 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/029022, dated Sep. 10, 2021, 6 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/039064, dated Jan. 6, 2022, 7 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/052254, dated Apr. 21, 2022, 7 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/059339, dated May 19, 2022, 13 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2020/061434, dated Jun. 2, 2022, 09 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/019857, dated Sep. 9, 2022, 14 Pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/021440, dated Sep. 22, 2022, 09 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2019/053746, dated Nov. 5, 2019, 7 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/029022, dated Jul. 9, 2020, 08 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/039064, dated Jul. 30, 2020, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/052254, dated Jan. 12, 2021, 8 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2020/059339, dated Feb. 5, 2021, 14 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/019857, dated May 7, 2021, 15 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/021440, dated May 20, 2021, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/038085, dated Sep. 29, 2021, 14 Pages.
Karnouskos S., “Stuxnet Worm Impact on Industrial Cyber-Physical System Security,” IECON, 37th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2011,5 Pages.
Kingma D.P., et al., “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, ICLR 2015, Jan. 30, 2017, 15 pages.
Lardinois F., “Nvidia's Researchers Teach a Robot to Perform Simple Tasks by Observing a Human,” 6 Pages, [Retrieved on Mar. 11, 2019], Retrieved from URL: https://techcrunch.com/2018/05/20/nvidias-researchers-teach-a-robot-to-learn-simple-tasks-by-observing-a-human/?utm_source=tcfbpage&utm_medium=feed&utm_campaign=Feed%3A+Techcrunch+%28TechCrunch%29&sr_share=facebook.
Lillicrap T.P., et al, Continuous Control With Deep Reinforcement Learning, Published as a Conference Paper at ICLR 2016, arXiv: 1509.02971v6 [cs.LG], Last Revised on Jul. 5, 2019, 14 Pages.
Liu H., et al., “Intelligent Tuning Method of Pid Parameters Based on Iterative Learning Control for Atomic Force Microscopy,” Science Direct Micron, 2018, vol. 104, pp. 26-36.
Malhotra P., et al., “LSTM-Based Encoder-Decoder for Multi-Sensor Anomaly Detection,” arXiv preprint arXiv: 1607.00148, Last Revised on Jul. 11, 2016, 5 pages.
Mnih V., et al., “Playing Atari With Deep Reinforcement Learning,” arXiv preprint arXiv: 1312.5602v1, Dec. 19, 2013, 9 pages.
Mueller F., et al., “Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor,” Max-Planck—Institute for Informatics, Germany, Universidad Rey Juan Carlos, Spain, Oct. 5, 2017, 16 Pages.
Ng A., “Sparse Autoencoder,” CS294A Lecture Notes 72.2011,2011, pp. 1-19.
Office Action and Search Report from Taiwan Patent Application No. 108137373, dated Mar. 31, 2023, 16 pages.
Office Action for European Patent Application No. 20156940.7, dated Feb. 10, 2023, 6 Pages.
Office Action for Japanese Patent Application No. 2021-549835, dated Mar. 3, 2023, 7 Pages.
Papanastasiou S., et al., “Bridging the Gap between Physical Layer Emulation and Network Simulation,” IEEE Wireless Communication and Networking Conference, Date of Conference: Apr. 18-21, 2010, 06 pages.
Probabilistic Robotics; Sebastian Thrun et al.; 1999-2000.
Purdue University: “Intrusion Alert: System Uses Machine Learning, Curiosity-Driven 'Honeypots' to Stop Cyber Attackers,” Research Foundation News, Feb. 6, 2020, 06 Pages, Retrieved From URL: https://engineering.purdue.edu/ECE/News/2020/intrusion-alert-system-uses-machine-learning-curiosity-driven-honeypots-to-stop-cyber-attackers.
Real R., et al., “The Probabilistic Basis of Jaccard's Index of Similarity,” Systematic Biology, 1996, vol. 45, No. 3, pp. 380-385.
Sakurada M., et al., “Anomaly Detection Using Autoencoders With Nonlinear Dimensionality Reduction,” Proceedings of the Machine Learning for Sensory Data Analysis (MLSDA) 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, 8 Pages.
Saunders J.A., et al., “Visual Feedback Control of Hand Movements,” The Journal of Neuroscience, Mar. 31, 2004, vol. 24, No. 13, pp. 3223-3234.
Simon T., et al., “Hand Keypoint Detection in Single Images Using Multiview Bootstrapping,” Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017, pp. 1145-1153.
SPC for Excel: “Control Chart Rules and Interpretation,” BPI Consulting, LLC, Mar. 2016, 20 Pages, [Retrieved on Jul. 23, 2019], Retrieved From URL: https://www.spcforexcel.com/knowledge/control-chart-basics/control-chart-rules-interpretation.
SPC for Excel: “Interpreting Control Charts,” BPI Consulting, LLC, Apr. 2004, 9 Pages, [Retrieved on Jul. 23, 2019], Retrieved From URL: https://www.spcforexcel.com/knowledge/control-charts-basics/interpreting-control-charts.
Szkilnyk G., “Vision Based Fault Detection in Assembly Automation,” Queen's University, Jun. 2012, 219 Pages.
Vecerik M., et al., “Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards,” arXiv preprint, arXiv:1707.08817, Submitted on Jul. 27, 2017, 10 Pages, Last revised on Oct. 8, 2018.
Office Action for Japanese Patent Application No. 2022-553668, dated Sep. 1, 2023, 9 Pages.
Supplementary European Search Report for European Patent Application No. 21760563.3, dated Jul. 18, 2023, 12 Pages.
Vollmer, et al., “Cyber-physical system security with deceptive virtual hosts for industrial control networks,” IEEE Transactions on Industrial Informatics 10.2, May 2014, pp. 1337-1347.
Notice of Allowance for Japanese Patent Application No. 2021-549835, dated Jan. 5, 2024, 3 Page.
Office Action for Japanese Patent Application No. 2022577143, dated Jan. 12, 2024, 7 pages.
Office Action for Chinese Patent Application No. 202080044987.0, dated Jan. 29, 2024, 7 pages.
Extended Search Report from European Patent Application No. 20874557.0, dated Oct. 19, 2023, 12 Pages.
Potluri, et al., “Deep learning based efficient anomaly detection for securing process control systems against injection attacks,” 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, pp. 854-860.
Erba, et al., “Real-time evasion attacks with physical constraints on deep learning-based anomaly detectors in industrial control systems,” arXiv preprint arXiv:1907.07487, 2019, 15 pages.
Notification of Reason for Refusal from Korean Patent Application No. 10-2021-7030695, dated Dec. 18, 2023, 13 Pages.
Office Action for Chinese Patent Application No. 202080016336.0, dated Feb. 1, 2024, 8 pages.
Office Action for Japanese Patent Application No. 2022-553668, dated Feb. 9, 2024, 9 pages.
Office Action for Japanese Patent Application No. 2021549835, dated Sep. 22, 2023, 7 pages.
Office Action for Japanese Patent Application No. 2021575060, dated Oct. 13, 2023, 3 pages.
Office Action for Japanese Patent Application No. 2022529027, dated Oct. 13, 2023, 3 pages.
Office Action from Taiwan Patent Application No. 11221224400, dated Dec. 6, 2023, 18 pages.
Office Action from Indian Patent Application No. 202217044168, dated Nov. 30, 2023, 10 pages.
Office Action for Japanese Patent Application No. 2022-551360, dated Nov. 2, 2023, 4 pages.
Office Action for Japanese Patent Application No. 2022-207136, dated Nov. 24, 2023, 6 pages.
Office Action for TW Patent Application No. 11221179860, dated Nov. 27, 2023, 10 pages.
Office Action and Search Report from Taiwan Patent Application No. 112103333, dated Aug. 21, 2023, 8 Pages.
Notice of Allowance for Taiwanese Patent Application No. 108137373, dated Oct. 12, 2023, 4 pages.
Office Action for Chinese Patent Application No. 202080073852.7, dated Nov. 1, 2023, 4 pages.
Office Action for Japanese Patent Application No. 2022-520885, dated Nov. 2, 2023, 5 pages.
Office Action from Chinese Patent Application No. 201980092196.2, dated Feb. 29, 2024, 12 pages.
Notice of Allowance for Korean Patent Application No. 10-2021-7039615, mailed Feb. 27, 2024, 8 pages.
Extended European Search Report for European Application No. 20885424.0 dated Jan. 5, 2024, 12 pages.
Extended European Search Report for European Application No. 20889594.6 dated Nov. 27, 2023, 87 pages.
Notice of Allowance from Japanese Patent Application No. 2022-551360, dated Feb. 16, 2024, 3 pages.
Office Action from KR Patent Application No. 10-2021-7030700, dated Mar. 19, 2024, 16 pages.
Notice of Allowance for JP Patent Application No. 2022-520885, mailed Mar. 29, 2024, 3 pages.
Tang, et al., “HonIDS: Enhancing honeypot system with intrusion detection models, ” Fourth IEEE International Workshop on Information Assurance (IWIA'06), IEEE, 2006.
Notice of Allowance for TW Patent Application No. 111130991, mailed Mar. 4, 2024, 4 pages.
Office Action from KR Patent Application No. 10-2022-7014934, dated Mar. 21, 2024, 15 pages.
Office Action from Chinese Patent Application No. 202080073852.7, dated Apr. 19, 2024, 15 pages.
Office Action from Chinese Patent Application No. 202180014828.0, dated Apr. 28, 2024, 8 pages.
Office Action from TW Patent Application No. 112103333, dated May 2, 2024, 3 pages.
Notice of Allowance from Taiwan Patent Application No. 112113077, dated May 14, 2024, 6 pages.
Office Action for European Patent Application No. 21767468.8, mailed Mar. 22, 2024, 12 Pages.
Related Publications (1)
Number Date Country
20210256116 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62938158 Nov 2019 US