The present invention relates to the field of access control systems.
RFID card and reader systems are well-known in the field of access control. In a typical system, a reader is mounted beside each door to be secured.
Forming one aspect of the invention is apparatus for use with an RFID proximity card and with a door assembly. The door assembly is of the type including a wood or metal door and a wood or metal frame. The wood or metal frame includes a pair of jambs. The wood or metal door is hingedly connected to one of the pair of jambs. The other of the pair of jambs is hollow and has a rabbet defined by a pair of surfaces. One of the pair of surfaces presents to the door when closed and defines part of a stop against which the door is positioned when closed. The other of the pair of surfaces flanks and presents towards the edge of the door when closed. The width of the other of the pair of surfaces is measured in the direction which defines the depth of the one of the pair of jambs. The thickness of the one of the pair of jambs is measured in the direction which defines the width of the doorway. The apparatus comprises a sensor which produces a first signal when the card is operatively presented thereto and has a thickness T, a width W and a height H. T<[total thickness of the other of the pair of jambs−thickness of the stop of the other of the pair of jambs]. W is substantially equivalent to the width of the other of the pair of surfaces. H<the height of the doorway.
According to another aspect of the invention: H can be about 2.75″; W can be about 1.5″; T can be less than 1.5″; the sensor can have a reading face which presents in a direction parallel to the dimension represented by the thickness of the sensor; and the sensor can produce the first signal at least when the card is placed in overlying relation to the reading face.
According to another aspect of the invention: T can be about 0.5″.
According to another aspect of the invention: the sensor: in use, can be disposed in a cut-out in the other of the pair of surfaces; and can produce the first signal, when the door is closed, when the card is slid in the slot defined between the sensor and the door.
Forming another aspect of the invention is a system for use with a door assembly. The door assembly is of the type including a wood or metal door and a wood or metal frame. The wood or metal frame includes a pair of jambs. The wood or metal door is hingedly connected to one of the pair of jambs. The other of the pair of jams is hollow and has a rabbet defined by a pair of surfaces. One of the pair of surfaces presents to the door when closed and defines part of a stop against which the door is positioned when closed. The other of the pair flanks and presents towards the edge of the door when closed. The width of the other of the pair of surfaces is measured in the direction which defines the depth of the one of the pair of jams. The thickness of the one of the pair of jams is measured in the direction which defines the width of the doorway. The system comprises first RFID proximity cards and sensors. Each sensor, in use, is disposed in a cut-out in the other of the pair of surfaces and produces a signal, when the door is closed, when one of the first cards is slid in the slot defined between the sensor and the door.
According to another aspect of the invention, each sensor can have a thickness T, a width W and a height H. T can be <[total thickness of the other of the pair of jambs−thickness of the stop of the other of the pair of jambs]. W can be substantially equivalent to the width of the other of the pair of surfaces. H can be <the height of the doorway.
According to another aspect of the invention: H can be about 2.75″; W can be about 1.5″; T can be less than 1.5″; each sensor can have a reading face which presents in a direction parallel to the dimension represented by the sensor thickness; and can produce the first signal at least when the card is placed in overlying relation to the reading face.
According to another aspect of the invention, T can be about 0.5″.
According to other aspects of the invention the first cards can be thin RFID cards and the system can further comprise thick prox cards. The sensors, in use, can be further adapted to produce the first signal at least when one of the thick prox cards is placed immediately in front of said each sensor and against the jamb in which said each sensor is mounted.
According to other aspects of the invention, the system can further comprise RHO fobs and the sensors can each, in use, be further adapted to produce the first signal at least when one of the RFID fobs is placed immediately in front of said each sensor and against the jamb in which said each sensor is mounted.
A method forms another aspect of the invention. The method is for use with the system and with a wood or metal door assembly. The assembly is of the type including a wood or metal door and a wood or metal frame. The wood or metal frame includes a pair of jambs. The wood or metal door is hingedly connected to one of the pair of jambs. The other of the pair of jambs is hollow and has a rabbet defined by a pair of surfaces. One of the pair of surfaces defines part of a stop which presents towards the door and against which the door is positioned when closed and the other of the pair of surfaces flanks the edge of the door when closed. The width of the other of the pair of surfaces is measured in the direction which defines the depth of the one of the pair of jams. The thickness of the one of the pair of jams is measured in the direction which defines the width of the doorway. The method comprises the steps of: cutting a hole in the other of the pair of surfaces; and mounting one of the sensors inside the other of the pair of jambs. The hole is shaped and dimensioned and the sensor is mounted such that the reading face substantially fully occupies the hole and lies flush with the other of the pair of surfaces.
Advantages of the invention will become apparent to persons of ordinary skill in the art upon review of the appended claims and upon review of the following detailed description of an exemplary embodiment of the invention.
Shown in
The illustrated sensor assembly 22, best seen in
The thin RFID proximity card 24, thick RFID proximity card 26 and RFID fob 28 are each of conventional construction and are adapted to cause the sensor 30 to produce a signal when operatively presented thereto, and accordingly are not described herein in detail.
Reference is now made to
With reference to
It will be evident that the sensor assembly has numerous advantages:
Yet further variations are possible.
For example, only, whereas a 6 wire conductor is specified, this is merely for convenience only, to permit usefulness of the exemplary device with conventional 6-conductor Wiegand systems. As but one alternative, a single three-wire conductor could be utilized.
As well, whereas metal is specified herein, this should be understood to include all common metals used to construct door, such as aluminum and steel.
Accordingly, the invention should be understood as limited only by the accompanying claims, purposively construed.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/597,878, filed on Feb. 13, 2012, the disclosure of which is entirely incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
8643468 | Peabody et al. | Feb 2014 | B1 |
20020196123 | Diehl et al. | Dec 2002 | A1 |
20050024221 | Jamison-Lenz et al. | Feb 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20130227885 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61597878 | Feb 2012 | US |