The present invention relates to procuring trusted associations between at least two parties.
Secret key encryption is implemented by a sending party encrypting data to be transmitted using a key, transmitting the key and the encrypted data to a receiving party either separately or together over a network connection, and the receiving party using a same key to decrypt the received data. A public key infrastructure (hereafter “PKI”) is implemented by the sending party encrypting data to be transmitted using a public key corresponding to the receiving party, transmitting the encrypted data to the receiving party over a network connection, and the receiving party using its private key to decrypt the received data. However, the trust required for sharing both secret keys for secret key encryption and public keys for PKI is being breached at an alarmingly increasing rate among distributed network appliances, particularly in constrained situations such as securing a boot among multiple appliances or nodes over a network.
Secure network associations among plural devices are described herein.
Generating symmetric keys among distributed appliances, includes generating public and private key values one at least one appliance, receiving a public key value from another appliance via an out-of-band third party mechanism, and generating a secret value as a function of the private key value corresponding to the local appliance and the public key value received from the other appliance.
The scope of the present invention will be apparent from the following detailed description, when taken in conjunction with the accompanying drawings, and such detailed description, while indicating embodiments of the invention, are given as illustrations only, since various changes and modifications will become apparent to those skilled in the art from the following detailed description, in which:
In the example network environment of
Client device 105 may include any of a variety of conventional computing devices, including a desktop personal computer (PC), workstations, mainframe computers, Internet appliances, and gaming consoles. Further client devices associated with network 100 may include personal digital assistant (PDA) 110, laptop computer 115, and cellular telephone 120, etc., which may be in communication with network 100 by a wired and/or wireless link. Further still, one or more of client devices 105, 110, 115, and 120 may include the same types of devices, or alternatively different types of devices.
Server device 125 may provide any of a variety of data and/or functionality to computing devices 105, 110, 115, and 120. The data may be publicly available or alternatively restricted, e.g., restricted to only certain users or available only if the appropriate fee is paid, etc. Server device 125 is at least one of a network server, an application server, a web blade, or any combination thereof. Server device 125 is any device that is the source of content, and client devices 105, 110, 115, and 120 include any devices that receive such content.
At data source 130 or 135, software programs, including operating systems and applications, are prepared for and/or provided to any one of server device 125 or client devices 105, 110, 115, and 120 for loading and/or execution. For the sake of consistency, the discussion hereafter refers to “applications” which encompass anyone of, at least, operating systems, programs, and applications, as known in the art, either singularly or in combination.
Secure associations between any of client devices 105, 110, 115, 120, server device 125, and data sources 130 and 135 is described herein with reference to the example embodiment of
In particular, the example embodiment of
According to the example embodiment of
According to a first embodiment, symmetric keys are established on at least devices 205 and 230 using the Diffie-Hellman cryptographic protocol. In particular, generator 215 on device 205 and generator 235 on device 230 each produce a local public/private key pair for the respective devices. The public key values generated on devices 205 and 230 are exchanged via out-of-band mechanism 245. Thus, having imported the public key value generated on the other device via out-of-band mechanism 245, devices 205 and 230 are able to produce a shared secret as a function of the imported public key value and the local private key value by executing a Diffie-Hellman computation, which is known in the art and is therefore not described in detail here.
That is, shared secret generator 225 on device 205 produces a Diffie-Hellman shared secret as a function of the private key value produced by generator 215 and the public key value imported from device 230 via out-of-band mechanism 245. Further, shared secret generator 240 on device 230 produces a Diffie-Hellman shared secret as a function of the private key value produced by generator 235 and the public key value imported from device 205 via out-of-band mechanism 245. As is known in the art with regard to the Diffie-Hellman cryptographic technique, by exchanging public keys, the shared secret key values generated on devices 205 and 230 are the same, i.e., symmetric, but neither device is required to export either a private key value or the shared secret value over a network. Rather, only a public key value is transmitted from one device to another, and that over an out-of-band mechanism, requiring only a low level of trust.
The Diffie-Hellman secret value generated at each of the devices is used for encryption/decryption or other known authentication purposes.
The embodiment of
Specifically, to implement the RSA protocol, devices 205 and 230 are to produce a public key value, though only one of the devices is needed to produce a private key value. The private key value is produced on the device that is to generate the secret value to be shared. The description of the example embodiment continues assuming that generator 215 on device 205 and generator 235 on device 230 each produce a local public/private key pair for the respective devices, though such example is not limiting.
Assuming that device 205 is to generate the secret value to be shared, the public key value generated by generator 235 on device 230 is imported to device 205 via out-of-band mechanism 245. Shared secret generator 225 on device 205 produces an RSA secret value as a function of the local private key value produced by generator 215 and the public key value imported from device 230 via out-of-band mechanism 245. As is known in the art with regard to the RSA cryptographic technique, the secret value is then shared with device 230 by encrypting the secret value using the imported public key value, i.e., the public key value imported to device 205 from device 230 via out-of-band mechanism 245. Out-of-band mechanism 245 is then utilized again to export the secret value to device 230, with the secret value protected by the public key value of device 230. Thus, devices 205 and 230 benefit from sharing the secret value, which is then used for encryption/decryption or other known authentication purposes.
An example implementation for the embodiments described herein includes providing a secure boot over a network wherein boot loader code resides on the firmware of a network appliance. A description of such an example is hereby described with reference to the example embodiment of
The processing of
When RADIUS client 205 attempts to remotely load an OS, the profile of which is stored on RADIUS server 230, public/private key values are generated 305 by generator 215 on RADIUS client 205. The public key value generated on RADIUS client 205 is exported 310 to RADIUS server 230 via out-of-band mechanism 245.
Public/private key values are also generated 305 on RADIUS server 230 by generator 235, either simultaneously with the generation of the public/private key values on RADIUS client 205 or, more likely, in response to receiving the public key value from RADIUS client 205 at RADIUS server 230. The public key value generated on RADIUS server 230 is exported 310 to RADIUS client 205 via out-of-band mechanism 245.
Generator 240 on RADIUS server 230 generates 315 a shared secret value by executing a Diffie-Hellman computation, with the shared secret being computed as a function of the private key value generated by generator 235 and the public key value imported from RADIUS client 205 via out-of-band mechanism 245.
Similarly, generator 225 on RADIUS client 205 generates 315 a shared secret value by executing a Diffie-Hellman computation, with the shared secret being computed as a function of the private key value generated by generator 215 and the public key value imported from RADIUS server 230 via out-of-band mechanism 245.
The secret values generated by generator 225 and generator 240 are symmetric, in accordance with the fundamental principals of the Diffie-Hellman encryption technique.
Alternatively, the secure boot of an OS from RADIUS server 230 on RADIUS client 205 can also be implemented using an RSA encryption technique. The description of such embodiment is described with reference to the examples of
Therefore, by
Public/private key values are also generated 405 on RADIUS server 230 by generator 235, either simultaneously with the generation of the public/private key values on RADIUS client 205 or in response to receiving the public key value from RADIUS client 205 at RADIUS server 230.
Generator 240 on RADIUS server 230 generates 415 a shared secret value by executing an RSA computation, with the shared secret being computed as a function of the private key value generated by generator 235 and the public key value imported from RADIUS client 205 via out-of-band mechanism 245.
The secret value generated on RADIUS server 230 is encoded to be protected by the public key value imported from RADIUS client 205, and exported 420 to RADIUS client 205 via out-of-band mechanism 245.
The techniques described above may also be utilized to establish a trust relationship between any of devices 105, 110, 115, 120, server 125, and data sources 130 and 135, shown in
Further, with regard to the example embodiments described herein, it is noted that means and methods for the generation of public/private key values are known in the art, and therefore are not presently described in detail. Similarly, encryption protocols including, but not limited to, the Diffie-Hellman protocol and the RSA protocol, which may be utilized in correspondence with the example embodiments described herein are also known, and therefore a description of such protocols is not provided.
Computer environment 500 includes a general-purpose computing device in the form of a computer 502. The components of computer 502 can include, but are not limited to, one or more processors or processing units 504, system memory 506, and system bus 508 that couples various system components including processor 504 to system memory 506.
System bus 508 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus, a PCI Express bus, a Universal Serial Bus (USB), a Secure Digital (SD) bus, or an IEEE 1394, i.e., FireWire, bus.
Computer 502 may include a variety of computer readable media. Such media can be any available media that is accessible by computer 502 and includes both volatile and non-volatile media, removable and non-removable media.
System memory 506 includes computer readable media in the form of volatile memory, such as random access memory (RAM) 510; and/or non-volatile memory, such as read only memory (ROM) 512 or flash RAM. Basic input/output system (BIOS) 514, containing the basic routines that help to transfer information between elements within computer 502, such as during start-up, is stored in ROM 512 or flash RAM. RAM 510 typically contains data and/or program modules that are immediately accessible to and/or presently operated on by processing unit 504.
Computer 502 may also include other removable/non-removable, volatile/non-volatile computer storage media. By way of example,
The disk drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules, and other data for computer 502. Although the example illustrates a hard disk 516, removable magnetic disk 520, and removable optical disk 524, it is appreciated that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access memories (RAM), read only memories (ROM), electrically erasable programmable read-only memory (EEPROM), and the like, can also be utilized to implement the example computing system and environment.
Any number of program modules can be stored on hard disk 516, magnetic disk 520, optical disk 524, ROM 512, and/or RAM 510, including by way of example, operating system 526, one or more application programs 528, other program modules 530, and program data 532. Each of such operating system 526, one or more application programs 528, other program modules 530, and program data 532 (or some combination thereof) may implement all or part of the resident components that support the distributed file system.
A user can enter commands and information into computer 502 via input devices such as keyboard 534 and a pointing device 536 (e.g., a “mouse”). Other input devices 538 (not shown specifically) may include a microphone, joystick, game pad, satellite dish, serial port, scanner, and/or the like. These and other input devices are connected to processing unit 504 via input/output interfaces 540 that are coupled to system bus 508, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
Monitor 542 or other type of display device can also be connected to the system bus 508 via an interface, such as video adapter 544. In addition to monitor 542, other output peripheral devices can include components such as speakers (not shown) and printer 546 which can be connected to computer 502 via I/O interfaces 540.
Computer 502 can operate in a networked environment using logical connections to one or more remote computers, such as remote computing device 548. By way of example, remote computing device 548 can be a PC, portable computer, a server, a router, a network computer, a peer device or other common network node, and the like. Remote computing device 548 is illustrated as a portable computer that can include many or all of the elements and features described herein relative to computer 502. Alternatively, computer 502 can operate in a non-networked environment as well.
Logical connections between computer 502 and remote computer 548 are depicted as a local area network (LAN) 550 and a general wide area network (WAN) 552. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
When implemented in a LAN networking environment, computer 502 is connected to local network 550 via network interface or adapter 554. When implemented in a WAN networking environment, computer 502 typically includes modem 556 or other means for establishing communications over wide network 552. Modem 556, which can be internal or external to computer 502, can be connected to system bus 508 via I/O interfaces 540 or other appropriate mechanisms. It is to be appreciated that the illustrated network connections are examples and that other means of establishing at least one communication link between computers 502 and 548 can be employed.
In a networked environment, such as that illustrated with computing environment 500, program modules depicted relative to computer 502, or portions thereof, may be stored in a remote memory storage device. By way of example, remote application programs 558 reside on a memory device of remote computer 548. For purposes of illustration, applications or programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of computing device 502, and are executed by at least one data processor of the computer.
Various modules and techniques may be described herein in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. for performing particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
An implementation of these modules and techniques may be stored on or transmitted across some form of computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example, and not limitation, computer readable media may comprise “computer storage media” and “communications media.”
“Computer storage media” includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
“Communication media” typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. As a non-limiting example only, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
Reference has been made throughout this specification to “one embodiment,” “an embodiment,” or “an example embodiment” meaning that a particular described feature, structure, or characteristic is included in at least one embodiment of the present invention. Thus, usage of such phrases may refer to more than just one embodiment. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
One skilled in the relevant art may recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, resources, materials, etc. In other instances, well known structures, resources, or operations have not been shown or described in detail merely to avoid obscuring aspects of the invention.
While example embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present invention disclosed herein without departing from the scope of the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
4200770 | Hellman et al. | Apr 1980 | A |
4218582 | Hellman et al. | Aug 1980 | A |
4405829 | Rivest et al. | Sep 1983 | A |
4424414 | Hellman et al. | Jan 1984 | A |
5031089 | Liu et al. | Jul 1991 | A |
5115505 | Bishop et al. | May 1992 | A |
5220621 | Saitoh | Jun 1993 | A |
5430810 | Saeki | Jul 1995 | A |
5490276 | Doli, Jr. et al. | Feb 1996 | A |
5499357 | Sonty et al. | Mar 1996 | A |
5504921 | Dev et al. | Apr 1996 | A |
5557774 | Shimabukuro et al. | Sep 1996 | A |
5579482 | Einkauf et al. | Nov 1996 | A |
5668995 | Bhat | Sep 1997 | A |
5686940 | Kuga | Nov 1997 | A |
5724508 | Harple, Jr. et al. | Mar 1998 | A |
5748958 | Van Renesse | May 1998 | A |
5758351 | Gibson et al. | May 1998 | A |
5768271 | Seid et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774689 | Curtis et al. | Jun 1998 | A |
5784463 | Chen et al. | Jul 1998 | A |
5790895 | Krontz et al. | Aug 1998 | A |
5801970 | Rowland et al. | Sep 1998 | A |
5802590 | Draves | Sep 1998 | A |
5815574 | Fortinsky | Sep 1998 | A |
5818937 | Watson et al. | Oct 1998 | A |
5822531 | Gorczyca et al. | Oct 1998 | A |
5826015 | Schmidt | Oct 1998 | A |
5845124 | Berman | Dec 1998 | A |
5845277 | Pfeil et al. | Dec 1998 | A |
5867706 | Martin et al. | Feb 1999 | A |
5872928 | Lewis et al. | Feb 1999 | A |
5878220 | Olkin et al. | Mar 1999 | A |
5895499 | Chu | Apr 1999 | A |
5905728 | Han et al. | May 1999 | A |
5917730 | Rittie et al. | Jun 1999 | A |
5930798 | Lawler et al. | Jul 1999 | A |
5958009 | Friedrich et al. | Sep 1999 | A |
5960371 | Saito et al. | Sep 1999 | A |
5968126 | Ekstrom et al. | Oct 1999 | A |
6012113 | Tuckner | Jan 2000 | A |
6035405 | Gage et al. | Mar 2000 | A |
6041054 | Westberg | Mar 2000 | A |
6047323 | Krause | Apr 2000 | A |
6049528 | Hendel et al. | Apr 2000 | A |
6052469 | Johnson et al. | Apr 2000 | A |
6059842 | Dumarot et al. | May 2000 | A |
6065058 | Hailpern et al. | May 2000 | A |
6073183 | Slonim | Jun 2000 | A |
6073227 | Abily et al. | Jun 2000 | A |
6075776 | Tanimoto et al. | Jun 2000 | A |
6076108 | Courts et al. | Jun 2000 | A |
6081826 | Masuoka et al. | Jun 2000 | A |
6085238 | Yuasa et al. | Jul 2000 | A |
6086618 | Al-Hilali et al. | Jul 2000 | A |
6097818 | Saito | Aug 2000 | A |
6108702 | Wood | Aug 2000 | A |
6112243 | Downs et al. | Aug 2000 | A |
6115393 | Engel et al. | Sep 2000 | A |
6118785 | Araujo et al. | Sep 2000 | A |
6125442 | Maves et al. | Sep 2000 | A |
6125447 | Gong | Sep 2000 | A |
6134594 | Helland et al. | Oct 2000 | A |
6144959 | Anderson et al. | Nov 2000 | A |
6147995 | Dobbins et al. | Nov 2000 | A |
6151688 | Wipfel et al. | Nov 2000 | A |
6167052 | McNeill et al. | Dec 2000 | A |
6167383 | Henson | Dec 2000 | A |
6167515 | Lin | Dec 2000 | A |
6178529 | Short et al. | Jan 2001 | B1 |
6182275 | Beelitz et al. | Jan 2001 | B1 |
6185308 | Ando et al. | Feb 2001 | B1 |
6192401 | Modiri et al. | Feb 2001 | B1 |
6195091 | Harple et al. | Feb 2001 | B1 |
6195355 | Demizu | Feb 2001 | B1 |
6208345 | Sheard et al. | Mar 2001 | B1 |
6208649 | Kloth | Mar 2001 | B1 |
6209099 | Saunders | Mar 2001 | B1 |
6212559 | Bixler et al. | Apr 2001 | B1 |
6215877 | Matsumoto | Apr 2001 | B1 |
6215878 | Harkins | Apr 2001 | B1 |
6226788 | Schoening et al. | May 2001 | B1 |
6230312 | Hunt | May 2001 | B1 |
6233610 | Hayball et al. | May 2001 | B1 |
6236365 | LeBlanc et al. | May 2001 | B1 |
6236729 | Takaragi et al. | May 2001 | B1 |
6236901 | Goss | May 2001 | B1 |
6253230 | Couland et al. | Jun 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6263089 | Otsuka et al. | Jul 2001 | B1 |
6266707 | Boden et al. | Jul 2001 | B1 |
6269076 | Shamir et al. | Jul 2001 | B1 |
6269079 | Marin et al. | Jul 2001 | B1 |
6304972 | Shavit | Oct 2001 | B1 |
6305015 | Akriche et al. | Oct 2001 | B1 |
6311144 | Abu El Ata | Oct 2001 | B1 |
6311270 | Challener et al. | Oct 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6330605 | Christensen et al. | Dec 2001 | B1 |
6336138 | Caswell et al. | Jan 2002 | B1 |
6336171 | Coskrey, IV | Jan 2002 | B1 |
6338112 | Wipfel et al. | Jan 2002 | B1 |
6351685 | Dimitri et al. | Feb 2002 | B1 |
6353861 | Dolin, Jr. et al. | Mar 2002 | B1 |
6353898 | Wipfel et al. | Mar 2002 | B1 |
6360265 | Falck et al. | Mar 2002 | B1 |
6366578 | Johnson | Apr 2002 | B1 |
6367010 | Venkatram et al. | Apr 2002 | B1 |
6370573 | Bowman-Amuah | Apr 2002 | B1 |
6370584 | Bestavros et al. | Apr 2002 | B1 |
6377996 | Lumelsky et al. | Apr 2002 | B1 |
6389464 | Krishnamurthy et al. | May 2002 | B1 |
6393386 | Zager et al. | May 2002 | B1 |
6393456 | Ambler et al. | May 2002 | B1 |
6393485 | Chao et al. | May 2002 | B1 |
6408390 | Saito | Jun 2002 | B1 |
6424718 | Holloway | Jul 2002 | B1 |
6424992 | Devarakonda et al. | Jul 2002 | B2 |
6427163 | Arendt et al. | Jul 2002 | B1 |
6427171 | Craft et al. | Jul 2002 | B1 |
6438100 | Halpern et al. | Aug 2002 | B1 |
6442557 | Buteau et al. | Aug 2002 | B1 |
6442713 | Block et al. | Aug 2002 | B1 |
6449650 | Westfall et al. | Sep 2002 | B1 |
6457048 | Sondur et al. | Sep 2002 | B2 |
6463536 | Saito | Oct 2002 | B2 |
6466985 | Goyal et al. | Oct 2002 | B1 |
6470025 | Wilson et al. | Oct 2002 | B1 |
6470464 | Bertram et al. | Oct 2002 | B2 |
6473791 | Al-Ghosein et al. | Oct 2002 | B1 |
6480955 | DeKoning et al. | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6502131 | Vaid et al. | Dec 2002 | B1 |
6505244 | Natarajan et al. | Jan 2003 | B1 |
6519615 | Wollrath et al. | Feb 2003 | B1 |
6529953 | Van Renesse | Mar 2003 | B1 |
6539494 | Abramson et al. | Mar 2003 | B1 |
6546423 | Dutta et al. | Apr 2003 | B1 |
6546553 | Hunt | Apr 2003 | B1 |
6549516 | Albert et al. | Apr 2003 | B1 |
6549934 | Peterson et al. | Apr 2003 | B1 |
6564261 | Gudjonsson et al. | May 2003 | B1 |
6570847 | Hosein | May 2003 | B1 |
6570875 | Hegde | May 2003 | B1 |
6574195 | Roberts | Jun 2003 | B2 |
6578144 | Gennaro et al. | Jun 2003 | B1 |
6584499 | Jantz et al. | Jun 2003 | B1 |
6587876 | Mahon et al. | Jul 2003 | B1 |
6597956 | Aziz et al. | Jul 2003 | B1 |
6598077 | Primak et al. | Jul 2003 | B2 |
6598173 | Sheikh et al. | Jul 2003 | B1 |
6598223 | Vrhel, Jr. et al. | Jul 2003 | B1 |
6601101 | Lee et al. | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606708 | Devine et al. | Aug 2003 | B1 |
6609148 | Salo et al. | Aug 2003 | B1 |
6609213 | Nguyen et al. | Aug 2003 | B1 |
6611522 | Zheng et al. | Aug 2003 | B1 |
6628671 | Dynarski et al. | Sep 2003 | B1 |
6631141 | Kumar et al. | Oct 2003 | B1 |
6640303 | Vu | Oct 2003 | B1 |
6651101 | Gai et al. | Nov 2003 | B1 |
6651240 | Yamamoto et al. | Nov 2003 | B1 |
6654782 | O'Brien et al. | Nov 2003 | B1 |
6654796 | Slater et al. | Nov 2003 | B1 |
6665714 | Blumenau et al. | Dec 2003 | B1 |
6671699 | Black et al. | Dec 2003 | B1 |
6675308 | Thomsen | Jan 2004 | B1 |
6678821 | Waugh et al. | Jan 2004 | B1 |
6678835 | Shah et al. | Jan 2004 | B1 |
6681262 | Rimmer | Jan 2004 | B1 |
6691148 | Zinky et al. | Feb 2004 | B1 |
6691165 | Bruck et al. | Feb 2004 | B1 |
6691168 | Bal et al. | Feb 2004 | B1 |
6694436 | Audebert | Feb 2004 | B1 |
6701363 | Chiu et al. | Mar 2004 | B1 |
6717949 | Boden et al. | Apr 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6718379 | Krishna et al. | Apr 2004 | B1 |
6725253 | Okano et al. | Apr 2004 | B1 |
6728885 | Taylor et al. | Apr 2004 | B1 |
6735596 | Corynen | May 2004 | B2 |
6738736 | Bond | May 2004 | B1 |
6741266 | Kamiwada et al. | May 2004 | B1 |
6742020 | Dimitroff et al. | May 2004 | B1 |
6748447 | Basani et al. | Jun 2004 | B1 |
6754716 | Sharma et al. | Jun 2004 | B1 |
6754816 | Layton et al. | Jun 2004 | B1 |
6757744 | Narisi et al. | Jun 2004 | B1 |
6760765 | Asai et al. | Jul 2004 | B1 |
6760775 | Anerousis et al. | Jul 2004 | B1 |
6769008 | Kumar et al. | Jul 2004 | B1 |
6769060 | Dent et al. | Jul 2004 | B1 |
6772333 | Brendel | Aug 2004 | B1 |
6779016 | Aziz et al. | Aug 2004 | B1 |
6782408 | Chandra et al. | Aug 2004 | B1 |
6789090 | Miyake et al. | Sep 2004 | B1 |
6801528 | Nassar | Oct 2004 | B2 |
6801937 | Novaes et al. | Oct 2004 | B1 |
6801949 | Bruck et al. | Oct 2004 | B1 |
6804783 | Wesinger et al. | Oct 2004 | B1 |
6813778 | Poli et al. | Nov 2004 | B1 |
6816897 | McGuire | Nov 2004 | B2 |
6820121 | Callis et al. | Nov 2004 | B1 |
6823299 | Contreras et al. | Nov 2004 | B1 |
6823373 | Pancha et al. | Nov 2004 | B1 |
6823382 | Stone | Nov 2004 | B2 |
6829639 | Lawson et al. | Dec 2004 | B1 |
6829770 | Hinson et al. | Dec 2004 | B1 |
6836750 | Wong et al. | Dec 2004 | B2 |
6845160 | Aoki | Jan 2005 | B1 |
6853841 | St. Pierre | Feb 2005 | B1 |
6854069 | Kampe et al. | Feb 2005 | B2 |
6856591 | Ma et al. | Feb 2005 | B1 |
6862613 | Kumar et al. | Mar 2005 | B1 |
6868062 | Yadav et al. | Mar 2005 | B1 |
6868454 | Kubota et al. | Mar 2005 | B1 |
6879926 | Schmit et al. | Apr 2005 | B2 |
6880002 | Hirschfeld et al. | Apr 2005 | B2 |
6886038 | Tabbara et al. | Apr 2005 | B1 |
6888807 | Heller et al. | May 2005 | B2 |
6895534 | Wong et al. | May 2005 | B2 |
6898791 | Chandy et al. | May 2005 | B1 |
6904458 | Bishop et al. | Jun 2005 | B1 |
6907395 | Hunt et al. | Jun 2005 | B1 |
6915338 | Hunt et al. | Jul 2005 | B1 |
6922791 | Mashayekhi et al. | Jul 2005 | B2 |
6928482 | Ben Nun et al. | Aug 2005 | B1 |
6947987 | Boland | Sep 2005 | B2 |
6954930 | Drake et al. | Oct 2005 | B2 |
6957186 | Guheen et al. | Oct 2005 | B1 |
6963981 | Bailey et al. | Nov 2005 | B1 |
6968291 | Desai | Nov 2005 | B1 |
6968535 | Stelting et al. | Nov 2005 | B2 |
6968550 | Branson et al. | Nov 2005 | B2 |
6968551 | Hediger et al. | Nov 2005 | B2 |
6971063 | Rappaport et al. | Nov 2005 | B1 |
6971072 | Stein | Nov 2005 | B1 |
6973620 | Gusler et al. | Dec 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6976079 | Ferguson et al. | Dec 2005 | B1 |
6976269 | Avery, IV et al. | Dec 2005 | B1 |
6978379 | Goh et al. | Dec 2005 | B1 |
6983317 | Bishop et al. | Jan 2006 | B1 |
6985956 | Luke et al. | Jan 2006 | B2 |
6986135 | Leathers et al. | Jan 2006 | B2 |
6990666 | Hirschfeld et al. | Jan 2006 | B2 |
7003562 | Mayer | Feb 2006 | B2 |
7003574 | Bahl | Feb 2006 | B1 |
7012919 | So et al. | Mar 2006 | B1 |
7013462 | Zara et al. | Mar 2006 | B2 |
7016950 | Tabbara et al. | Mar 2006 | B2 |
7024451 | Jorgenson | Apr 2006 | B2 |
7027412 | Miyamoto et al. | Apr 2006 | B2 |
7028228 | Lovy et al. | Apr 2006 | B1 |
7035786 | Abu El Ata et al. | Apr 2006 | B1 |
7035930 | Graupner et al. | Apr 2006 | B2 |
7043407 | Lynch et al. | May 2006 | B2 |
7043545 | Tabbara et al. | May 2006 | B2 |
7046680 | McDysan et al. | May 2006 | B1 |
7050961 | Lee et al. | May 2006 | B1 |
7054943 | Goldszmidt et al. | May 2006 | B1 |
7058704 | Mangipudi et al. | Jun 2006 | B1 |
7058826 | Fung | Jun 2006 | B2 |
7058858 | Wong et al. | Jun 2006 | B2 |
7062718 | Kodosky et al. | Jun 2006 | B2 |
7069204 | Solden et al. | Jun 2006 | B1 |
7069480 | Lovy et al. | Jun 2006 | B1 |
7069553 | Narayanaswamy et al. | Jun 2006 | B2 |
7072807 | Brown et al. | Jul 2006 | B2 |
7072822 | Humenansky et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7080143 | Hunt et al. | Jul 2006 | B2 |
7082464 | Hasan et al. | Jul 2006 | B2 |
7089281 | Kazemi et al. | Aug 2006 | B1 |
7089293 | Grosner et al. | Aug 2006 | B2 |
7093005 | Patterson | Aug 2006 | B2 |
7093288 | Hydrie et al. | Aug 2006 | B1 |
7096258 | Hunt et al. | Aug 2006 | B2 |
7099936 | Chase et al. | Aug 2006 | B2 |
7103185 | Srivastava et al. | Sep 2006 | B1 |
7103874 | McCollum et al. | Sep 2006 | B2 |
7113900 | Hunt et al. | Sep 2006 | B1 |
7117158 | Weldon et al. | Oct 2006 | B2 |
7117261 | Kryskow, Jr. et al. | Oct 2006 | B2 |
7120154 | Bavant et al. | Oct 2006 | B2 |
7124289 | Suorsa | Oct 2006 | B1 |
7127625 | Farkas et al. | Oct 2006 | B2 |
7131123 | Suorsa et al. | Oct 2006 | B2 |
7134011 | Fung | Nov 2006 | B2 |
7134122 | Sero et al. | Nov 2006 | B1 |
7139930 | Mashayekhi et al. | Nov 2006 | B2 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143420 | Radhakrishnan | Nov 2006 | B2 |
7146353 | Garg et al. | Dec 2006 | B2 |
7150015 | Pace et al. | Dec 2006 | B2 |
7152109 | Suorsa et al. | Dec 2006 | B2 |
7152157 | Murphy et al. | Dec 2006 | B2 |
7155380 | Hunt et al. | Dec 2006 | B2 |
7155490 | Malmer et al. | Dec 2006 | B1 |
7162427 | Myrick et al. | Jan 2007 | B1 |
7162509 | Brown et al. | Jan 2007 | B2 |
7174379 | Agarwal et al. | Feb 2007 | B2 |
7181731 | Pace et al. | Feb 2007 | B2 |
7188335 | Darr et al. | Mar 2007 | B1 |
7191344 | Lin et al. | Mar 2007 | B2 |
7191429 | Brassard et al. | Mar 2007 | B2 |
7194439 | Kassan et al. | Mar 2007 | B2 |
7194616 | Axnix et al. | Mar 2007 | B2 |
7197418 | Fuller, III et al. | Mar 2007 | B2 |
7200530 | Brown et al. | Apr 2007 | B2 |
7200655 | Hunt et al. | Apr 2007 | B2 |
7203911 | Williams | Apr 2007 | B2 |
7210143 | Or et al. | Apr 2007 | B2 |
7213231 | Bandhole et al. | May 2007 | B1 |
7222147 | Black et al. | May 2007 | B1 |
7225441 | Kozuch et al. | May 2007 | B2 |
7231410 | Walsh et al. | Jun 2007 | B1 |
7254634 | Davis et al. | Aug 2007 | B1 |
7257584 | Hirschfeld et al. | Aug 2007 | B2 |
7275156 | Balfanz et al. | Sep 2007 | B2 |
7278273 | Whitted et al. | Oct 2007 | B1 |
7281154 | Mashayekhi et al. | Oct 2007 | B2 |
7302608 | Acharya et al. | Nov 2007 | B1 |
7305549 | Hunt et al. | Dec 2007 | B2 |
7305561 | Hunt et al. | Dec 2007 | B2 |
7313573 | Leung et al. | Dec 2007 | B2 |
7315801 | Dowd et al. | Jan 2008 | B1 |
7333000 | Vassallo | Feb 2008 | B2 |
7349891 | Charron et al. | Mar 2008 | B2 |
7350068 | Anderson et al. | Mar 2008 | B2 |
7350186 | Coleman et al. | Mar 2008 | B2 |
7366755 | Cuomo et al. | Apr 2008 | B1 |
7367028 | Kodosky et al. | Apr 2008 | B2 |
7370103 | Hunt et al. | May 2008 | B2 |
7376125 | Hussain et al. | May 2008 | B1 |
7379982 | Tabbara | May 2008 | B2 |
7386721 | Vilhuber et al. | Jun 2008 | B1 |
7395320 | Hunt et al. | Jul 2008 | B2 |
7403901 | Carley et al. | Jul 2008 | B1 |
7404175 | Lee et al. | Jul 2008 | B2 |
7406517 | Hunt et al. | Jul 2008 | B2 |
7406692 | Halpern et al. | Jul 2008 | B2 |
7409420 | Pullara et al. | Aug 2008 | B2 |
7461249 | Pearson et al. | Dec 2008 | B1 |
7464147 | Fakhouri et al. | Dec 2008 | B1 |
7624086 | Keith, Jr. | Nov 2009 | B2 |
20010014158 | Baltzley | Aug 2001 | A1 |
20010016909 | Gehrmann | Aug 2001 | A1 |
20010020228 | Cantu et al. | Sep 2001 | A1 |
20010039586 | Primak et al. | Nov 2001 | A1 |
20010047400 | Coates et al. | Nov 2001 | A1 |
20010051937 | Ross et al. | Dec 2001 | A1 |
20020009079 | Jungck et al. | Jan 2002 | A1 |
20020010771 | Mandato | Jan 2002 | A1 |
20020022952 | Zager et al. | Feb 2002 | A1 |
20020038421 | Hamada | Mar 2002 | A1 |
20020040402 | Levy-Abegnoli et al. | Apr 2002 | A1 |
20020049573 | El Ata | Apr 2002 | A1 |
20020057684 | Miyamoto et al. | May 2002 | A1 |
20020069267 | Thiele | Jun 2002 | A1 |
20020069369 | Tremain | Jun 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020082820 | Ferguson et al. | Jun 2002 | A1 |
20020087264 | Hills et al. | Jul 2002 | A1 |
20020090089 | Branigan | Jul 2002 | A1 |
20020120761 | Berg | Aug 2002 | A1 |
20020131601 | Ninomiya | Sep 2002 | A1 |
20020138551 | Erickson | Sep 2002 | A1 |
20020152086 | Smith et al. | Oct 2002 | A1 |
20020156900 | Marquette et al. | Oct 2002 | A1 |
20020161839 | Colasurdo et al. | Oct 2002 | A1 |
20020171690 | Fox et al. | Nov 2002 | A1 |
20020184327 | Major et al. | Dec 2002 | A1 |
20020194342 | Lu et al. | Dec 2002 | A1 |
20020194345 | Lu et al. | Dec 2002 | A1 |
20020194369 | Rawlings et al. | Dec 2002 | A1 |
20020198995 | Liu et al. | Dec 2002 | A1 |
20030008712 | Poulin | Jan 2003 | A1 |
20030009559 | Ikeda | Jan 2003 | A1 |
20030014644 | Burns et al. | Jan 2003 | A1 |
20030028642 | Agarwal et al. | Feb 2003 | A1 |
20030028770 | Litwin | Feb 2003 | A1 |
20030041142 | Zhang et al. | Feb 2003 | A1 |
20030041159 | Tinsley et al. | Feb 2003 | A1 |
20030046615 | Stone | Mar 2003 | A1 |
20030051049 | Noy et al. | Mar 2003 | A1 |
20030056063 | Hochmuth et al. | Mar 2003 | A1 |
20030065743 | Jenny et al. | Apr 2003 | A1 |
20030069369 | Belenkaya et al. | Apr 2003 | A1 |
20030074395 | Eshghi et al. | Apr 2003 | A1 |
20030101284 | Cabrera et al. | May 2003 | A1 |
20030105963 | Slick et al. | Jun 2003 | A1 |
20030120763 | Volpano | Jun 2003 | A1 |
20030126464 | McDaniel et al. | Jul 2003 | A1 |
20030130833 | Brownell et al. | Jul 2003 | A1 |
20030138105 | Challener et al. | Jul 2003 | A1 |
20030165140 | Tang et al. | Sep 2003 | A1 |
20030200293 | Fearn et al. | Oct 2003 | A1 |
20030204734 | Wheeler | Oct 2003 | A1 |
20030214908 | Kumar et al. | Nov 2003 | A1 |
20030217263 | Sakai | Nov 2003 | A1 |
20030225563 | Gonos | Dec 2003 | A1 |
20040002878 | Maria Hinton | Jan 2004 | A1 |
20040049365 | Keller et al. | Mar 2004 | A1 |
20040049509 | Keller et al. | Mar 2004 | A1 |
20040054791 | Chakraborty et al. | Mar 2004 | A1 |
20040059812 | Assa | Mar 2004 | A1 |
20040068631 | Ukeda et al. | Apr 2004 | A1 |
20040073443 | Gabrick et al. | Apr 2004 | A1 |
20040073795 | Jablon | Apr 2004 | A1 |
20040078787 | Borek et al. | Apr 2004 | A1 |
20040111315 | Sharma et al. | Jun 2004 | A1 |
20040117438 | Considine et al. | Jun 2004 | A1 |
20040117476 | Steele et al. | Jun 2004 | A1 |
20040160386 | Michelitsch et al. | Aug 2004 | A1 |
20040161111 | Sherman | Aug 2004 | A1 |
20040193388 | Outhred et al. | Sep 2004 | A1 |
20040199572 | Hunt et al. | Oct 2004 | A1 |
20040205179 | Hunt et al. | Oct 2004 | A1 |
20040208292 | Winterbottom | Oct 2004 | A1 |
20040226010 | Suorsa | Nov 2004 | A1 |
20040261079 | Sen | Dec 2004 | A1 |
20040264481 | Darling et al. | Dec 2004 | A1 |
20040267920 | Hydrie et al. | Dec 2004 | A1 |
20040268357 | Joy et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050008001 | Williams et al. | Jan 2005 | A1 |
20050021742 | Yemini et al. | Jan 2005 | A1 |
20050055435 | Gbadegesin et al. | Mar 2005 | A1 |
20050080811 | Speeter et al. | Apr 2005 | A1 |
20050086502 | Rayes et al. | Apr 2005 | A1 |
20050091078 | Hunt et al. | Apr 2005 | A1 |
20050091227 | McCollum et al. | Apr 2005 | A1 |
20050097097 | Hunt et al. | May 2005 | A1 |
20050097146 | Konstantinou et al. | May 2005 | A1 |
20050102388 | Tabbara et al. | May 2005 | A1 |
20050102513 | Alve | May 2005 | A1 |
20050125212 | Hunt et al. | Jun 2005 | A1 |
20050138416 | Qian et al. | Jun 2005 | A1 |
20050152270 | Gomez Paredes et al. | Jul 2005 | A1 |
20050192971 | Tabbara et al. | Sep 2005 | A1 |
20050193103 | Drabik | Sep 2005 | A1 |
20050246529 | Hunt et al. | Nov 2005 | A1 |
20050246771 | Hunt et al. | Nov 2005 | A1 |
20050251783 | Torone et al. | Nov 2005 | A1 |
20050257244 | Joly et al. | Nov 2005 | A1 |
20050268325 | Kuno et al. | Dec 2005 | A1 |
20060025984 | Papaefstathiou et al. | Feb 2006 | A1 |
20060025985 | Vinberg et al. | Feb 2006 | A1 |
20060031248 | Vinberg et al. | Feb 2006 | A1 |
20060034263 | Outhred et al. | Feb 2006 | A1 |
20060037002 | Vinberg et al. | Feb 2006 | A1 |
20060048017 | Anerousis et al. | Mar 2006 | A1 |
20060123040 | McCarthy et al. | Jun 2006 | A1 |
20060149838 | Hunt et al. | Jul 2006 | A1 |
20060155708 | Brown et al. | Jul 2006 | A1 |
20060161879 | Lubrecht et al. | Jul 2006 | A1 |
20060161884 | Lubrecht et al. | Jul 2006 | A1 |
20060232927 | Vinberg et al. | Oct 2006 | A1 |
20060235664 | Vinberg et al. | Oct 2006 | A1 |
20060259609 | Hunt et al. | Nov 2006 | A1 |
20060259610 | Hunt et al. | Nov 2006 | A1 |
20060271341 | Brown et al. | Nov 2006 | A1 |
20070006177 | Aiber et al. | Jan 2007 | A1 |
20070112847 | Dublish et al. | May 2007 | A1 |
20070192769 | Mimura et al. | Aug 2007 | A1 |
20080059214 | Vinberg et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1368694 | Sep 2002 | CN |
1375685 | Oct 2002 | CN |
0964546 | Dec 1999 | EP |
1180886 | Feb 2002 | EP |
1307018 | May 2003 | EP |
8297567 | Nov 1996 | JP |
11340980 | Dec 1999 | JP |
2000293497 | Oct 2000 | JP |
2001339437 | Dec 2001 | JP |
2002084302 | Mar 2002 | JP |
2002354006 | Dec 2002 | JP |
2003532784 | Nov 2003 | JP |
2111625 | May 1998 | RU |
2189072 | Sep 2002 | RU |
WO9853410 | Nov 1998 | WO |
WO9930514 | Jun 1999 | WO |
WO9963439 | Dec 1999 | WO |
WO0022526 | Apr 2000 | WO |
WO0031945 | Jun 2000 | WO |
WO0073929 | Dec 2000 | WO |
WO0230044 | Apr 2002 | WO |
WO 0237748 | May 2002 | WO |
WO02085051 | Oct 2002 | WO |
WO03027876 | Apr 2003 | WO |
WO03039104 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050193203 A1 | Sep 2005 | US |