The invention relates generally to security devices for shipping containers and particularly to improvements to security bars secured to shipping container doors.
In view of the current state of technology, the container security sector needs new solutions that not only secure the locking bars of a container with a padlock or any other locking system, but which will also allow the use of new technologies to know exactly where the theft is occurring and preferably the time of the theft. Security bars for locking the doors of shipping container are known. However, these bars lack any intelligence or any monitoring and sensing capabilities. The present invention overcomes these problems with current security bars and current security technology for locking shipping container doors.
A device for securing doors, such as, without limitation, shipping container doors, preferably through the connection to the bars provided on the container doors. The device includes a frame having novel internally movable substantially J shape plates and a novel lock configuration for maintaining the plates in a locked non-movable position in order to secure the doors and prevent them from being opened.
Certain non-limiting advantages of the novel device include:
The operation of the novel device can be divided into six related main parts, which can be, without limitation:
When closing the locking device, the device can be placed in the locking bar of the container doors: A movable/mobile part of the device disposed on a rail/arm of the main structure can be moved until it coincides with the locking bar of the door and with that established distance reference, the coupling is facilitated of the main structure of the locking device with the locking bar of the other door.
Two preferably J shaped are closed by moving the plates within the main frame towards the interior of the locking device such that, in conjunction with the main frame, they block and enclose the locking bars. When the first plate is in a closed position, a hole at the end of its internal guide can be aligned perpendicularly with a main shaft of the lock member of the locking device. A button portion of the lock member is pressed, cause the button to slide inward and interact with the main shaft, moving the main shaft inside a main shaft guide and the through the hole of the first J shape plates. The main shaft can be locked to the main shaft guide by a Solenoid actuator. Also in the closed position, the main shaft cylinder body blocks the internal guides of both plats, so that they cannot be opened outwards in order to maintain the padlock/locking device on the door.
Also in the closing position, a contact cap that covers the bolt sensor housed inside the rear central hole of the main shaft, keeps in contact by pressing the switch of the printed circuit board and thereby generating a signal which interprets the control electronics of the device that the lock is closed and can electronically transmit the lock closed status periodically or at any desired interval to a remote location or remote monitoring station or service.
To open the locking device secured to a container door (i.e. “closed” position), an opening command can be generated by the user and processed by the control electronics of the device, which can include, without limitation, an electric current being produced over the solenoid for several seconds, to retract its actuator. By pressing the button of the lock member, the solenoid actuator can be released from the pressure exerted by the wall of the main shaft hole where it is housed and finally collected inside the solenoid. The pressure exerted by the main shaft on the actuator of the solenoid is due to the pushing force, which produces the spring that is in its back.
When the main shaft is released from the actuator of the solenoid, it can automatically moves outwards due to the force exerted by the spring, placing itself in the open position, wherein a first channel in the main shaft can be aligned perpendicular to the internal guide of the J shape plate. The Main Shaft can rotate on its own axis independently of the Button to ensure that the way to open the device is through the first J shape plate. Once both pieces are aligned, by pulling out the first J shape plate, a linear movement is produced that can turn into a rotating movement for the Main shaft, when acting the angle of the wall in the hole that presents the interior guide of first J main shape on the first channel of the main shaft. Turning the main shaft changes the angle of the first channel of the main shaft so that the channel along the interior of the first J shape plate can travel all the way to its opening. By rotating the main shaft, by the action of the first J shape plate, the angular position of a second main shaft channel is also change that is parallel to its side, placing itself in horizontal position, which facilitates the opening of the second J shape plate when being pulled outwards.
With both J shape plates open, they stop blocking the door bars and the locking device/padlock can be removed. Preferred characteristics of the novel locking device to secure doors preferably with standardized ISO locking bar systems, can include: (1) the locking device can be placed and removed easily and intuitively, without the need for special tools; (2) the locking device can be secured to the locking bar of each door, preventing them from being opened separately or as a whole, with a structural frame of solid design that protects the lock that counts; (3) the locking device can be adjustable to different separation measures between the locking bars of each of the doors, according to the different types of container design; (4) the locking device can cover the guides that fix the locking bars to the doors in a way that hinders the removal of the device; (5) the external structural frame of the locking device can protect the mobile parts contained in its interior, called closing claws, from blocking, to block the locking bars (6) the design of the main frame can be robustness to hinder its removal once it is placed in the locking bar; (7) the locking device can be portable and relatively light in weight; (8) the locking device can be of a modular design to facilitate the removal of the specific parts it supports for repair or replacement; (9) the locking device can be provided with a novel lock that allows safe opening and closing; and (10) the locking device can integrate electronic controls to provide enhance functionality for the locking device.
The electronic controls can include: (a) communication to a server via GPRS, wireless or Satellite, (b) Opening and closing of a lock member using a keypad or remotely from a tracking software on a desktop or mobile device; (c) GPS tracking; (d) sensors that provide information on the status and location of the locking device and the container doors it secures; (e) Long-life batteries differentiated by function; and (f) a Movement energy charging system.
Generally disclosed is a novel locking device for securing the doors of shipping containers through connection to the bars provided on the doors of the shipping container. As will be shown in the drawings and described in detail below, the novel locking device generally includes a frame/housing, a pair of substantially J-like shaped plates that can be internally movable within the frame/housing and lock/sensor system that maintains the plates in a locked non-movable position in order to secure the doors and prevent them from being opened when the locking is in properly secured thereto and the lock is in a “locked” position.
The following described embodiments for a container locking device can preferably apply to the containers security sector; where using an innovative sensor which is integrated to communication and GPS elements, provides information to monitoring individuals and monitoring technology concerning the time and precise location where the cargo is being stolen. The locking device secures the locking bars of a container and provides a quick, if not instantaneous, notice of when and where a theft is occurring. With the use of the disclosed novel locking device, the user has a better chance of recovering the freight goods in coordination with the security organisms in charge and/or procedures in place. The disclosed novel locking device provides great benefit in identifying thefts occurring outside of the port facilities, such as, but not limited to, the interstate highways, truck parking lots or any other place that has little control.
J shape plates 300 and 350 preferably move parallel to each other inside a structural frame/housing 270 of locking device 100, of which they are secured to, for opening or closing to fulfill their function. Plates 300 and 350 are secured to locking bars 50 of a shipping container or other object/structure when they are in the closed position (with lock 110 enabled) or can be released from their closed position (through unenabling the locked position of lock 110) when authorized access to inside the shipping container is desired (“plates open position”). When lock 100 is open, plates 300 and 350 can be moved perpendicularly to cutouts 122 and 124 with respect to main shaft 110. In such path depending on the position for plates 300 and 350, device 100 can be opened or closed.
In the “closed position”, J-shaped plates 300 and 350 fix frame/housing 270 (as well as the rest of locking device 100) to the container locking bars, thus, leaving the locking bars blocked.
To placed lock 100 in a closed position, plate 300 can be preferably disposed within housing 270 (i.e. disposed within a first hub 274 of housing/support structure 270), to allow a wider portion 312 of the central guide opening 310 to be aligned with the main shaft of lock 110, thus creating a space so that lock 110 can move freely inwards in a horizontal position (within housing 270) and can traverse perpendicular to J shape plate 300. In this position, when lock button of lock 100 is pressed, plate 300 exerts a force on lock 110 causing it to move inward. When moving to the inward position, the location of cutout 122 is changed causing it to me misaligned transversally in reference to the horizontal plane that was maintained with interior guide 310 of J shape plate 300. In the inward position, which causes cutout 122 to be aligned with inner guide 310 of plate 300, an area 126 between the cutouts 122 and 124 prevents the narrowest part 314 of inner guide 310 of plate 300 can cross to the shaft/lock 110 and therefore can be displaced. Therefore, when lock 110 is in an open position, plate 300 can be freely moved and in a lock 110 locked position, plate 300 is blocked by area 126 from freely moving.
With the movement of main shaft 111 towards the interior of locking device 100, cutout 124 can also be displaced. Cutout 124 is preferably wider in dimension as compared to cutout 122. Thus, inner guide 360 of plate 350 can continue to frame plates 350 and allows plate 350 to move freely in a horizontal direction within housing 270 and eventually can be moved to its device closed position. Therefore, by having freedom of movement in this direction, plate 350 can be preferably responsible for or in charge of regulating the closing of device 300, by sliding (i.e. horizontally moving) until it occupies its closed position, which is dictated or conditioned on the specific separation length of the looking bars 50 for the particular shipping container or other structure/object.
Interior guide 360 of plate 350 can be provided with a jagged pattern 370 having a plurality of guide teeth 372, which in conjunction with cutout 124, helps to prevent plate 350 from moving in an opposite direction. With this configuration, if plate 350 is moved in an opposite direction (i.e. towards its opening), the inner face of an adjacent guide teeth 372 can be arc-like shaped with a similar surface as the outer circumference of the cylinder main shaft 111, thus, preferably preventing movement in the opposite direction.
With plate 350 in a closed position, the other side of guide teeth 372, push and rotate main shaft 111, exerting a force on a part of the base of cutout 1242, forcing it to change its angle to a position which preferably can be an almost horizontal position, which allows guide 360 of plate 350 to cross it. Subsequently, by the action of the torque of a spring placed in the back of lock 110 (discussed in further detail below), shaft 111 can return to rotate in the opposite direction to recover to its initial position.
To open locking device 100, lock 110 can be released from the closing position, removing the lock that held it in that position, causing the spring of lock 110 to be released (uncompress) and to exert an axial force on main shaft 111 causing it to move forward. With such action, main shaft cylinder 111, which previously blocked the entrance of the inner hole of plate 300, can be moved forward and can again be positioned by aligning cutout 112 of main shaft cylinder 111 with inner hole 310 of plate 300, so that it can slide, already unobstructed. In this position, by exerting a force in the direction of opening 300, plate 300 can drive and rotate main shaft cylinder 111 a few degrees to the main axis, tilting cutout 122 in a preferred nearly horizontal position. To achieve this, the drawing of the widest part of hole 310 can have an angle/point 315 that impinges on a portion of cutout 122, forcing cutout 112 (along with main shaft cylinder 111) to rotate. Once this position is achieved, plate 300 can be moved and opened, passing the narrowest part of internal guide 310 inside cutout 122 and maintaining this position so that main shaft 111 cannot be rotated as it is preferably framed in such space. With the cylinder axis in that position, channel or cutout 124 (parallel to channel or cutout 122), through which the plate 350 passes, can take the same almost horizontal position that maintains channel 122, releasing teeth 372 from guide 360 so that plate 350 can slide without interfering with its opening and thereby opening the other part of locking device 100.
Main shaft guide 7A, guide cover 7B and printed circuit board 7C are preferably provided at the back of locking system 110 and can serve also as a support and sealing member for certain internal components of locking system 110. Main shaft guide 7A can be provided with a cylindrical hole along its center main axis moves where certain parts of locking system 110 can move and rotate within. In addition to serving as a support for these parts, guide 7A can have a back square block where a solenoid 7D can be screwed into (i.e. for models with an electronic opening) and can also serves as a basis for the Guide Cover 7B and the plate printed circuit board or PCI 7C. Guide 7A can be provide with side ears or flanges that each can be provided with a hole or aperture for receiving a bolt, screw or similar fastener, for securing guide 7A to another portion of device 100, such as, but not limited to frame/housing 270, to allow it to be armed.
Guide cover 7B serves as a base on its back face to the Printed Circuit Board 7C and on its other side can be attached, preferably by bolts, to the Main Shaft guide 7A. Guide cover 7B and/or Guide 7A can also serve as support for the back part of a spring 160. Guide Cover 7B can have a small channel where the protruding end of the spring wire enters and remains blocked. Therefore, spring 160, in addition to having a support base when it is compressed by Main Shaft 111, can also be blocked so that it cannot move by turning completely on its axis.
Printed Circuit Board (“PCI”) 7C can be bolted or otherwise secured to main shaft guide 7A and guide cover 7B and seals the cavity or one end of Main Shaft Guide 7A. PCI 7C can be provided with a switch, preferably centrally located, that can be activated by making contact with a rubber hood that forms the contact cap/piece 5C of main shaft 111 and is positioned/moves through/through spring 160.
On a front side of lock 110, generally three main pieces can be provided which interact with Main Shaft 111, namely, button 4A, housing 4B and Main Shaft lock 4C.
Button 4A can be a single piece preferably formed by four cylinders that can be decreasing in size from the largest in its front, to the last having a cylindrical neck of smaller diameter in its center. Largest cylinder 171 can have an ergonomic design to facilitate a grip by the user's fingers, to pull it in case lock 110 is locked when opening. Button 4A can be part of lock 110 that interacts with the person/user. A next cylinder 173 can be housed and slide inside a tube 167 of housing 4B that protrudes outward from the center of the front part of Housing 4B, which provides a frame/support to button 4A for button's 4A correct alignment and/or coupling with Main shaft 111. Cylinder 173 can be crossed by a hole 174 through which a cable lock can pass, blocking the opening of lock 110.
A third cylinder 175 can be provided for limiting the movement of Button 4A so that Button 4A only move inwards or outwards, but not on its own axis. To achieve such feature, in one embodiment, a flat cut 176 can be provided on one of the sides of third cylinder 175, giving it a crescent shape that fits into a hole with a similar shape, on an inner passageway wall of Housing 4B in a central cylindrical channel of housing 4B.
Lastly, in the back part of a fourth cylinder 177, a roughing in its center can be provided that forms a cylinder 178 of smaller diameter with the shape of a neck and achieving a cylindrical head 179 of greater diameter at the bottom/back/inner end of button 4A. Fourth cylinder 177 can be preferably positioned inside of the central cylindrical hollow that presents main shaft 111 in its frontal part. Two pins 4C can be lodged in the body of main shaft 111 and enter the neck-shaped part 178 of fourth cylinder 177, anchoring both pieces so that they move together in a linear direction inwards or outwards, depending on whether the lock is opened or closed. However, this anchorage still allows main shaft 111 to rotate on its axis within the Main Shaft guide 7A, independently of button 4A which will be prevented from turning in view of third cylinder 175 being framed inside Housing 4B. Preferably, button 4A does not rotate since the holes through its second channel can be aligned with the holes of Housing 4B, with the similar purpose that they can be traversed by a cable lock when sealing.
Housing 4B can provide the external support that houses Button 4A on one side Housing 4B can have an inside central cylinder 167 that protrudes from a front and in the center of its back a piece that defines a cylindrical bore can be provided for housing a front portion of main shaft 111 can be housed. Housing 4B preferably can have a cylindrical shape and can become conical at its front part until or as it meets the central cylinder 167 that can serve as a housing for Button 4A, allowing button 4A to be easily manipulated by a user's fingers. Inside the inner channel of central cylinder 167, button 4A can be moved rectilinearly inwards or backwards. To prevent the button 4A from turning on its axis at the end of the interior hollow cylinder through which it moves, a wall can be provided that has a center, half-moon shaped hollow portion (or other non-circular shape), for receipt of second cylinder 173 of button 4A though mating or aligning of the crescent 175 or other shape provided on second cylinder 173. On a back side of housing 4B a step or inner ledge can be provided that enters the wall of the device where the lock is housed. The step preferably presents a cylindrical perforation that can go through the body of housing 4B perpendicular to the central hole through which main shaft 111 moves. At perpendicular cylindrical perforation, the two pins that serve as a lock to main shaft 111 can be introduced.
A Main Shaft lock 4C can be provided and can be preferably formed by one or more, and preferably two pins 210 and 212 that can be housed inside main shaft 111, in the portion of shaft 111 cylinder with the largest diameter and located at a front end of main shaft 111. at the front. The pins will protrude through the hole in the center of that cylinder, penetrating the roughing that forms the neck of the fourth cylinder of the Button and thus anchoring both parts. When they are joined, they can move jointly and linearly from the opening position to the closing position and vice versa inside housing 4B. When locking device 100 is closed by pressing button 4A, main shaft 111 moves inwards or later when solenoid 7D releases main shaft 111, main shaft 1111 can be displaced outwards by spring 160, making it possible to open locking device 100.
Although main shaft 111 can be preferably anchored by pins 210 and 212, shaft 111 can rotate on its axis independently of button 4A and interact the slabs that its cylinder presents, inside internal guides 310 and 360 of plates 300 and 350, respectively. Preferably, the main shaft axis rotates independently of the Button Guide to ensure that the way to open locking device 100 is through the J shape plates, as opposed to Button 4A, whose primary purposed is to move the Main Shaft 111 inwards, so that the two Upper channels 122 and 124 of main shaft 111 can be properly positioned with respect to internal guides 310 and 360 of J-shape plates 300 and 350, respectively.
Where lock 110 has an electronic opening mode, a solenoid 7D can be provided, where its actuator is received within a posterior channel/cutout 129 of main shaft 111. Channel 129 can have a preferably angled slab/surface with respect to the actuator, to allow the actuator solenoid to move through it, when main shaft 111 is rotated from one position to another, so that solenoid 7D does not interfere with the rotational movement.
Solenoid 7D, in addition to serving as a lock for holding spring 160 in a compressed state, can also function as an additional lock so that main shaft 111 cannot rotate beyond the angle defined by the channel 129 where solenoid 7D penetrates. Were this additional safety lock for solenoid 7D was not in place, with lock 110 in a closed position, if plate 350 is struck in the direction of its opening, tooth 372 of its inner guide 360, would be blocking the area of main shaft 111. Thus, in this incorrect position, main shaft 111 could be rotated, causing channel 124 to be aligned with inner guide 360 of plate 350 and allowing locking device 100 to be in an unauthorized “open” position.
Where lock 110 is a mechanical mechanism opening (as opposed to electronic), a seal, which preferably can be a cable lock 400, similar to those used for container doors, that can be placed in the front part, that acts as a lock on the main shaft 111 and blocks axial movement of main shaft 111.
When J shape plate 350 is in a closed position, step 375 of inner guide 360 does not obstruct the travel towards the interior of the main axis, since in that position the channel of internal guide 360 is preferably widened, allowing the whole diameter of main shaft 111 to be displaced through it. This allows device 100 to be secured to one of the container door bars 50 and to allow device 100 to be secured to the other container door bar 50, a similar design can be applied, namely, the interaction between J shape plate 300 and channel 122.
A contact sphere 5G can be in a bottom hole of main shaft 111, which acts as a bearing base for one end of a sensor screw/bolt 5E. The other end of bolt 5E can have a contact hood 5C preferably resting on a nut or other object/protrusion 5F that can serve as a base for hood/cap 5C. Spring 160, in addition to contracting when main shaft 111 is moved inward, also preferably exerts a torque force on main shaft 111 causing the main shaft to rotate. Spring 160 preferably surrounds contact hood 5C and at least a portion of sensor screw 5E.
When button 4A is depressed by moving Main Shaft 111 inwards, Contact Hood 5C (which can be preferably made of a flexible material), presses and activates the switch preferably located in the center of PCI 7C. As contact hood 5C is pressed and made of a flexible material, a friction contact surface is created between the switch and hood 5C. As the pieces can be preferably joined together in a single assembly, contact hood 5C when pressed to/against the switch on PCI 7C, causes both rotors to be rotated independently of main shaft 111, since otherwise spring 160 would be able to carry the torque on the latter and in turn the latter could work with the plates.
Locking device 100 can be provided with one or more of the following features: (1) it can be placed and removed easily and intuitively, without the need for special tools; (2) in can be placed in the locking bar of each door, preventing them from being opened separately or as a whole, and also includes a structural frame of solid design that protects lock 110; (3) it can be adjustable to different separation measures between the locking bars of each of the doors, which can occur based on different types of container design; (4) it can cover the guides that fix the locking bars to the doors similar to those used in the containers, in a way that hinders the removal of locking device 100 and if unauthorized removal or detachment occurs, evidence of such removal should be apparent and discoverable; (5) an external structural frame 270 of locking device 100 can protect the mobile parts contained within frame 270 also, J-plates 300 and 350 (also referred to as “closing claws” in conjunction with frame 270 sandwiched and contain the locking bars and help to block the locking bars; (6) the structure and design of frame 270 can contribute to the robustness of locking device 100, which further acts as hinderance and/or deterrent for a thief to try to remove locking device 100 once it is placed in or secured to locking bars 50; (7) locking device 100 can be portable and relatively light; (8) locking device 100 can have a modular design facilitating the removal of specific parts needed repair, maintenance or replacement without requiring the user to replace the entire locking device 100; (9) locking device allows for independent adding of a lock providing safe opening and closing; (10) locking device 100 can be provided with an electronic control allowing for (a) Communication to a server via GPRS or Satellite, (b) opening and closing of lock 110/locking device 100 using a keypad or remotely from a tracking software on a desktop or mobile device, (c) GPS tracking, (d) sensors that allow a user, operator, container owner, etc. to know the status of locking device 100 and the doors it secures, (e) Long-life batteries differentiated by function, and (f) movement energy charging system.
Locking device 100 can be generally composed of seven main parts that can be interrelated to each other, which can include a main frame 275, first plate 300, second plate 350. Lock system 110, an electronic housing seal, a protection cover, and a frame member 280 which is movable along a portion of main frame 275 (See
Guide rail/arm 271 can have a U-like profile shape and can be designed or constructed of material making it difficult to bend. Its profile shapes creates and interior space that frames/encloses and defines a travel path for portions of plates 300 and 350 and the plates are permitted to move within the interior of arm 271 prior to locking device 100 being secured and locked to locking bars 50 of the doors of the shipping container. Within the interior of guide arm/rail 271 a separator 267 (
The outside of an arm portion of guide rail 271 can act as a support for movable frame of regulation, which can be adjusted for the position where it can be attached to the locking bar of the other container door (
As seen in
The opposite end of main frame 275 from stops 293 and 295 can be preferably provided with a hub or lock box 274 (See
As locking plate 300 is within frame 275 during use, a strong and secure locking of device 100 to locking bar 50 can be provided. As seen in
As seen in
As seen in
As seen in
A guide rail support clamp 288 can be provided and can envelope main frame rail 271 and can serve as a guide and support for moving movable frame 280 along arm/rail 271. As seen in
As seen in the
Closing system 110 can include a button 4a. Preferably, button 4a can be cylindrical with rounded borders to permit easier grasping by a user's hand. A square (or other shaped hole) can be provided in the back of button 4a, which can lodge or house the coupling protrusions of a button guide 4c. Though the square shape of the guide protrusion and hole are preferred other corresponding shapes can be used and are considered within the scope of the disclosure. A bolt can protrude out from the center of the hole. Ultimately, the bolt will be secured to (i.e. screwed up along) a button nut 4E in order to fasten and hold button 4A and button guide 4C together. Button nut 4E can be considered to function as a fastening nut.
An external support 4B can also be provided. In one non-limiting embodiment, external support can comprise a solid metallic cylinder with a conical frontal part which facilitates the fingers grasp of the button 4A. When properly secured, button 4a can protrude outward from a front center area of support 4B. Support 4b can be provided with a centrally located aperture to allow the back protruding bolt portion of button 4a to be inserted therethrough for mating with button nut 4e. A back part of support 4B can be provided with a reduced diameter circular step in order to get a better fit with the pieces/parts that it lodges. An inside body area of the reduced diameter back part of support 4B can be provided with a plurality of drillings, cavities or apertures (collectively “drillings”). In one preferred non-limiting embodiment, three cylindrical drillings can be provided and can be preferably aligned on the same axis. Preferably, the two most external drillings/cavities can be threaded in order to received and secured (lodge) the bolts 7H for securing an internal support 7A to support 4B. A shaft guide 7B can be fastened to internal support 7A through a plurality of bolts 7J. The shaft guide 7B can also be fastened to the external parts of the lock.
The central drilling of the plurality of drillings can be wide than the other drillings and can extend along the entire length of support 4B. The central drilling can be provided with a side slit for receipt of (i.e. sits and slides in) a head portion of bolt 4D that preferably protrudes upward from button guide 4C. In one non-limiting embodiment, bolt 4D can be screwed into a top portion of button guide 4C and can be provided to provide the linear sliding of button guide 4c within the central hole (i.e. central drilling) of support 4B.
As mentioned above, button guide 4C preferably moves linear and thus moves within support 4B and inside the external hold in a straight line. Button guide 4C can have a hollow, preferably cylindrical cavity, which houses or lodges the front tip of a main shaft 5A/111. The opposite side or end of button guide 4C from where main shaft 5A is inserted can be used for coupling or otherwise securing button guide 4C to button 4A.
Main shaft 5A or 111 is positioned with button guide such that it is allowed to rotate freely on its axis within the interior of the button guide 4C, while also being allowed to move linearly together with the movement of guide 4C, as a portion of anchoring bolt 4D can extend through button guide 4C and be positioned inside a cylindrical slit inside main shaft 5A. In a preferred embodiment, the base of a cylindrical tube/groove at the top of button guide 4C can be provided with a hole/opening, which can be, but is not required to be, threaded. One end of bolt 4D is secured to button guide 4C and inserted through the hole, and can extend into the interior of button guide 4C for contact and connection to main shaft 5A.
The opposite end of bolt 4D extends upward and out from button guide 4C where it is positioned or otherwise resides inside the channels in the central hole of the external hold/support (4B) where it remains during the linear movement of button guide 4C with respect support 4B based on movement caused by pushing on button 4A (which also moves linear). Thus, bolt 4D helps to keep the linear displacement of the button 4A and button guide 4C when button 4A is pushed during operation or use. Preferably, bolt 4D protrudes out from guide 4C at or near a far (away) end of guide 4C with respect to the location of button 4A. On the opposite end of button guide (i.e. end closer to button 4a) an external tip, preferably square shaped, protrudes toward button 4A, where it is received within or mates with a similarly shaped hole/cavity contained within button 4A. Once the external tip is properly positioned within the similarly shaped cavity within button 4A, preferably button guide 4C is prevented from rotating with respect to button 4A, especially when both pieces/parts are coupled together by the mating of nut 4E with the pin or protrusion extending out of button 4A and into central opening of support 4B.
Button guide safety pin 4D can be a bolt, such as, but not limited to, a cylindrical bolt that can fit in the corresponding hole of the button guide 4C described above located at the far side of button guide 4C with respect to button 4A. The inserted end of tip of bolt 4D preferably crosses through the body of button guide 4C to reach the interior of button guide 4C for disposal within a channel of master shaft 5A that is positioned within the interior of button guide 4C and thus fastening master shaft 5A to button guide 4C, in such a manner that the master shaft 5A is still permitted to rotate within the interior of button guide 4C, even where all pieces or parts are moving back and forth during operation or pressing on button 4A.
Master Shaft 5A/111 can be a solid cylindrical piece crossed or dissected in its central part by two preferably parallel slits opened to the depth of the diameter. These slits/channels can serve as guides for the displacement of closure plates (i.e. one slit for each closure plate). The closure plates can be two sliding J-shaped counter-positioned pieces 300 and 350 (preferably constructed from metal though such is not limiting) that move through the lock and brace the container bars 50 that are also lodged in the U shaped closures in the lock frame body. The J-shaped pieces 300 and 350 and U-shaped closure/channels 276 and 284, respectively.
On the opposite side of preferably parallel slits/channels can be provided a further channel that can be provided with a protrusion that can serve as a guide for the lower side of the slot (the serrated side) of the left closure plate. This configuration can avoid the back and forth displacement of the master shaft 5A and correspondingly can avoid the closing of the lock if all parts/pieces are not in proper position.
A forward end of master shaft 5A can be provided with a reduced diameter section that fits inside the interior of button guide 4C. The forward end can be provided with a circular channel that receives pin 4D when pin 4D is pushed or inserted in through the externally accessible hole for button guide 4C to anchor or secure master shaft 5A to button guide 4C, while still allowing master shaft 5A to rotate with respect to button guide 4C.
Behind (opposite end) the central part of master shaft 5A can be provided another reduced diameter section, creating other cylindrical channel with a longer neck, as compared to the neck created with the circular channel at the forward end of master shaft 5A. The cylindrical channel preferably receives a solenoid acting piece 7D described in more detail below. The cylinder at this end also can become a base for sitting the spring (5D) and in its center can also retain a screwed pin that hold a rubber stopper. A hole can be provided in one side of the base for inserting and holding a tip of the spring 5D. Thus, when torque is received it moves rotating the master shaft (5A)
Cap 5C, which can be preferably constructed from rubber, can be provided to cover the screwed bolt of a support shaft, where its tip enters the hole at the master shaft 5A in the center of the spring stopper. By preferably providing cap/hood 5c in rubber, cap 5c can make soft harmless pressure on the contact area of the on/off switch and can add a few millimeters of clutching flexibility in the contact adjustment.
Spring 5D is provided for multiple purposes, including (1) working in a linear sense by compressing and expanding following the back and forth movement of master shaft 5A when button 4A is pushed or freed/released during operation and (2) offering/supplying the torque that causes master shaft 5A to rotate over its axis without ever losing the positioning of the central closure plates guide channels. To accomplish these functions, both ends can be preferably anchored, one end of the spring 5D to a hole already described above in the spring hold, and the other end of spring 5D to a slot carved in the inside of the external support 4B. By being anchored at both ends, spring 5D rotates with the rotating of master shaft 5A.
Sealing O-Ring 5B, preferably a rubber wafer, can be provided and sits in a circular slit in the external surface of master shaft 5A. O-ring 5B moves with the movement of master shaft 5A inside guide 7A. O-ring 5B can press on the containing cylinder inner wall sealing the back part that contains the solenoid against possible environmental hazards, such as, without limitation, dust and water.
Contact gasket support shaft 5E can be provided and can have a screwed end that holds the contact gasket 5C) and an opposite end that enters within master shaft 5A through a hole, preferably central hole, provided at one end main shaft 5A at the platform that tops the spring. Within the hole, shaft 5E can top over a free ball bearing ball 5G. Support shaft 5E allows freedom of movement to main shaft 5A independently of the pressure exerted by the gasket over the switch.
The top of contact gasket 5F can hold the base of the contact gasket. As mentioned above, a ball bearing ball 5G can be provided and is preferably provided inside the hole that lodges/houses the end of the contact gasket support shaft in order to allow free frictionless rotation movement.
A shaft guide joint 7A provides the back support for the internal pieces of the lock. Shaft guide joint 7A can be bounded or secured to external support 4B preferably by two bolts 7H, though other conventional attachment methods can be used and are considered within the scope of the disclosure. Once shaft guide joint 7A is secured to external support 4B, the combination of these parts can create an external frame portion of the closing system 110 of the container lock/locking device 100. Inside the external frame 275 the moving parts of the closing system reside and preferably operate. Through central hole in shaft guide joint 7A the main shaft 5A is permitted to move. On one side of shaft guide joint 7A, solenoid 7D can be secured, preferably by screwing in, though other conventional securement mechanisms can be used. At the top of shaft guide joint 7A, a shaft guide lid 7B can be affixed thereto, preferably through bolts, though again other conventional securement mechanisms can be used. The shaft guide joint 7A helps to separate, support and protect the electronic components of closing system 50 from the environment.
Shaft guide lid 7B can be a section plate preferably corresponding in shape to the shape of an associated portion of the shaft guide and can be sandwiched between the two isolating joints 7F and 7G and can also be similarly shaped to joints 7F and 7G. Shaft guide lid 7B can provide support and constrain shape changes of the spring and can also be used to hold or secure one end of the spring so that the spring can receive torque when stretched on its axis. A notch can be provided in the exterior of lid 7B for holding/anchoring the end of spring 5D which will help prevent spring 5D from rotating, while the other end of spring 5D can be inserted can be fixed to main shaft 5A allowing it to create torque when main shaft 5A is rotated.
An open/close sensor 7C, which can be a printed circuit plate or board, preferably, though not limiting, shaped and sized similar to the shape and size of guide lid 7B, can be provided. Sensor 7C can overlay one side of guide lid 7B, preferably with an isolating joint 7G therebetween. Sensor 7C can be provided with a switch that aligns with the central hole running through joints 7F and 7G and guide lid 7B and the other above described components/parts. The switch/sensor can be set to an “on” state when button 4A is pressed, which causes the movable pieces for the control system 500 to moved linear inside the corresponding portions of the central holes. Part of the movable pieces that move upon pressing button 4A include the rubber stopper 5C that moves the switch (through soft contact of rubber stopper 5C with the switch/sensor 7C from movement of main shaft 5A) to the ON position to activate the electronic control of the lock and activating the locking mechanisms and also indicating that the locking mechanism is closed. When rubber stopper 5C moves out (no longer contact sensor 7C) it creates the reverse process of opening the locking mechanisms and indicating that the locking mechanism is open. Sensor 7C can be fastened to the guide lid 7B of the internal support preferably with a plurality of bolts, such as, but not limited to four screw bolts, though other securement methods can also be used and are considered within the scope of the disclosure. Preferably, sensor 7C can be sealed.
Solenoid 7D can be secured to shaft guide 7A, preferably by screwing solenoid 7D into a hole in the shaft guide 7A, though such securement method is not considered limiting. In a “closed” status position, a rod portion of solenoid 7D preferably locks any back and forth displacement of the shaft guide spring 5C anchored to the main shaft 5A. The pin of solenoid 7D is activated and deactivated electrically/electronically in order to lock and unlock/liberate the back and forth movement of the movable pieces described above.
Joint 7E for the guide base can be provided and placed between the base of shaft guide 7A and its frame, preferably for isolating purposes. Joint 7F for the guide lid 7B can be provided and placed between shaft guide 7A and guide lid 7B. Joint 7G for PCI Sensor 7C can be provided and placed between guide lid 7B and Sensor 7C. All of the joints can be provided for isolating purposes for the parts/components they are associated with.
Bolts 7J, which can be four bolts though not considered limiting, can be provided for fastening or securing the base of shaft guide 7A to lid 7B and can also be used for securing PCI sensor 7C, joint 7G, lid 7B and joint 7F all together. Support bolts can be two bolts, though not considered limiting, that are provided for securing shaft guide 7A, joint 7E and external support 4B together.
Locking device 100 can be provided with an electronic system that can increase the performance or features of locking device 100. The electronic system can preferably be housed within box 400 of main frame 275. As seen in
The various blocks/modules can be integrated to form the electronic system of locking device 100. A correct integration of these blocks can be achieved by the implementation of physical interconnections resistant to vibration and humidity conditions. The interconnections can also implement by practices used to electromagnetic interference between each block.
Locking device 100 can be provided with several operating states depending on the inputs received from the sensor(s). Each operating state can correspond to a set of conditions in which locking device 100 operates. Non-limiting operating states can include:
Preferably, a change to any one of these operating states can depend on the sensors, the manipulation on the keyboard, the elapsed time and the charge connections. The transition events can include, without limitation, are the following:
It should be understood that the exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. While one or more embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from their spirit and scope.
All measurements, amounts, sizes, shapes, configurations, securement or attachment mechanisms, sensing members, communication and electronic communication methods, sealing members, numbers, ranges, frequencies, values, percentages, materials, orientations, methods of manufacture, etc. discussed above or shown in the drawing figures are merely by way of example and are not considered limiting and other measurements, amounts, sizes, shapes, configurations, securement or attachment mechanisms, sensing members, communication and electronic communication methods; sealing members, numbers, ranges, frequencies, values, percentages, materials, orientations, methods of manufacture, etc. can be chosen and used and all are considered within the scope of the invention.
Unless feature(s), part(s), component(s), characteristic(s) or function(s) described in the specification or shown in the drawings for a claim element, claim step or claim term specifically appear in the claim with the claim element, claim step or claim term, then the inventor does not consider such feature(s), part(s), component(s), characteristic(s) or function(s) to be included for the claim element, claim step or claim term in the claim when and if the claim element, claim step or claim term is interpreted or construed. Similarly, with respect to any “means for” elements in the claims, the inventor considers such language to require only the minimal amount of features, components, steps, or parts from the specification to achieve the function of the “means for” language and not all of the features, components, steps or parts describe in the specification that are related to the function of the “means for” language.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims.
While the disclosure has been described in certain terms and has disclosed certain embodiments or modifications, persons skilled in the art who have acquainted themselves with the disclosure, will appreciate that it is not necessarily limited by such terms, nor to the specific embodiments and modification disclosed herein. Thus, a wide variety of alternatives, suggested by the teachings herein, can be practiced without departing from the spirit of the disclosure, and rights to such alternatives are particularly reserved and considered within the scope of the disclosure.