The present invention relates in general to padlock enhancement systems. Such systems may be utilized to secure objects that may conventionally be secured by a padlock, but include features to compensate for inherent weaknesses in the conventional padlock design.
The systems included in the present application may be utilized for securing objects such as chain, cable, or other flexible or non-flexible elements, or conventional barn-door style intermodal container or trailer locking systems with shackle padlocks of various configurations. Such attachments may accept links of chain or similar engaging elements to provide relatively great resistance to forced attack while maintaining ease of use, flexibility in application, and cost effectiveness. The attachments also provide provisions for association with conventional barn-door style locking systems for added security.
It is well known that the “weak link” in a chain or cable-lock system is often the lock itself, and therefore the lock is a common attack point. For example, in the most basic system, a U-shackle type padlock may secure a length of chain. Depending on the padlock used, the chain is often much stronger than the lock itself. Thus, the lock may be attacked either by applying a torque to the shackle, or simply applying a tension force to the shackle by pulling on the chain. The present invention provides means to combat these common attack methods by providing novel attachment means for a lock to attach to a locking system. In accordance with certain aspects of the present invention, and to further provide security, the shackle of the lock may be completely hidden, such that attack upon the shackle is extremely difficult.
In barn-door style locking systems, it is well known that common attack points are the rivets that secure the locking system to the doors, or the rivets that secure the pivoting handle to the vertical rod. In accordance with certain aspects of the present invention, a link system may be employed to protect these vulnerable areas, in addition to protecting the lock itself.
Additionally the present invention permits the exploitation of the following advantages:
(A) Hockey Puck Style Locks: The conventional well known “shackleless” cylindrical padlocks with hidden straight shackles generically referred to as hockey puck locks are in common use today. Hockey puck locks are shown in U.S. Pat. No. 3,901,058 issued to Best, U.S. Pat. No. 3,769,821 issued to Randel, and U.S. Pat. No. 6,766,671 issued to Haczynski et al. These examples each provide a recess within the lock to accept a specific attachment, hasp, or staple of a generic hasp of appropriate dimension to fit and provide for the engagement of the straight shackle which passes through the recess. The resulting assembly provides a hidden shackle and hasp or attachment protected from forced attack by the surrounding body of the padlock.
Heretofore, such hockey puck style locks have typically been employed directly to locking systems of doors, such as doors of cargo vans. Aspects of the present invention provide means for the engagement of chain, cable, or chain like elements by means of a novel attachment device, which engages within the recess of the cylindrical padlock body. The hidden straight shackle of the padlock may then pass through the hole provided in the device to result in the secure assembly of chain, attachment, and padlock. Such an assembly can broaden the use of conventional hockey puck style locks, and can provide for security levels heretofore unachievable by convention locking systems.
Aspects of the present invention may also provide for a shielding element to protect the vulnerable bottom of the hockey puck style padlock. These aspects may include facility for mounting the novel attachment device to an object or structure to provide a system of security including padlock, chain (or other flexible or non-flexible element), item to be secured, and a fixed structure.
(B) Straight Shackle Style Padlocks: Straight shackle padlocks in which the shackle is not hidden and is readily visible are also in use today. Locks of this type are shown in U.S. Pat. No. 2,104,981 issued to Falk, U.S. Pat. No. 4,183,235 issued to Coralli, or U.S. Pat. No. 5,442,941 issued to Kahonen. These examples also offer a recess to accept the attachment for chain, cable, or chain like flexible elements that would be engaged by the straight shackle to provide the secure assembly of attachment, chain and padlock. Additionally the well-known ring shackle, or circular shackle, padlocks generically referred to as disc padlocks provide features similar to the straight shackle padlocks described above. Locks of this sort are shown in U.S. Pat. No. 62,636 issued to Kelly, U.S. Pat. No. 1,788,396 issued to Johnson, and U.S. Pat. No. 4,998,423 issued to Hsu. These examples also accept attachments contemplated by the present invention.
Aspects of the present invention provide for the engagement of chain, cable, or other flexible or non-flexible elements with a specific attachment device, which engages within the exposed recess of the padlock and provides sufficient structure to protect both the shackle and the elements of the attachment device from forced attack.
(C) The conventional well-known U-shackle padlocks, which are provided with a shield or shroud, are in limited use today. Locks of this sort are shown in U.S. Pat. No. 3,835,675 issued to Guillermo, U.S. Pat. No. 4,102,162 issued to Miller, or U.S. Pat. No. 5,146,771 issued to Loughlin, an inventor herein. These examples also offer a recess to accept the attachment for chain, cable, or chain like elements that would be engaged by a protected U-shackle to provide the secure assembly of attachment, chain and padlock. The most common U-shackle padlocks may also accept the attachment contemplated by the present invention when configured with the appropriate and compatible dimensions.
Aspects of the present invention provide for the engagement of chain, cable or other flexible or non-flexible elements with a specific attachment device, which engages within the recess of the shrouded padlock or conventional padlock and provides sufficient structure to protect both the shackle and the elements of the attachment, chain and padlock.
These and other aspects of the present invention will be discussed more fully below. However, it is noted that it would be advantageous to provide a chain attachment for shackle padlocks which aids in securing a chain/cable-type lock system in a manner not heretofore envisioned. It would also be advantageous to provide a similar system for use with barn-door style container/trailer doors. Each of these systems provide for security levels heretofore unimagined.
The chain attachment for shackle padlocks of the present invention is designed to overcome the deficiencies of the prior art. Several objectives and advantages of this invention follow from the novel method by which the attachment mechanism is utilized in conjunction with a chain/cable system.
In general, the security link of the present invention is designed to work in conjunction with a shackle lock, such as a straight shackle lock, hockey puck lock, padlock, or cylinder lock, such that securing elements of the link, typically posts or ears, secure securing members, such as chain, cable, or other flexible or non-flexible securing members, in a manner heretofore unrealized. In this regard, the link is designed to withstand potential forces exerted on the securing member, rather than the lock, as is known.
In other aspects of the invention, the novel link, in conjunction with a strap system, may be added to security systems of the type having a vertical lockrod and hinged handle, typically found on container and truck doors.
More specifically, in accordance with one aspect of the present invention, the invention may include a link for connecting at least one securing member with a locking device having a body and a shackle, the link comprising a base having a through hole adapted to receive the shackle of a locking device, and a first securing element associated with the base, the first securing element being adapted to receive a first securing member, wherein the through hole of the base and the first securing element are arranged so that when the shackle of the locking device is inserted through the through hole of the base, the locking device is arranged to block the first securing member from being separated from the securing element.
The link may further comprise a second securing element associated with the base, the second securing element adapted to receive a second securing member, wherein the through hole of the base and the second securing element are arranged so that when the shackle of the locking device is inserted through the through hole of the base, the locking device is arranged to block the second securing member from being separated from the second securing element.
The securing member may be one of a chain or a cable.
The securing element may be one of an ear or a post.
Where the securing element is an ear, the ear may be one of C-shaped, J-shaped, or U-shaped. The ear may include an end adapted to be located in close proximity to the body of the locking device when the shackle of the locking device is inserted through the through hole to prevent the securing member from being unsecured through a gap created between the securing element and the body of the locking device.
Where the securing element is a post, the locking device may be adapted to rest atop a portion of the post to block the securing member from being unsecured when the shackle of the locking device is inserted through the through hole.
The link may further comprise a channel adapted to receive a second securing member. The first and second securing members may be portions of a single securing member. The channel may include a ratcheting device adapted to permit the second securing member to move through the channel in only one direction.
The link may include additional features, such as an anti-rotation step, apertures to permit mounting thereof, a raised lip partially surrounding the lock, a cutout in lip permitting use of the keyed cylinder of the lock, or a generally circular shape in registration with a lock. In addition, the locking device may be a hockey puck lock. Where the locking device is not a hockey puck lock, the link may also include a plate adapted to permit use of a shackle lock, such as a padlock, or straight shackle lock. The plate may be thick such as portions of the plate block the securing member from being freed of the link, or may be thin in the case where the plate rests on the securing member, yet may still block the securing member from being freed from the link. The plate may include an aperture through which the post may penetrate. Finally, the plate may also include an anti-rotation step which may be placed in registration with the anti-rotation step of the link.
The ears or parts of the link may also be provided with magnets to help temporarily retain ferrous metal securing elements during installation.
In accordance with further aspects of the present invention, there is disclosed a device adapted to connect a first securing member to a second securing member, where the device comprises a body having an aperture and first and second securing elements, the aperture adapted to receive the shackle of a lock and the first and second securing elements adapted to receive the first and second securing members. The first securing element may be inserted through the first securing member, the second securing element may be inserted through the second securing member, and the shackle of the lock may be inserted through the aperture such that the lock inhibits the securing members from being disassociated with the first and second securing elements.
The first securing member may be one of a chain link or the looped end of a cable.
The link may further comprise a second aperture adapted to receive the shackle of a lock, wherein the second aperture permits use of locks with shackles of a size different from the size of the shackle of the lock adapted to be inserted through the first aperture.
The link may include additional features. For example, the link may be generally triangular in shape. In such configuration, an aperture may be configured in one corner with the first and second securing elements in each of the other corners. The securing elements may be C-shaped, J-shaped, or the like. The link may be made from ferrous or non-ferrous metals or alloys, and may be coated for protection, such as from outdoor elements.
In accordance with still further aspects of the invention, a system for securing a locking device having a handle hinged to a vertical lockrod may comprise a strap having a first end and a second end, the first end may be adapted to associate with the vertical lockrod of a locking device such that the strap may rotate around the first end, the second end having an aperture therethrough, a link having a passage therethrough, the link adapted to be slid onto the handle of the locking device such that the handle passes through the passage, the link having a raised portion, the raised portion having a through hole, the raised portion adapted to extend through the aperture of the strap such that a lock may be secured through the through hole of the raised portion to prevent the handle from being manipulated in such a manner as to unlock the locking device.
Where the device further includes a hasp adapted to bind the handle, the strap may further comprise an aperture permitting the hasp to extend therethrough for use.
The device may include additional features. For example, the strap may include features, such as extension features, to cover the rivets securing either or both of the hasp or the hinge. The first end of the strap may comprise at least one hook. The at least one hook may be U-shaped to substantially surround the vertical rod. The strap may be configured in non-planar sections to fit closely with the handle. Finally, the apertures at the second end of the strap may be crescent shaped, to accept the interrupted raised lip of the link.
In accordance with additional aspects of the present invention, a system is disclosed for providing additional protection to a locking device of the type having a handle hinged to a vertical lockrod and a hasp adapted to bind the handle when in a locked position, where the system comprises a strap having a first end adapted to wrap at least partially around the vertical lockrod and a second end adapted to be placed adjacent to the handle when the handle is in the locked position, the second end including a notch, a link comprising a base having an aperture, the aperture adapted to permit entry of the handle and the second end of the strap, the link further comprising a post having a post through hole, the post through hole being adapted to accept the shackle of a lock, a plate configured to fit against the link, the plate comprising a plate with a plate through hole, the plate through hole configured to register with the post through hole, and a pin, the pin adapted to enter the notch when the plate through hole is in registration with the post through hole such that the interference between the pin and the notch prevents the link from being slid and removed from the handle and the strap.
The link may further comprise a spring adapted to bias the plate toward a position wherein the pin is not within the notch.
The system may include additional features. For example, the springs may be permanently attached to the link. The strap may include features, such as extension features, to cover the rivets securing either or both of the hasp or the hinge. The first end of the strap may comprise at least one hook. The at least one hook may be U-shaped to substantially surround the vertical rod. The strap may be configured in non-planar sections to fit closely with the handle.
In accordance with yet an additional aspect of the present invention, a locking device may comprise a link having a first hook and a post extending therefrom, the first hook adapted to be secured around a first object and the post adapted to accept a lock, a second hook having a straight portion with at least one aperture, the second hook adapted to be secured around a second object with the straight portion placed over the post, whereby the post may accept a lock such that the first object and the second object may be secured together.
The at least one aperture may be a plurality of apertures and the length of the locking device may be adjusted by positioning the second hook over the post through different apertures.
The locking device may include additional features, such as being of a thickness to fit between the vertical lockrod and door of a typical container locking system.
In accordance with an additional aspect of the present invention, where a link system for connecting at least one securing member with a locking device having a body and a shackle is disclosed, the link may comprise a base having a post with a through hole adapted to receive the shackle of a locking device, a plate adapted to fit against the base, the plate comprising an aperture through which the post of the base may be inserted, a first securing element associated with the base, the first securing element adapted to receive a first securing member, wherein the base and the plate are constructed and arranged so that the shackle of a lock may be inserted through the through hole of the post after the plate is fitted against the link such that the plate blocks the first securing member from being separated from the securing element and the shackle blocks the plate from being released from against the base.
The link system may therefore be adapted for use with a U-shackle padlock, straight shackle padlock, circular shackle padlock, or the like.
In accordance with additional aspects of the present invention, a device may be adapted to connect a first securing member to a second securing member, the device may comprise a link having a base with an interrupted raised lip forming an internal cavity, the base having a hasp extending into the internal cavity, the hasp having a through hole, and the raised lip having interrupted areas. A first securing element may be associated with the base at a first interrupted area, the first securing element may be adapted to secure a first securing member. A second securing element may be associated with the base at a second interrupted area, the second securing element may be adapted to secure a second securing member. The device may also include a lock having a shackle and a body, the lock may be adapted to be fitted within the internal cavity such that the shackle may be inserted through the through hole of the hasp with the body inhibiting the first and second securing members from being disassociated with the first and second securing elements.
The internal cavity may be circular and the lock may be a hockey puck style lock.
The first securing element may be one of a post or an ear.
The device may further comprise a lock retention component associated with the raised lip, the lock retention component retaining the lock within the internal cavity and arranged such that the lock may move between a first position in which the lock is positioned against the lock retention component and the first and second securing members are free to be associated or disassociated with the first and second securing elements, and a second position in which the lock is positioned against the base such that the body of the lock inhibits the first and second securing members from being associated or disassociated with the first and second securing members.
The lock retention component may be one of a pin or a retaining ring.
The device may further comprise a retaining mechanism for retaining the first securing member to the link when the lock is in the first position. The retaining mechanism may be a set screw.
In accordance with further aspects of the present invention, a link may be adapted to secure an attachment mechanism having a straight segment, the straight segment having an engagement element for engagement with the link, where the link may comprise a base having a raised lip forming an internal cavity, the base having a hasp extending into the internal cavity, the hasp having a through hole, the base also having a shaft extending into the base from the internal cavity and an aperture extending through an external wall of the base, the aperture being in communication with the shaft, and the aperture adapted to receive the straight segment of the attachment mechanism. The device may also comprise a plate having an aperture through which the hasp may be fitted, the plate further comprising a pin adapted to fit within the shaft of the base when the plate is against the base, wherein a lock having a shackle may be positioned within the cavity such that the plate is against the base and the pin is within the shaft the pin associating with the engagement element of the attachment mechanism to prevent translation of the attachment mechanism through the aperture.
The engagement element of the attachment mechanism may be one of a notch or a channel.
The link may further comprise a spring recess adjacent to the shaft and a spring adapted to fit within the spring recess when compressed, the spring may be adapted to lift the plate off the surface of the base when uncompressed.
The straight segment of the attachment mechanism may completely penetrate through the link, the straight segment having an end with a restrictive element preventing the attachment mechanism from being withdrawn completely from within the base. The restrictive element may be removable to permit the attachment mechanism to be withdrawn completely from within the base.
The link may further comprise a mechanism to impair movement of the shackle when the shackle is within the cavity regardless of the position of the pin. The mechanism to impair movement may comprise a channel formed within the base, a spring having two ends positioned within the channel and a displaceable element associated with one end such that the displaceable element may engage the engagement element of the attachment mechanism to impair translation of the attachment mechanism. The displaceable element may be a ball bearing.
In accordance with other aspects of the present invention, a system for securing a spaced-apart door locking device having a pair of vertical lockrods hinged to a pair of handles adapted to rotate the lockrods to unlock a pair of doors, may comprise a strap with a cover and a base, the base having a base main portion with a hasp and a base finger portion with a pair of spaced-apart fingers, the fingers being curved back toward the base main portion, the cover having a cover main portion with an aperture and a cover finger portion with a pair of spaced-apart fingers, the fingers being curved back toward the cover main portion, wherein the fingers of the base may be wrapped at least partially around a first of the vertical lockrods such that the base main portion is adjacent to the doors and the fingers of the cover may be at least partially wrapped around a second of the vertical lockrods such that the cover main portion sandwiches the base main portion between the cover main portion and the door, the hasp penetrating the aperture.
The system may further comprise a third finger associated with the main portion of the base, the third finger adapted to fit within the spaced-apart fingers of the cover to engage the second vertical lockrod.
The system may further comprise a stop-block associated with the finger portion of the base, the stop block adapted to prevent bending of the first vertical lockrod. A straight finger may be associated with the finger portion of the base, the straight finger positioned between the spaced-apart fingers.
The main portion and the finger portion of the base may be separate components, and the overall length of the base may be adjustable. The finger portion of the base may further comprise a grooved segment and the main portion may comprise a corresponding grooved segment, the grooved segment and the corresponding grooved segment capable of association to fix the overall length of the base.
The cover and the base may be non-linear such that portions of the cover and the base are offset toward the door.
The cover may further comprise a protective shroud covering the hasp of the base when associated with the cover. The protective shroud may comprise a generally open end and a generally closed end, the generally open end adapted to permit entry of a lock having a body and a shackle and the generally closed end permitting entry of the shackle. The protective shroud may include a permanently mounted therein.
In accordance with additional aspects of the invention, a system is disclosed for further securing a door locking mechanism having a handle hinged to a vertical lockrod and a hasp connected to the door, where the system may comprise a link having a base with a raised lip forming an internal cavity, the base having an aperture through which the door hasp may extend, an extension member associated with the base, the extension member having an oversized aperture adapted to permit passing of the handle, wherein the handle may be passed through the aperture and a lock may be inserted into the internal cavity and engaged with the hasp to secure the handle. The link may include a groove-within which the hasp of the door may fit to permit the base to be flush with the door.
In each of these aspects, various features have been disclosed. It will be appreciated that many of the features are interchangeable between the various aspects, and that they may be utilized in various combinations to achieve the inventive results. Accordingly, various combinations of disclosed features may be included in the above aspects of the invention, or additional aspects not specifically described herein, but which are included in this disclosure.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with features, objects, and advantages thereof will be or become apparent to one with skill in the art upon reference to the following detailed description when read with the accompanying drawings. It is intended that any additional organizations, methods of operation, features, objects or advantages ascertained by one skilled in the art be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
In regard to the drawings,
The following describes the preferred embodiments of the multiple function lock in accordance with the present invention. In describing the embodiments illustrated in the drawings, specific terminology will be used for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
It will become evident to one skilled in the art that several objectives and advantages of this invention follow from the novel aspects of the present invention by which the traditional security functions are achieved using multiple security elements in combination.
Throughout this disclosure, the term shackle shall be construed broadly to include the portion of a lock which extends from the body and which is typically moveable to engage with securing members such as hasps, chain, cable or the like.
Shown in
The hockey puck lock 100 utilized in the present invention may be operated in the conventional manner. For example, the shackle 102 may be manipulated by a keyed cylinder 105, as is known in the industry.
The link 106a may include a base 107 having a pair of extension members, here shown as protruding ears 109. The protruding ears are preferably C-shaped, with openings 113. In other embodiments, the extension members may be U-shaped or J-shaped. The base 107 and ears 109 of the link 106a may be configured such that a chain 103 may be placed over and around the ears 109, through opening 113, such that the ears prevent the chain from being pulled from the link. This arrangement is shown in
After being placed in such an arrangement, the chain 103 may be followed by a conventional hockey puck lock 100, such that the hockey puck lock 100 blocks the chain from being removed from the ears 109 through the opening 113 without prior removal of the hockey puck lock, such as shown in
Referring back to
Features of the link 106a in accordance with this embodiment may include a raised lip 108 extending from the base 107 to prevent a prying or wedging attack when the conventional hockey puck lock 100 is in place. The lip 108 may be notched with a cutout 117 to allow access to the keyed cylinder 105 of the hockey puck lock 100. Mounting holes 112 may be provided in the bottom of the link 106a to allow mounting of the link 106a to a surface using carriage bolts or the like. A center mounting hole 112 may be provided to allow the link 106a to be mounted to a surface while also permitting the link to be rotated. The link 106a may also be welded to a surface or used un-mounted, so as to be freely transported.
The free end 119 of the ears 109 may be contoured to minimize the gap between the free end of the ears and the lock body 100 when the lock is in place, such as shown in
In addition, the link 106a may include an anti-rotation step 135 within the raised lip 108. The anti-rotation step 135 may be configured to mate with the step 104 of hockey puck lock 100, such that the lock may not be rotated when installed.
The link 106a may be fabricated by machining, casting, welding, molding, forging, etc. Materials utilized may be suitable ferrous or non-ferrous metallic alloys or suitable non-metallic materials, such as plastics. Preferably, the link 106a is formed from material which is sufficiently durable to withstand forced attack, while also being capable of long-term external exposure.
It will be appreciated that when the chain 103 is pulled, such as during a forced attack or other tension inducing activity, the loads, or forces applied, to the chain will be transferred through the link 106a, and particularly the ears 109. The loads will not be transferred to the shackle 102 of the hockey puck lock 100 as would occur if the hockey puck lock was used without the inventive link 106a. This feature enables security levels greater than would be capable if the shackle 102 was required to withstand the load, and is utilized in further embodiments of the invention, as will be discussed. In this regard, the strength of the link 106a and ears 109 may be much greater than that of the lock 100, while still being very cost-effective and simple to manufacture.
Although not shown in association with this particular aspect of the invention, it is noted that the recess 123 permits use of a feature that may retain one or both ends of the chain 103 when the hockey puck lock 100 is not in place. Such a feature, not shown, may be a simple-screw threaded into the link 106b adjacent to the recess 123 such that the head of the screw may be driven against chain 103 to block the chain from being removed from the recess 123. Other mechanisms, such as rotating blocking gates, or embedded magnets may also be utilized.
It is believed that the link 106b shown in
In accordance with yet another aspect of the present invention, as shown in
The link 106c may also be compatible at its other side with a straight portion 131 of cable 127. In this regard, the link 106c may include a straight channel 120 in which the straight portion 131 of the cable 127 may lie. The straight channel 120 may be sized to just accept the diameter of the cable 127, such that the looped end 129b opposite the post 116 and looped end 129a may not pass therethrough. It will be appreciated that other features other than a looped end 129b may also be utilized to prevent the cable from being slid through the straight channel 131. For example, the end of the cable 127 may be built-up to a larger diameter than the remainder of the cable, or may include a feature such as a ball at its end.
When the hockey puck lock 100 is not in place, the cable 127 may be nested in the straight channel 120 shown. When the hockey puck lock 100 is in place, the cable 127 is restrained and secured, but may still be able to be slid partially in and out of the link 106c, along straight channel 120. The hockey puck lock may simply prevent the cable 127 from being lifted off the link 106c.
However, a ratchet device 122 may be provided within the link 106c such that once the cable 127 is nested in the straight channel 120, the cable may be cinched up to remove unwanted slack. The cable 127 may be cinched up before or after the hockey puck lock 100 is in place. The ratchet device 122 may be designed such that the cable 127 may be nested into the straight channel 120 from either the direction permitted by the ratcheting device, or from a direction above the link, perpendicular to the channel 120. However, once the hockey puck lock 100 is in place, the ratchet device 122 may only permit cable movement in one direction. In this regard, the ratchet device 122 may include teeth and may be spring loaded to facilitate only one way motion of the cable 127. The ratcheting device 122 may also, include a ratchet-override feature to permit the cable to be moved in a direction otherwise prevented by the ratchet device. Such ratcheting devices are well known in the industry.
Because coated cable 127 is typically preferred, it is generally preferred that the ratchet device 122 be arranged such that it does not mar the coating of the cable upon normal use.
As with the previous links shown and described, the shackle 102 of the hockey puck lock 100 may engage through channel 101 extending through a post 114 protruding from the link 106c.
Another variation of the link 106d is to configure a second irregular channel in place of the arched channel 118. This variation would allow the use of cable which is un-looped at both ends, thus expanding the potential uses for the device. Additionally, a link may be provided with two ratcheting devices and channels such as those shown in
In accordance with additional aspects of the invention, a link may be configured for use with intermodal containers, trucks, rail cars, etc. It is common and well known in the industry that such containers may have a door locking arrangement that utilizes vertical lockrods connected to a lever. The vertical rods may be lifted out of their seat and rotated such that latching elements at the end of the rods are disengaged and released from their mating elements on the door frame. The typical lever arrangement is a well known weak point that is vulnerable to attack. A conventional arrangement of vertical lockrod, lever and latches is shown in
As shown in
The link 106e has an array of features that allow adjustability over the typical ranges of lockrods. For example, the hooks 126, 130 are of a thickness (t) that permit them to be used where there is a narrow gap between the rods and the door face. The link 106e is also designed to accommodate the typical range of lockrod diameters by incorporating an oversized width (w).
The attachment element 128 is designed to receive a standard hockey puck lock to secure the hooks 126, 130 in place. Also as shown, hook 130 includes a series of apertures 132 arranged adjacent to one another along the length of the hook 130. Depending on the center to center distance of the vertical rods in which the link 106e is to be placed, the appropriate aperture 132 may be placed over the post 114 protruding from the attachment element 128, such that the hooks 126, 130 will be retained by the hockey puck lock 100 when installed and the overall length (L) of the link 106e will be appropriate for the application.
In addition, the link 106e shown in
In accordance with further aspects of the present invention, a link adaptor 134 may be provided for use with a link.
In general, the link adaptor 134 comprises a circular plate 138 with an aperture 140 therethrough. The plate 138 includes a step 139, which acts to prevent rotation of the link adaptor 134 in a similar manner as the step 104 of a conventional hockey puck lock 100. The plate 138 is configured to fit over the link 106b, such that the aperture 140 may fit over the post 114. The link adaptor 134, therefore, fixes the chain or cable in place, depending on the embodiment of the link 106b, in a similar manner as previously described with respect to the hockey puck type locks. In this regard, the plate 138 may be fairly thick, such as where the link includes ears, or thinner where posts are utilized. Once the link adaptor 134 is placed over the link 106b, a conventional padlock 136 may then be utilized to secure the link adaptor in place by being threaded through the through channel 101 of post 114, as shown in
Link 106f maintains the utility of the previous links, but in a simpler manner. In accordance with the present invention, a link 106f, as shown in
Link 106f may be machined, stamped, forged, cast, molded, etc. Materials utilized for the link 106f may be suitable ferrous or non-ferrous alloys or other suitable material, such as plastics. In addition, the link 106f may be coated for protection, such as with a plastic coating from protection from outdoor elements.
As discussed with regard to other aspects of the invention, the load transferred through the chain 103 will be borne by the link 106f, and not by the conventional padlock 136. This novel teaching adds security to any system locked in such a manner, as the tensile strength of the link 106f can be made much stronger than that of the pullout strength of a conventional lock 136. Or, in the alternative, a lock 136 with a lesser pullout strength, and thus a likely less expensive lock, may be utilized with a link 106f to provide security levels not before capable with the simple and inexpensive lock.
In accordance with further aspects of the invention, a locking device may be incorporated for use with vertical lockrods, latch handles, and hockey puck locks, of a typical intermodal container, trailer, or the like, as discussed with respect to the aspects of the invention shown in
Also shown in
Also shown in
In this regard, the link 208b may be provided with a moveable plate 266. The plate 266 may include the post 114 on one side that the hockey puck lock 100 attaches to, and pins 268 (
To maintain the hockey puck lock 100 in this lowered position, the plate 266 may include a post 274 extending adjacent to the post 114 associated with the link 208b, and permitted to penetrate the plate. The post 274 may include an aperture 276 which aligns with through channel 101 when the hockey puck lock 100 is pressed into the link 208b, such as shown in
Further embodiments of the links previously discussed may also incorporate provisions to secure the hockey puck lock within the link body even when the lock is unlocked. In this regard, the further embodiments contemplate features adapted to retain the hockey puck lock within the link when in the unlocked position. These retention components may be in the form of roll pins, threaded fasteners, a retention ring, or other barrier or retaining member. Although retained, the hockey puck lock is permitted to move up and down within the link such that the retained components, whether chain, cable, or similar items, may be unsecured from the link.
As previously discussed, links may include retaining mechanisms to hold the chain 103 in place. For example, link 106g includes a pair of set screws 152 for securing the chain 103. Accordingly, the portion of the chain 103 held by the set screws 152 will be retained within the link 106g, even when the hockey puck lock is unlocked and lifted toward the lock retention components 150. In the meantime, the other end of the chain 103 will be permitted to fit between the bottom of the hockey puck lock and the post 116.
Link 106g is shown with an anti-rotation step 135, but link 106g could accommodate stepped and flat bottom hockey puck locks.
The shackle 278 is shown as a rigid shackle, with engagement elements shown as notches 280 adapted to accept the pins 268 when the plate 266 is dropped down against the base 107. The shackle 278 enters the link through apertures 277 extending through the base 107. When the shackle 278 is inserted the requisite amount, the pins 268 of the plate 266 drop to fit within the appropriate notches 280 of the shackle 278 to secure the shackle 278.
In other aspects of the invention, the shackle 278 may be configured to include a pair of rigid sections with notches 280 connected by a second section, which may be flexible as in a wire or chain. In this case, the rigid sections could fit within the link 106h through apertures 277 while the flexible section could secure the object desired to be secured.
When the plate 266 is lowered into the cavity of the link 106h, the pins 268 extend into the notches 280 of the shackle 278. The pins may thereafter enter shafts 269 formed in the base 107 of the link 106h, such that the plate 266 may lower fully against the base 107. Although shown as extending completely through the base 107 of the link 106h, it will be appreciated that the shafts 269 may extend only partially and not completely extend through the base. In this regard, additional protection against forced attack, such as by drilling of the pins 268, will be provided, as the exact location of the pins 268 may be difficult to ascertain if hidden. It will also be appreciated that the plate 266 includes an aperture 284 through which the post 114 may fit.
When in the unlocked state, the shackle 102 of the hockey puck lock 100 may be disengaged from the post 114 allowing the hockey puck lock to lift. This movement could be spring assisted, for example with springs 270. The springs may fit within spring recesses 282 formed within the base 107 of the link 106h. The springs 270 may therefore function to lift the plate 266 and the hockey puck lock 100, once the lock is unlocked. When the plate 266 lifts, the pins 268 lift and clear the notches 280 of the shackle 278, allowing the shackle 278 to move in an un-locked manner.
Additional features may include provisions to retain the hockey puck lock when in the unlocked state, in the form of lock retention components 150, as previously discussed. One such lock retention component 150 may be a retaining ring 286. A retaining ring 286 is shown in
In accordance with other aspects of the present invention, the shackle 278 may have one leg shorter than the other, such that the shorter leg may be released from the hockey puck lock and swung into an unlocked and open position. One particular form of such a shackle 278 is shown in
In
In addition, it will be noted that the second end 294 of the shackle 278 includes a restrictive element in the form of a ball 296. This ball prevents the second end 294 of the shackle 278 from being removed from the link 106. Other restrictive elements may also be provided, so long as they are larger than the aperture in the base 107 of the link 106 through which the shackle 278 moves. The restrictive elements may also be removable. For example, the restrictive element may be internally threaded so as to be threaded upon a threaded portion of the second end 294 of a shackle 278.
As similar shackle 278 is shown in perspective in
Another feature contemplated for the link inventions is an inclined surface on the outer diameter that would minimize the impact of a hammer blow. Hammer blows are a common method of attack for locks and lock attachments. If the link was conical shaped, rather than cylindrical as shown, a hammer blow may be deflected to limit its impact. Such conical shaped links may be provided in accordance with certain aspects of the present invention.
In either of the links 106k, 106l, the hook portion 265 may be formed integrally with the link 106k, 106l, or may be welded or otherwise attached thereto. It is preferred that the attachment method, and materials utilized, be appropriate for the strength level intended.
Moving along to other aspects of the invention,
In accordance with the present invention, a bracket 222 may be attached to a container door 201, for example by rivets 224. The bracket may include a shelf portion 226 with an aperture 228. This bracket may be provided in addition to the conventional hasp mechanism 204.
A link 106m may be adapted to fit over the bracket 222 to secure the handle 202 in the locked position. Such a link is shown in perspective view in
The aperture 154 of the extension member 152 is preferably over-sized compared to the handle 202 such that the link 106m may rotate when the handle 202 is placed through the aperture 152.
Even when in this locked position, the link 106m may be utilized to further secure the door 201. The link 106m may be slid over the handle 202 by inserting the handle 202 into the aperture 154. It will be appreciated that the link 106m must be tilted forward slightly such that the base 107 clears the shelf portion 226 of the bracket 222. Once the link 106m is properly aligned over the bracket 222, the link 106m may be rotated back toward the door 201, and into the position shown in
Further aspects of the invention are adapted to secure container doors of the type having a pair of locking mechanisms of the type shown in
In previous embodiments of the invention, links and straps may be utilized, alone or in combination, to secure one or both container doors of the type shown in
In addition, and as will be discussed, straps may be provided with or without links, depending on the particular arrangement of the strap as required by the application, desired security level, and the like.
In most of the previous embodiments, the link and straps have focused on securing the handle such that the handle cannot move relative to the vertical lockrod once secured by the link or strap. In other embodiments, the links have been provided with elements to permit attachment between two vertical lockrods. The following embodiments build on the teachings of providing a strap between two vertical lockrods, to secure the container doors.
The base member also includes a main portion 314 adjacent to the finger portion 306. The main portion 314 includes a protruding hasp 316 having an aperture 318. As will be discussed, the hasp 316 and aperture 318 are configured to accept a variety of lock shackles.
It will be appreciated that the main portion 314 may be offset from the finger portion 306, such that the base portion 314 is substantially between a plane formed through the vertical lockrods 200 and the adjacent doors 201. Preferably, the base section 314 is configured to be very close to the doors 201, such that an attack by prying between the doors 201 and the base section 314 may be eliminated. In addition, the offset serves to locate the lock closer to the doors and within the protective envelope of the vertical lockrods, such that accidental damage to the lock can be avoided.
The offset distance will of course depend on the particular arrangement of the lockrods 200 and doors 201, but is typically on the order of 1 to 2 inches.
Like the base 302, the cover 304 includes a finger portion 320 and a main portion 322. The base portion 322 includes an aperture 324 sized and configured to permit passage of the hasp 316 when the base portion 322 of the cover 304 is placed over the base portion 314 of the base 302. The main portion 322 of the cover 304 may also include rounded portions 326 to partially extend over the base portion 314 of the base 302.
The finger portion 320 of the cover includes two curved fingers 328, 330 separated by an open area 332. The curved fingers 328, 330 are adapted to fit partially around a lockrod 200, to secure the cover 304 to the lockrod 200. The open area 332 is typically mounted over the hinge 203, and permits the cover 320 to rotate around the lockrod 200 without interference from the hinge 203.
In a similar manner to the base 302, the main portion 322 of the cover 304 is offset from the finger portion 320, to move the main portion 322 closer to the doors 201.
To place the strap 300a in the locked position shown in
In another strap embodiment, a strap 300b may be configured similarly the strap 300a, but may include a third finger 334 located within the open area 332. As shown in
Preferably, the base 302 includes a short finger portion 336 associated with the finger 334 such that the two elements form a J configuration, as shown in
One method of attacking a vertical lockrod system of the type discussed herein is to wrap a tensioning element around the two adjacent rods and tension a member to draw the rods together. An example of this technique is where the attacker uses chain wrapped around the bars, where the chain is brought into a taut condition and then pulled more and more until the bars deflect, or bend. In order to combat this method of attack, the base 302 of the strap 300a may be configured with a stop-block 338. The stop-block may extend down from the finger portion 306 toward the tips of the fingers 308, 310, as if being held in the palm of a hand. It will be appreciated that the combination of the stop-block member 338, and the J-shaped configuration of the finger 334 and the short finger portion 336 prevent the lockrods from being bent toward each other, as the bars 200 will hit the stop-block 338 and J-shaped finger portion upon bending. It is preferred that the stop-block member 338 be positioned such that the lockrod 200 may still easily fit between the stop-block 338 and the limits of the fingers 308, 310.
In order to make the strap adjustable, such that it may fit lockrods separated by different distances, the base of the strap may be made adjustable. One such adjustment mechanism is shown in
The first base 340 may include a finger portion 306 which is substantially similar to the finger portion 306 of base 302, inclusive of the fingers 308, 310, 312. However, in the main portion 314, the first base 340 may include a size adjustment mechanism 344. The size adjustment mechanism 344 embodied comprises a channel 346 bound at an upper limit by a straight segment 348 and at a lower limit by a grooved segment 350. The grooved segment 350 may be created by a repeating series of tab members 352 forming peaks 354 and valleys 356.
The second base 342 includes a finger portion 358 having a finger 334 and short finger portion 336 substantially similar to those of strap 300a. Opposite the finger portion 358, the second base 342 includes an adjustment portion 360 sized and configured to fit within the channel 346. The adjustment portion 360 includes a hasp 316 with an aperture 318 in the conventional manner. However, the hasp 316 also includes a base forming a grooved segment 362 configured to mate with the grooved segment 350 of the first base 340. The grooved segment 362 of the hasp 316 includes a pair of tabbed members 364 with two peaks 366 and a single valley 367 therebetween.
Once the second base 360 is fitted within the channel 346 of the first base 340, the peaks 366 of the hasp 316 may be fitted within the valleys 356 of grooved segment 350 of the first base 340, to size the first base and second base 340, 342. It will be appreciated that when appropriately sized, the first base 340 and second base 342 essentially form the base 302 of the previous embodiment. A cover 304 may then be fitted over the first base 340 and second base 342 to finish the strap (referenced as 300c although not shown). As the location of the aperture 324 of the cover 304 is fixed in relation to the location of the hasp 316 of the second base 342, the aperture 324 may be consistently located, as the hasp 316 does not move in relation to the aperture 324 (only the first base 340 moves).
As discussed, adjustable straps may be utilized to fit lockrods of varying dimensions. For example, typical lockrods may typically span between 10 and 15 inches apart. It is preferred that the adjustable straps be manufactured to accommodate this span. Such adjustable straps may find utility in the general marketplace, where lockrod dimensions between different containers are variable. Alternatively, there are many fleet owners that may have containers with lockrods that are consistently sized. Rather than being burdened with the expense and added sophistication of an adjustable strap, the fleet owner may simply utilize a non-adjustable strap sized and configured for the particular specification of the fleet.
While
With respect to the base 302, it will be appreciated that the base 302 of strap 300f shown in
The cover 304 may also be substantially similar, including the finger portion 320 and main portion 322. However, the cover 304 of strap 300f includes a protective shroud 368. The protective shroud 368 is adapted to be attached to the cover 304 such as by welding, or may be formed integral therewith. The protective shroud 368 includes a generally closed top 370 with an open bottom 372. The generally closed top 370 may include an aperture 374. A first side of the protective shroud 368 may end-abruptly with an end cap 375 such that the protective shroud 368 forms a box with a depth approximately equal to the offset of the strap 300f. A second side of the protective shroud 368 may taper toward the finger portion 320 of the cover 304.
As shown in
As shown in
In order to install such a lock 100, one would first position the base 302 appropriately upon a first lockrod. One would then position the cover 304 appropriately on a second lockrod, but would not engage the cover 304 with the base 302. Rather, one would insert the lock 100 into the guide channels 376 until the lock was properly positioned in its final position, such that the shackle of the lock is over the aperture 324 (shown in
The links 106 generally shown and discussed in relation to the present invention have been round. However, it will be appreciated that the link 106 may also be rectangular or any other shape with a circular internal cavity for accepting the hockey puck lock.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/351,136 filed on Feb. 9, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/231,210 filed Sep. 20, 2005, now U.S. Pat. No. 7,543,466, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/611,369 filed Sep. 20, 2004, and U.S. Provisional Patent Application No. 60/651,414, filed Feb. 9, 2005. The disclosures of each of the foregoing applications are hereby incorporated herein by reference as if fully disclosed herein.
Number | Date | Country | |
---|---|---|---|
60611369 | Sep 2004 | US | |
60651414 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11351136 | Feb 2006 | US |
Child | 14074917 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11231210 | Sep 2005 | US |
Child | 11351136 | US |