Generally described, computing devices utilize a communication network, or a series of communication networks, to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.
To facilitate increased utilization of data center resources, virtualization technologies may allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.
In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Companies and organizations no longer need to acquire and manage their own data centers in order to perform computing operations (e.g., execute code, including threads, programs, functions, software, routines, subroutines, processes, etc.). With the advent of cloud computing, storage space and compute power traditionally provided by hardware computing devices can now be obtained and configured in minutes over the Internet. Thus, developers can quickly purchase a desired amount of computing resources without having to worry about acquiring physical machines. Such computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances. These instances of virtual machines are software implementations of physical machines (e.g., computers), which are hosted on physical computing devices and may contain their own operating systems and other applications that are traditionally provided on physical machines. These virtual machine instances are configured with a set of computing resources (e.g., memory, CPU, disk, network, etc.) that applications running on the virtual machine instances may request and can be utilized in the same manner as physical computers.
However, even when virtual computing resources are purchased (e.g., in the form of virtual machine instances), developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them. For example, the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented. In addition, the minimum time a virtual machine may be rented is typically on the order of hours. Further, developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines. Other concerns that they might have include over-utilization (e.g., acquiring too little computing resources and suffering performance issues), under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying), prediction of change in traffic (e.g., so that they know when to scale up or down), and instance and language runtime startup delay, which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds. Thus, an improved method of allowing users to take advantage of the virtual machine instances provided by service providers is desired.
According to aspects of the present disclosure, by maintaining a pool of pre-initialized virtual machine instances that are ready for use as soon as a user request is received, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced.
Generally described, aspects of the present disclosure relate to the management of virtual machine instances and containers created therein. Specifically, systems and methods are disclosed which facilitate management of virtual machine instances in a virtual compute system. The virtual compute system maintains a pool of virtual machine instances that have one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. Maintaining the pool of virtual machine instances may involve creating a new instance, acquiring a new instance from an external instance provisioning service, destroying an instance, assigning/reassigning an instance to a user, modifying an instance (e.g., containers or resources therein), etc. The virtual machine instances in the pool can be designated to service user requests to execute program codes. In the present disclosure, the phrases “program code,” “user code,” and “cloud function” may sometimes be interchangeably used. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.
In another aspect, a virtual compute system may monitor and log information related to the amount of resources allocated for executing user code. By doing so, the virtual compute system may be able to identify opportunities for improving the performance of the user code execution by adjusting the amount of allocated resources. Error rates may be reduced by increasing the amount of allocated resources in the event of over-utilization, and costs associated with executing the user code may be reduced by decreasing the amount of allocated resources in the event of under-utilization.
Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.
With reference to
By way of illustration, various example user computing devices 102 are shown in communication with the virtual compute system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices. In addition, the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein. Further, the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices. The virtual compute system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programing interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the virtual compute system 110), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.
The user computing devices 102 access the virtual compute system 110 over a network 104. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.
The virtual compute system 110 is depicted in
Further, the virtual compute system 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.
In the environment illustrated
In the example of
Users may use the virtual compute system 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send a code execution request to the virtual compute system 110. The virtual compute system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The virtual compute system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).
The frontend 120 processes all the requests to execute user code on the virtual compute system 110. In one embodiment, the frontend 120 serves as a front door to all the other services provided by the virtual compute system 110. The frontend 120 processes the requests and makes sure that the requests are properly authorized. For example, the frontend 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.
The user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user. For example, the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby. The request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code. For example, the user may provide the user code along with the request to execute the user code. In another example, the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID. In yet another example, the code may be included in the request as well as uploaded in a separate location (e.g., the storage service 108 or a storage system internal to the virtual compute system 110) prior to the request is received by the virtual compute system 110. The virtual compute system 110 may vary its code execution strategy based on where the code is available at the time the request is processed.
The frontend 120 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the frontend 120. The frontend 120 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation. For example, the user may have registered the user code with an auxiliary service 106 and specified that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the frontend 120. Alternatively, the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the frontend 120. In yet another example, the frontend 120 may have a queue of incoming code execution requests, and when the user's batch job is removed from the virtual compute system's work queue, the frontend 120 may process the user request. In yet another example, the request may originate from another component within the virtual compute system 110 or other servers or services not illustrated in
A user request may specify one or more third-party libraries (including native libraries) to be used along with the user code. In one embodiment, the user request is a ZIP file containing the user code and any libraries (and/or identifications of storage locations thereof). In some embodiments, the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, CPU, storage, network packets, etc.) to be reserved for executing the program code. For example, the program code may be provided with the request, previously uploaded by the user, provided by the virtual compute system 110 (e.g., standard routines), and/or provided by third parties. In some embodiments, resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular user code, and may not vary over each execution of the user code. In such cases, the virtual compute system 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints. In some embodiments, the resource-level constraints are adjusted over time and may vary across different executions of a single program code. For example, the same program code may be used to process two different sets of data, where one set of data requires more resources than the other. In such a case, the user may specify different resource constraints for the two different executions or the virtual compute system 110 may automatically adjust the amount of resources allocated to each execution of the program code based on spatial (e.g., in other parts of the virtual compute system 110) or historical (e.g., over time) trends for the user and/or program code. In some embodiments, the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the virtual compute system 110 to access private resources (e.g., on a private network).
In some embodiments, the user request may specify the behavior that should be adopted for handling the user request. In such embodiments, the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed. For example, the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface). In such an example, the virtual compute system 110 may inspect the request and look for the flag or the header, and if it is present, the virtual compute system 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the request by the user interface provided to the user by the virtual compute system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.
In some embodiments, the virtual compute system 110 may include multiple frontends 120. In such embodiments, a load balancer may be provided to distribute the incoming requests to the multiple frontends 120, for example, in a round-robin fashion. In some embodiments, the manner in which the load balancer distributes incoming requests to the multiple frontends 120 may be based on the state of the warming pool 130A and/or the active pool 140A. For example, if the capacity in the warming pool 130A is deemed to be sufficient, the requests may be distributed to the multiple frontends 120 based on the individual capacities of the frontends 120 (e.g., based on one or more load balancing restrictions). On the other hand, if the capacity in the warming pool 130A is less than a threshold amount, one or more of such load balancing restrictions may be removed such that the requests may be distributed to the multiple frontends 120 in a manner that reduces or minimizes the number of virtual machine instances taken from the warming pool 130A. For example, even if, according to a load balancing restriction, a request is to be routed to Frontend A, if Frontend A needs to take an instance out of the warming pool 130A to service the request but Frontend B can use one of the instances in its active pool to service the same request, the request may be routed to Frontend B.
The warming pool manager 130 ensures that virtual machine instances are ready to be used by the worker manager 140 when the virtual compute system 110 receives a request to execute user code on the virtual compute system 110. In the example illustrated in
As shown in
In some embodiments, the virtual machine instances in the warming pool 130A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 130A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 130A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 130A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations. For example, two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code. In some embodiments, multiple warming pools 130A, each having identically-configured virtual machine instances, are provided.
The warming pool manager 130 may pre-configure the virtual machine instances in the warming pool 130A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the virtual compute system 110. In one embodiment, the operating conditions may include program languages in which the potential user codes may be written. For example, such languages may include Java, JavaScript, Python, Ruby, and the like. In some embodiments, the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes. For example, when the user is configuring a request via a user interface provided by the virtual compute system 110, the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code. In another example, the service-level agreement (SLA) for utilizing the services provided by the virtual compute system 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the virtual compute system 110 may assume that the requests satisfy the set of conditions in handling the requests. In another example, operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., HTTP vs. a triggered event); the timeout for the request (e.g., threshold time after which the request may be terminated); security policies (e.g., may control which instances in the warming pool 130A are usable by which user); and etc.
The worker manager 140 manages the instances used for servicing incoming code execution requests. In the example illustrated in
In the example illustrated in
As shown in
In the example of
Although the components inside the containers 156B, 157A, 157B, 157C, 158A, 157A are not illustrated in the example of
After a request has been successfully processed by the frontend 120, the worker manager 140 finds capacity to service the request to execute user code on the virtual compute system 110. For example, if there exists a particular virtual machine instance in the active pool 140A that has a container with the same user code loaded therein (e.g., code 156A-3 shown in the container 156A), the worker manager 140 may assign the container to the request and cause the user code to be executed in the container. Alternatively, if the user code is available in the local cache of one of the virtual machine instances (e.g., stored on the instance 158 but do not belong to any individual containers), the worker manager 140 may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container.
If the worker manager 140 determines that the user code associated with the request is not found on any of the instances (e.g., either in a container or the local cache of an instance) in the active pool 140A, the worker manager 140 may determine whether any of the instances in the active pool 140A is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager 140 may create a new container on the instance and assign the container to the request. Alternatively, the worker manager 140 may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager 140 may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager 140 may load the particular library and the user code onto the container and use the container to execute the user code.
If the active pool 140A does not contain any instances currently assigned to the user, the worker manager 140 pulls a new virtual machine instance from the warming pool 130A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.
In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the frontend 120). A time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend). The virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the virtual compute system 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool 140A at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool 140A at the time the request is received; (3) the active pool 140A contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 130A has capacity to handle the request at the time the request is received.
The user code may be downloaded from an auxiliary service 106 such as the storage service 108 of
Once the worker manager 140 locates one of the virtual machine instances in the warming pool 130A that can be used to serve the user code execution request, the warming pool manager 130 or the worker manager 140 takes the instance out of the warming pool 130A and assigns it to the user associated with the request. The assigned virtual machine instance is taken out of the warming pool 130A and placed in the active pool 140A. In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity. In some embodiments, the virtual compute system 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a web-based network storage (e.g., accessible via the network 104).
After the user code has been executed, the worker manager 140 may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager 140 may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager 140 may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager 140 may keep the instance running to use it to service additional requests from the same user. The determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.
In some embodiments, the virtual compute system 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests. For example, the virtual compute system 110 may communicate with the monitoring/logging/billing services 107. The monitoring/logging/billing services 107 may include: a monitoring service for managing monitoring information received from the virtual compute system 110, such as statuses of containers and instances on the virtual compute system 110; a logging service for managing logging information received from the virtual compute system 110, such as activities performed by containers and instances on the virtual compute system 110; and a billing service for generating billing information associated with executing user code on the virtual compute system 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the monitoring/logging/billing services 107 (e.g., on behalf of the virtual compute system 110) as described above, the monitoring/logging/billing services 107 may provide application-level services on behalf of the user code executed on the virtual compute system 110. For example, the monitoring/logging/billing services 107 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the virtual compute system 110. Although shown as a single block, the monitoring, logging, and billing services 107 may be provided as separate services. The monitoring/logging/billing services 107 may communicate with the security manager 150 to allow the security manager 150 to determine the appropriate security mechanisms and policies to be used for executing the various program codes on the virtual compute system 110.
In some embodiments, the worker manager 140 may perform health checks on the instances and containers managed by the worker manager 140 (e.g., those in the active pool 140A). For example, the health checks performed by the worker manager 140 may include determining whether the instances and the containers managed by the worker manager 140 have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager 140 performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, the worker manager 140 may perform similar health checks on the instances and/or containers in the warming pool 130A. The instances and/or the containers in the warming pool 130A may be managed either together with those instances and containers in the active pool 140A or separately. In some embodiments, in the case where the health of the instances and/or the containers in the warming pool 130A is managed separately from the active pool 140A, the warming pool manager 130, instead of the worker manager 140, may perform the health checks described above on the instances and/or the containers in the warming pool 130A.
The security manager 150 manages the security of program code executed for incoming requests to execute user code on the virtual compute system 110. For example, the security manager 150 may communicate with the frontend 120, the warming pool manager 130, the worker manager 140, and/or the auxiliary services 106 to configure, monitor, and manage the security settings used for various program codes executed on the virtual compute system 110. Although the security manager 150 is illustrated as a distinct component within the virtual compute system 110, part or all of the functionalities of the security manager 150 may be performed by the frontend 120, the warming pool manager 130, the worker manager 140, and/or the auxiliary services 106. For example, the security manager 150 may be implemented entirely within one of the other components of the virtual compute system 110 or in a distributed manner across the other components of the virtual compute system 110. In the example of
As discussed above, the request itself may specify the security policy, including security settings and parameters to be used for executing the program code associated with the request. For example, certain users of the virtual compute system 110 may be trusted and thus the virtual compute system 110 may provide the capability for such users to customize security settings associated with functions in their program code to enable the flexibility offered by executing the program code under less strict security requirements. The request may also specify configuration data usable to enable the program code to communicate with an auxiliary service during execution by the virtual compute system 110. For example, certain users of the virtual compute system 110 may wish to execute certain program code on the virtual compute system 110 that still has the ability to communicate with the user's virtual private cloud or other network-based service in a secured manner. The request may also specify one or more trusted credentials to be used in association with the program code or a portion thereof. For example, certain program code may include “trusted” portions which require the use of a trusted credential (e.g., a secured login associated with the user) during execution, which may present a possible increased security risk if such trusted portions were to be compromised. Program code may also include other portions involving a different level of trust which may not require the use of a trusted credential (e.g., the code may involve a standard file conversion process which may not require any particular credential to be invoked). Thus, it may be possible to split program code into a first portion having a first level of trust and a second portion having a second level of trust using multiple containers with varying levels of security associated with each. After such a request has been processed and a virtual machine instance has been assigned to the user associated with the request, the security manager 150 may configure the virtual machine instance according to the security policy, configuration data, and/or trusted credential information to enable the program code to be executed on the virtual machine instance in a secure or trusted manner. In some embodiments the trusted credential may be managed and/or maintained by the virtual compute system 110 or one of its subsystems, while in other embodiments the trusted credential may be managed and/or maintained by a first or third party credential management system and provided to the virtual compute system 110 on a case by case basis.
In some embodiments, the security manager 150 may, instead of creating a new container and allocating the specified amount of resources to the container, locate an existing container having the specified security settings and cause the program code to be executed in the existing container.
After a container has been created or located, the program code associated with the request is executed in the container. The amount of resources allocated to the container (e.g., requested by the user) and/or the amount of resources actually utilized by the program code may be logged (e.g., by the monitoring/logging/billing services 107 and/or the security manager 150) for further analysis. For example, the logged information may include the amount of memory, the amount of CPU cycles, the amount of network packets, and the amount of storage actually used by the program during one or more executions of the program code in the container. Additionally, the logged information may include any security-related activity performed during execution of the program code (e.g., inbound or outbound network connections made, auxiliary services contacted, trusted credentials which were utilized, etc.), resource utilization, error rates, latency, and any errors or exceptions encountered during the execution of the program code. In some embodiments, any security data which appears suspect (e.g., unauthorized network connections made, unauthorized interaction with an auxiliary service, potential compromise of a trusted credential, and the like) are tagged with a special marking and further analyzed by the security manager 150.
In some embodiments, the security manager 150 may create, or have access to, multiple classes of users, and apply different rules for different classes of users. For example, for more sophisticated users, more control may be given (e.g., control over individual security parameters), whereas for other users, they may be allowed to control only a single representative parameter, and other parameters may be adjusted based on the representative parameter.
In some embodiments, the security manager 150 may, based on the information logged by the monitoring/logging/billing services 107 and/or the security manager 150, provide some guidance to the user as to what the user may do to improve the security of the program code or to reduce risks associated with executing the program code on the virtual compute system 110. For example, the security manager 150 may provide to the user, after seeing repeated occurrences of potential or apparent security breaches, an indication that the user appears to be consistently setting a security parameter too high for running a particular user code. For example, the security parameter may contribute to a higher security risk based on a number of factors. In general, the indication may suggest different settings, configurations, or categorizations for various security parameters. In some embodiments, such an indication is provided to the user after a threshold number of security issues, errors, exceptions, or other telling conditions (e.g., increased latency, unauthorized accesses, etc.) have been processed by the security manager 150. The security manager 150 may provide the indication via any notification mechanism including email, Simple Notification Service (“SNS”), Short Message Service (“SMS”), etc.
In some embodiments, the security manager 150 may utilize code-specific characteristics to improve the security parameters for executing individual program codes. For example, program codes handling image processing might not require a trusted credential, whereas program codes handling databases might require a trusted credential in order to grant permission to access or update the databases. Such code-specific characteristics may be maintained by the security manager 150 and the security policies of individual program codes may be adjusted accordingly.
The security mechanisms described herein may be used in any combination. For example, in one embodiment, a user may specify configuration data for a program code to communicate with an auxiliary service. Such communication may involve the use of a trusted credential (e.g., to login to an account at the auxiliary service associated with the user). Thus, the user may further wish to have the program code executed by two or more containers (e.g., at least one container with a first level of trust, which executes any program code involving communication with the auxiliary service using the trusted credential and another container with a second level of trust which executes other program code without involving communication with the auxiliary service). In another embodiment, the user may provide a security policy in association with program code which also involves communication with an auxiliary service. The user may wish to specify security parameters associated with how the program code executes and interacts with the auxiliary service. In another embodiment, the user may provide a security policy in association with program code which also involves execution of the program code using a multiplicity of containers (e.g., containers having different levels of trust). Thus, the user may want to enable multiple containers to communicate with each other during execution and specify how via the security policy and parameters.
The memory 180 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 190 executes in order to implement one or more aspects of the present disclosure. The memory 180 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer-readable media. The memory 180 may store an operating system 184 that provides computer program instructions for use by the processing unit 190 in the general administration and operation of the security manager 150. The memory 180 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 180 includes a user interface unit 182 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 180 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.
In addition to and/or in combination with the user interface unit 182, the memory 180 may include a program code security policy unit 186 and an auxiliary service and inter-instance interface unit 188 that may be executed by the processing unit 190. In one embodiment, the user interface unit 182, program code security policy unit 186, and auxiliary service and inter-instance interface unit 188 individually or collectively implement various aspects of the present disclosure, e.g., monitoring and logging the execution of program codes on the virtual compute system 110, determining the need for adjusting the security settings for particular instances, containers, and/or requests, etc. as described further below.
The program code security policy unit 186 monitors execution of user code on the virtual compute system 110 and provides containers according to security policies and security mechanisms for executing the user code. As described herein, security policies may be user-specified and provided at the time a request is received by the virtual compute system 110, or at a time prior to execution of the program code such as when the user registers the program code for execution by the virtual compute system 110. Security policy information may be stored at the security management data 150A, for example to facilitate faster access and processing of requests which require a particular security policy to be applied. The security policy information may also be stored with the program code, such as the storage service 108, and accessed at the time the program code is accessed to be loaded onto a container.
The auxiliary service and inter-instance interface unit 188 provide and manage capabilities related to securely allowing containers to interact with one or more auxiliary services (e.g., via virtual private cloud (“VPC:”) tunneling or similar network communication) or with each other (e.g., via inter-process communication (“IPC”) tunneling or similar network communication). Such communications may need to be closely monitored and activity logged in order to identify suspicious network activity that may indicate a security breach. If suspicious activity for a container is identified the auxiliary service and inter-instance interface unit 188 may send a message to the worker manager 140 to shut the container down to minimize any further security breach activity. The auxiliary service and inter-instance interface unit 188 may also send a notification to the user that a particular program code may have been involved in suspicious activity and suggest that the user may need to change the security policy, configuration data, and/or trusted credentials associated with the program code to avoid further security breaches. In some instances the auxiliary service and inter-instance interface unit 188 may, after repeated security breaches (actual or suspected), prevent the program code from being loaded and executed on a container until the user has addressed the issue.
While the program code security policy unit 186 and the auxiliary service and inter-instance interface unit 188 are shown in
Turning now to
At block 302 of the illustrative routine 300, the security manager 150 receives a request to execute program code. Alternatively, the security manager 150 receives a request from the worker manager 140 of
Next, at block 304, the security manager 150 determines a user-specified security policy based on the request to execute program code. For example, the security manager 150 may receive the security policy with the request as described above. In another scenario, the security manager 150 may access the security policy, for example from the security management data 150A or loaded from the storage service 108. The security policy may relax or modify one or more restraints imposed by the security manager 150 in conjunction with execution of the program code. For example, the security policy may specify that program code loaded on and executed by a container may be allowed to establish inbound or outbound network connections in order to facilitate execution of other program code, such as program code on another container on the virtual machine instance containing the container, program code on another container on a different virtual machine instance, or program code on an auxiliary service. The security policy may further specify whether use of a native code library and other code is allowed in conjunction with execution of the program code.
At block 306, the worker manager 140 acquires compute capacity based on the information indicated in the request, based at least in part on the user-specified security policy. For example, the security policy may specify a user-preferred duration for execution of the program code, and the compute capacity may be acquired for the duration. In another example, the security policy may specify that the program code is permitted to make outbound TCP socket connections, and the compute capacity may be acquired in order to allow outbound TCP socket connections. In some embodiments, the compute capacity comprises a container that is configured to service the code execution request. As discussed herein, the container may be acquired from the active pool 140A or the warming pool 130A. One way in which the compute capacity may be acquired is described in greater detail with respect to FIG. 4 of U.S. application Ser. No. 14/502,810, titled “LOW LATENCY COMPUTATIONAL CAPACITY PROVISIONING,” filed on Sep. 30, 2014, which was previously incorporated by reference in its entirety above. The container may be acquired based on the security policy such that the worker manager 140 can determine whether a container in the active pool 140A or the warming pool 130A is available and configured with the same security policy associated with the program code to be executed for the request. If a similarly-configured container is available, or at least one which is configured in a way that agrees with the security policy, that container may be acquired to service the request.
At block 308, the security manager 150 or the worker manager 140 causes the user code to be executed using the compute capacity and according to the user-specified security policy. For example, the worker manager 140 may send the address of the container assigned to the request to the frontend 120 so that the frontend 120 can proxy the code execution request to the address. In some embodiments, the address may be temporarily reserved by the worker manager 140 and the address and/or the container may automatically be released after a specified time period elapses. In some embodiments, the address and/or the container may automatically be released after the user code has finished executing in the container.
While the routine 300 of
Turning now to
At block 402 of the illustrative routine 400, the virtual compute system 110 receives program code and configuration data for interfacing with an auxiliary service. For example, the user, such as the developer of the program code, may provide associated configuration data that specifies how the program code may initiate a connection or otherwise communicate with the auxiliary service during execution of the program code. The configuration data may include, for example, a network address and a login credential associated with an account on the auxiliary service, wherein the account is associated with the user registering the program code with the virtual compute system. Thus, when the program code is executed by the virtual compute system the network address and login credential may be used to connect or “tunnel” to the auxiliary service. As an example, the user may wish to configure program code to tunnel to an auxiliary service, such as a virtual private cloud, to provide data such as a notification, log data, a status report, and so on. In another embodiment, the configuration data may include a credential and a file system mount point. The file system mount point may, for example, indicate or specify how to access a file system which stores a plurality of program codes accessed by the virtual compute system 110.
Next, at block 404, the worker manager 140 receives a request to execute program code, such as the program code previously received by the virtual compute system 110 as described at block 402. For example, the block 404 may be similar to the block 302 of
At block 406, the worker manager 150 determines whether there exists an instance in the active pool 130A that is currently assigned to the user associated with the request and has been configured to enable, support, or allow interfacing with the auxiliary service. For example, one of the instances may have previously executed the program code in a container created thereon, and the container may since have been terminated, but the program code may still remain on the instance (e.g., in an instance code cache). If the worker manager 140 determines that there is such an instance, the routine 400 proceeds to block 412, described below. On the other hand, if the worker manager 140 determines that there is no such instance, the routine 400 proceeds to block 408.
At block 408 the worker manager 140 obtains a new instance from the warming pool 130A or from the warming pool manager 130. At block 410, the worker manager 140 configures the obtained instance to interface with the auxiliary service.
Once the obtained instance has been configured at block 410 or acquired from the active pool 140A at block 406, the routine 400 proceeds to block 412 where the worker manager 140 causes the request to be processed using either a new or a preconfigured container. Before a new container is created, the worker manager 140 may determine whether the instance has resources sufficient to handle the request.
While the routine 400 of
Turning now to
At block 502 of the illustrative routine 500, the worker manager 140 receives a request to execute program code. For example, the block 502 may be similar to the block 302 of
At block 504, determines whether there exists an instance in the active pool 130A that is currently assigned to the user associated with the request and has been loaded with the program code. For example, one of the instances may have previously executed the program code in a container created thereon, and the container may since have been terminated, but the program code may still remain on the instance (e.g., in an instance code cache). If the worker manager 140 determines that there is such an instance, the routine 500 proceeds to block 508, described below. On the other hand, if the worker manager 140 determines that there is no such instance, the routine 500 proceeds to block 506.
At block 506, the worker manager 140 obtains a new instance from the warming pool 130A or from the warming pool manager 130.
At block 508, the worker manager 140 or the security manager 150 creates a first container on the obtained instance. The first container may be created and configured to execute a first portion of the program code using the trusted credentials associated with the request to execute the program code.
At block 510, the worker manager 140 or the security manager 150 creates a second container on the obtained instance. The second container may be created and configured to execute a second portion of the program code without using or involving the trusted credentials associated with the request to execute the program code. The second container may be configured to communication with the first container, for example via an inter-process communication (“IPC”) protocol. The IPC protocol may include, for example, one of a socket pair, a pipe, a named pipe, a shared memory on the virtual machine instance, or a message queue. For example, the first container may be configured to send inter-process communications to the second container to request processing of the second portion of the program code on-demand. Although the example described with reference to the routine 500 involves two portions of the program code, any number of portions may be determined and a corresponding number of respective containers may be created to execute respective portions using respective credentials having different levels of trust. In some cases the first and the second containers may be configured in a master-slave relationship, such that the second container containing the second portion of less trusted program code may only be executed responsive to requests received from the first container. In some cases the first and second containers may be configured in a sibling relationship, each executing its respective program code independently of the other but so as to separate processes involving trusted credentials from processes involving less trusted code.
At block 512, the worker manager 140 causes the request to be processed using the first and second containers. In some cases, the first and second portions of the program code may be executed simultaneously and in parallel. In some cases, the second portion of the program code may only be executed in response to requests received by the second container from the first container.
While the routine 500 of
With reference to
With reference to
It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storage medium storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. application Ser. No. 15/676,777, filed Aug. 14, 2017 and titled “SECURITY PROTOCOLS FOR LOW LATENCY EXECUTION OF PROGRAM CODE,” which is a continuation of U.S. application Ser. No. 14/613,735, filed Feb. 4, 2015 and titled “SECURITY PROTOCOLS FOR LOW LATENCY EXECUTION OF PROGRAM CODE,” the disclosures of which are hereby incorporated by reference in their entirety. The present application's Applicant previously filed the following U.S. patent applications: Application No.Title14/502,589MESSAGE-BASED COMPUTATION REQUESTSCHEDULING14/502,810LOW LATENCY COMPUTATIONAL CAPACITYPROVISIONING14/502,714AUTOMATIC MANAGEMENT OF LOWLATENCY COMPUTATIONAL CAPACITY14/502,992THREADING AS A SERVICE14/502,648PROGRAMMATIC EVENT DETECTION ANDMESSAGE GENERATION FOR REQUESTSTO EXECUTE PROGRAM CODE14/502,741PROCESSING EVENT MESSAGES FOR USERREQUESTS TO EXECUTE PROGRAM CODE14/502,620DYNAMIC CODE DEPLOYMENT ANDVERSIONING14/613,688SECURITY PROTOCOLS FOR LOW LATENCYEXECUTION OF PROGRAM CODE14/613,723SECURITY PROTOCOLS FOR LOW LATENCYEXECUTION OF PROGRAM CODE The disclosures of the above-referenced applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4949254 | Shorter | Aug 1990 | A |
5283888 | Dao et al. | Feb 1994 | A |
5835764 | Platt et al. | Nov 1998 | A |
5970488 | Crowe et al. | Oct 1999 | A |
5983197 | Enta | Nov 1999 | A |
6237005 | Griffin | May 2001 | B1 |
6260058 | Hoenninger et al. | Jul 2001 | B1 |
6385636 | Suzuki | May 2002 | B1 |
6463509 | Teoman et al. | Oct 2002 | B1 |
6501736 | Smolik et al. | Dec 2002 | B1 |
6523035 | Fleming et al. | Feb 2003 | B1 |
6549936 | Hirabayashi | Apr 2003 | B1 |
6708276 | Yarsa et al. | Mar 2004 | B1 |
7036121 | Casabona et al. | Apr 2006 | B1 |
7308463 | Taulbee et al. | Dec 2007 | B2 |
7340522 | Basu et al. | Mar 2008 | B1 |
7360215 | Kraiss et al. | Apr 2008 | B2 |
7558719 | Donlin | Jul 2009 | B1 |
7577722 | Khandekar et al. | Aug 2009 | B1 |
7590806 | Harris et al. | Sep 2009 | B2 |
7665090 | Tormasov et al. | Feb 2010 | B1 |
7707579 | Rodriguez | Apr 2010 | B2 |
7730464 | Trowbridge | Jun 2010 | B2 |
7774191 | Berkowitz et al. | Aug 2010 | B2 |
7823186 | Pouliot | Oct 2010 | B2 |
7831464 | Nichols et al. | Nov 2010 | B1 |
7870153 | Croft et al. | Jan 2011 | B2 |
7886021 | Scheifler et al. | Feb 2011 | B2 |
7949677 | Croft et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
8010679 | Low et al. | Aug 2011 | B2 |
8010990 | Ferguson et al. | Aug 2011 | B2 |
8024564 | Bassani et al. | Sep 2011 | B2 |
8046765 | Cherkasova et al. | Oct 2011 | B2 |
8051180 | Mazzaferri et al. | Nov 2011 | B2 |
8051266 | DeVal et al. | Nov 2011 | B2 |
8065676 | Sahai et al. | Nov 2011 | B1 |
8065682 | Baryshnikov et al. | Nov 2011 | B2 |
8095931 | Chen et al. | Jan 2012 | B1 |
8127284 | Meijer et al. | Feb 2012 | B2 |
8146073 | Sinha | Mar 2012 | B2 |
8166304 | Murase et al. | Apr 2012 | B2 |
8171473 | Lavin | May 2012 | B2 |
8201026 | Bornstein et al. | Jun 2012 | B1 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8219987 | Vlaovic et al. | Jul 2012 | B1 |
8296267 | Cahill et al. | Oct 2012 | B2 |
8321554 | Dickinson | Nov 2012 | B2 |
8321558 | Sirota et al. | Nov 2012 | B1 |
8336079 | Budko et al. | Dec 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8387075 | McCann et al. | Feb 2013 | B1 |
8392558 | Ahuja et al. | Mar 2013 | B1 |
8402514 | Thompson et al. | Mar 2013 | B1 |
8417723 | Lissack et al. | Apr 2013 | B1 |
8429282 | Ahuja | Apr 2013 | B1 |
8448165 | Conover | May 2013 | B1 |
8479195 | Adams et al. | Jul 2013 | B2 |
8490088 | Tang | Jul 2013 | B2 |
8555281 | Van Dijk et al. | Oct 2013 | B1 |
8560699 | Theimer et al. | Oct 2013 | B1 |
8566835 | Wang et al. | Oct 2013 | B2 |
8601323 | Tsantilis | Dec 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8615589 | Adogla et al. | Dec 2013 | B1 |
8631130 | Jackson | Jan 2014 | B2 |
8667471 | Wintergerst et al. | Mar 2014 | B2 |
8677359 | Gavage et al. | Mar 2014 | B1 |
8694996 | Cawlfield et al. | Apr 2014 | B2 |
8700768 | Benari | Apr 2014 | B2 |
8719415 | Sirota et al. | May 2014 | B1 |
8725702 | Raman et al. | May 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756696 | Miller | Jun 2014 | B1 |
8763091 | Singh et al. | Jun 2014 | B1 |
8769519 | Leitman et al. | Jul 2014 | B2 |
8793676 | Quinn et al. | Jul 2014 | B2 |
8799236 | Azari et al. | Aug 2014 | B1 |
8799879 | Wright et al. | Aug 2014 | B2 |
8806468 | Meijer et al. | Aug 2014 | B2 |
8806644 | McCorkendale et al. | Aug 2014 | B1 |
8819679 | Agarwal et al. | Aug 2014 | B2 |
8825863 | Hansson et al. | Sep 2014 | B2 |
8825964 | Sopka et al. | Sep 2014 | B1 |
8839035 | Dimitrovich et al. | Sep 2014 | B1 |
8850432 | Mcgrath et al. | Sep 2014 | B2 |
8869300 | Singh et al. | Oct 2014 | B2 |
8874952 | Tameshige et al. | Oct 2014 | B2 |
8904008 | Calder et al. | Dec 2014 | B2 |
8966495 | Kulkarni | Feb 2015 | B2 |
8972980 | Banga et al. | Mar 2015 | B2 |
8990807 | Wu et al. | Mar 2015 | B2 |
8997093 | Dimitrov | Mar 2015 | B2 |
9002871 | Bulkowski et al. | Apr 2015 | B2 |
9021501 | Li et al. | Apr 2015 | B2 |
9027087 | Ishaya et al. | May 2015 | B2 |
9038068 | Engle et al. | May 2015 | B2 |
9052935 | Rajaa | Jun 2015 | B1 |
9086897 | Oh et al. | Jul 2015 | B2 |
9086924 | Barsness et al. | Jul 2015 | B2 |
9092837 | Bala et al. | Jul 2015 | B2 |
9098528 | Wang | Aug 2015 | B2 |
9104477 | Kodialam et al. | Aug 2015 | B2 |
9110732 | Forschmiedt et al. | Aug 2015 | B1 |
9110770 | Raju et al. | Aug 2015 | B1 |
9111037 | Nalis et al. | Aug 2015 | B1 |
9112813 | Jackson | Aug 2015 | B2 |
9116733 | Banga et al. | Aug 2015 | B2 |
9141410 | Leafe et al. | Sep 2015 | B2 |
9146764 | Wagner | Sep 2015 | B1 |
9152406 | De et al. | Oct 2015 | B2 |
9164754 | Pohlack | Oct 2015 | B1 |
9183019 | Kruglick | Nov 2015 | B2 |
9195520 | Turk | Nov 2015 | B2 |
9208007 | Harper et al. | Dec 2015 | B2 |
9218190 | Anand et al. | Dec 2015 | B2 |
9223561 | Orveillon et al. | Dec 2015 | B2 |
9223966 | Satish et al. | Dec 2015 | B1 |
9250893 | Blahaerath et al. | Feb 2016 | B2 |
9268586 | Voccio et al. | Feb 2016 | B2 |
9298633 | Zhao et al. | Mar 2016 | B1 |
9317689 | Aissi | Apr 2016 | B2 |
9323556 | Wagner | Apr 2016 | B2 |
9361145 | Wilson et al. | Jun 2016 | B1 |
9405582 | Fuller et al. | Aug 2016 | B2 |
9411645 | Duan et al. | Aug 2016 | B1 |
9413626 | Reque et al. | Aug 2016 | B2 |
9417918 | Chin et al. | Aug 2016 | B2 |
9430290 | Gupta et al. | Aug 2016 | B1 |
9436555 | Dornemann et al. | Sep 2016 | B2 |
9461996 | Hayton et al. | Oct 2016 | B2 |
9471775 | Wagner et al. | Oct 2016 | B1 |
9471776 | Gu et al. | Oct 2016 | B2 |
9483335 | Wagner et al. | Nov 2016 | B1 |
9489227 | Oh et al. | Nov 2016 | B2 |
9497136 | Ramarao et al. | Nov 2016 | B1 |
9501345 | Lietz et al. | Nov 2016 | B1 |
9514037 | Dow et al. | Dec 2016 | B1 |
9537788 | Reque et al. | Jan 2017 | B2 |
9563613 | Dinkel et al. | Feb 2017 | B1 |
9575798 | Terayama et al. | Feb 2017 | B2 |
9588790 | Wagner et al. | Mar 2017 | B1 |
9594590 | Hsu | Mar 2017 | B2 |
9596350 | Dymshyts et al. | Mar 2017 | B1 |
9600312 | Wagner et al. | Mar 2017 | B2 |
9613127 | Rus et al. | Apr 2017 | B1 |
9626204 | Banga et al. | Apr 2017 | B1 |
9628332 | Bruno, Jr. et al. | Apr 2017 | B2 |
9635132 | Lin et al. | Apr 2017 | B1 |
9652306 | Wagner et al. | May 2017 | B1 |
9652617 | Evans et al. | May 2017 | B1 |
9654508 | Barton et al. | May 2017 | B2 |
9661011 | Van Horenbeeck et al. | May 2017 | B1 |
9678773 | Wagner et al. | Jun 2017 | B1 |
9678778 | Youseff | Jun 2017 | B1 |
9703681 | Taylor et al. | Jul 2017 | B2 |
9715402 | Wagner et al. | Jul 2017 | B2 |
9720661 | Gschwind et al. | Aug 2017 | B2 |
9720662 | Gschwind et al. | Aug 2017 | B2 |
9727725 | Wagner et al. | Aug 2017 | B2 |
9733967 | Wagner et al. | Aug 2017 | B2 |
9760387 | Wagner et al. | Sep 2017 | B2 |
9760443 | Tarasuk-Levin et al. | Sep 2017 | B2 |
9767271 | Ghose | Sep 2017 | B2 |
9785476 | Wagner et al. | Oct 2017 | B2 |
9787779 | Frank et al. | Oct 2017 | B2 |
9798831 | Chattopadhyay et al. | Oct 2017 | B2 |
9811363 | Wagner | Nov 2017 | B1 |
9811434 | Wagner | Nov 2017 | B1 |
9817695 | Clark | Nov 2017 | B2 |
9830175 | Wagner | Nov 2017 | B1 |
9830193 | Wagner et al. | Nov 2017 | B1 |
9830449 | Wagner | Nov 2017 | B1 |
9864636 | Patel et al. | Jan 2018 | B1 |
9898393 | Moorthi et al. | Feb 2018 | B2 |
9910713 | Wisniewski et al. | Mar 2018 | B2 |
9921864 | Singaravelu et al. | Mar 2018 | B2 |
9928108 | Wagner et al. | Mar 2018 | B1 |
9929916 | Subramanian et al. | Mar 2018 | B1 |
9930103 | Thompson | Mar 2018 | B2 |
9930133 | Susarla et al. | Mar 2018 | B2 |
9952896 | Wagner et al. | Apr 2018 | B2 |
9977691 | Marriner et al. | May 2018 | B2 |
9979817 | Huang et al. | May 2018 | B2 |
9983982 | Kumar et al. | May 2018 | B1 |
10002026 | Wagner | Jun 2018 | B1 |
10013267 | Wagner et al. | Jul 2018 | B1 |
10042660 | Wagner et al. | Aug 2018 | B2 |
10048974 | Wagner et al. | Aug 2018 | B1 |
10061613 | Brooker et al. | Aug 2018 | B1 |
10067801 | Wagner | Sep 2018 | B1 |
10102040 | Marriner et al. | Oct 2018 | B2 |
10108443 | Wagner et al. | Oct 2018 | B2 |
10139876 | Lu et al. | Nov 2018 | B2 |
10140137 | Wagner | Nov 2018 | B2 |
10146635 | Chai et al. | Dec 2018 | B1 |
10162655 | Tuch et al. | Dec 2018 | B2 |
10162672 | Wagner et al. | Dec 2018 | B2 |
10162688 | Wagner | Dec 2018 | B2 |
10191861 | Steinberg | Jan 2019 | B1 |
10193839 | Tandon et al. | Jan 2019 | B2 |
10198298 | Bishop et al. | Feb 2019 | B2 |
10203990 | Wagner et al. | Feb 2019 | B2 |
10248467 | Wisniewski et al. | Apr 2019 | B2 |
10255090 | Tuch et al. | Apr 2019 | B2 |
10277708 | Wagner et al. | Apr 2019 | B2 |
10303492 | Wagner et al. | May 2019 | B1 |
10331462 | Varda et al. | Jun 2019 | B1 |
10346625 | Anderson et al. | Jul 2019 | B2 |
10353678 | Wagner | Jul 2019 | B1 |
10353746 | Reque et al. | Jul 2019 | B2 |
10360025 | Foskett et al. | Jul 2019 | B2 |
10360067 | Wagner | Jul 2019 | B1 |
10365985 | Wagner | Jul 2019 | B2 |
10387177 | Wagner et al. | Aug 2019 | B2 |
10402231 | Marriner et al. | Sep 2019 | B2 |
10423158 | Hadlich | Sep 2019 | B1 |
10437629 | Wagner et al. | Oct 2019 | B2 |
10445140 | Sagar et al. | Oct 2019 | B1 |
10459822 | Gondi | Oct 2019 | B1 |
10503626 | Idicula et al. | Dec 2019 | B2 |
10528390 | Brooker et al. | Jan 2020 | B2 |
10531226 | Wang et al. | Jan 2020 | B1 |
10552193 | Wagner et al. | Feb 2020 | B2 |
10552442 | Lusk et al. | Feb 2020 | B1 |
10564946 | Wagner et al. | Feb 2020 | B1 |
10572375 | Wagner | Feb 2020 | B1 |
10592269 | Wagner et al. | Mar 2020 | B2 |
10608973 | Kuo et al. | Mar 2020 | B2 |
10615984 | Wang | Apr 2020 | B1 |
10623476 | Thompson | Apr 2020 | B2 |
10637817 | Kuo et al. | Apr 2020 | B2 |
10649749 | Brooker et al. | May 2020 | B1 |
10649792 | Kulchytskyy et al. | May 2020 | B1 |
10650156 | Anderson et al. | May 2020 | B2 |
10686605 | Chhabra et al. | Jun 2020 | B2 |
10691498 | Wagner | Jun 2020 | B2 |
10713080 | Brooker et al. | Jul 2020 | B1 |
10719367 | Kim et al. | Jul 2020 | B1 |
10725752 | Wagner et al. | Jul 2020 | B1 |
10725826 | Sagar et al. | Jul 2020 | B1 |
10733085 | Wagner | Aug 2020 | B1 |
10754701 | Wagner | Aug 2020 | B1 |
10776091 | Wagner et al. | Sep 2020 | B1 |
10776171 | Wagner et al. | Sep 2020 | B2 |
10817331 | Mullen et al. | Oct 2020 | B2 |
10824484 | Wagner et al. | Nov 2020 | B2 |
10831898 | Wagner | Nov 2020 | B1 |
10846117 | Steinberg | Nov 2020 | B1 |
10853112 | Wagner et al. | Dec 2020 | B2 |
10853115 | Mullen et al. | Dec 2020 | B2 |
10884722 | Brooker et al. | Jan 2021 | B2 |
10884787 | Wagner et al. | Jan 2021 | B1 |
10884802 | Wagner et al. | Jan 2021 | B2 |
10884812 | Brooker et al. | Jan 2021 | B2 |
10891145 | Wagner et al. | Jan 2021 | B2 |
10915371 | Wagner et al. | Feb 2021 | B2 |
10942795 | Yanacek et al. | Mar 2021 | B1 |
10949237 | Piwonka et al. | Mar 2021 | B2 |
10956185 | Wagner | Mar 2021 | B2 |
11010188 | Brooker et al. | May 2021 | B1 |
11016815 | Wisniewski et al. | May 2021 | B2 |
11099870 | Brooker et al. | Aug 2021 | B1 |
11099917 | Hussels et al. | Aug 2021 | B2 |
11115404 | Siefker et al. | Sep 2021 | B2 |
11119809 | Brooker et al. | Sep 2021 | B1 |
11119813 | Kasaragod | Sep 2021 | B1 |
11119826 | Yanacek et al. | Sep 2021 | B2 |
11126469 | Reque et al. | Sep 2021 | B2 |
11132213 | Wagner et al. | Sep 2021 | B1 |
11146569 | Brooker et al. | Oct 2021 | B1 |
11159528 | Siefker et al. | Oct 2021 | B2 |
11188391 | Sule | Nov 2021 | B1 |
11190609 | Siefker et al. | Nov 2021 | B2 |
11243819 | Wagner | Feb 2022 | B1 |
11243953 | Wagner et al. | Feb 2022 | B2 |
11263034 | Wagner et al. | Mar 2022 | B2 |
20010044817 | Asano et al. | Nov 2001 | A1 |
20020120685 | Srivastava et al. | Aug 2002 | A1 |
20020172273 | Baker et al. | Nov 2002 | A1 |
20030071842 | King et al. | Apr 2003 | A1 |
20030084434 | Ren | May 2003 | A1 |
20030149801 | Kushnirskiy | Aug 2003 | A1 |
20030191795 | Bernardin et al. | Oct 2003 | A1 |
20030208569 | O'Brien et al. | Nov 2003 | A1 |
20030229794 | James, II et al. | Dec 2003 | A1 |
20040003087 | Chambliss et al. | Jan 2004 | A1 |
20040019886 | Berent et al. | Jan 2004 | A1 |
20040044721 | Song et al. | Mar 2004 | A1 |
20040049768 | Matsuyama et al. | Mar 2004 | A1 |
20040098154 | McCarthy | May 2004 | A1 |
20040158551 | Santosuosso | Aug 2004 | A1 |
20040205493 | Simpson et al. | Oct 2004 | A1 |
20040249947 | Novaes et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050027611 | Wharton | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050132167 | Longobardi | Jun 2005 | A1 |
20050132368 | Sexton et al. | Jun 2005 | A1 |
20050149535 | Frey et al. | Jul 2005 | A1 |
20050193113 | Kokusho et al. | Sep 2005 | A1 |
20050193283 | Reinhardt et al. | Sep 2005 | A1 |
20050237948 | Wan et al. | Oct 2005 | A1 |
20050257051 | Richard | Nov 2005 | A1 |
20050262183 | Colrain et al. | Nov 2005 | A1 |
20050262512 | Schmidt et al. | Nov 2005 | A1 |
20060010440 | Anderson et al. | Jan 2006 | A1 |
20060015740 | Kramer | Jan 2006 | A1 |
20060031448 | Chu et al. | Feb 2006 | A1 |
20060036941 | Neil | Feb 2006 | A1 |
20060080678 | Bailey et al. | Apr 2006 | A1 |
20060123066 | Jacobs et al. | Jun 2006 | A1 |
20060129684 | Datta | Jun 2006 | A1 |
20060155800 | Matsumoto | Jul 2006 | A1 |
20060168174 | Gebhart et al. | Jul 2006 | A1 |
20060184669 | Vaidyanathan et al. | Aug 2006 | A1 |
20060200668 | Hybre et al. | Sep 2006 | A1 |
20060212332 | Jackson | Sep 2006 | A1 |
20060218601 | Michel | Sep 2006 | A1 |
20060242647 | Kimbrel et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248195 | Toumura et al. | Nov 2006 | A1 |
20060259763 | Cooperstein et al. | Nov 2006 | A1 |
20060288120 | Hoshino et al. | Dec 2006 | A1 |
20070033085 | Johnson | Feb 2007 | A1 |
20070050779 | Hayashi | Mar 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070101325 | Bystricky et al. | May 2007 | A1 |
20070112864 | Ben-Natan | May 2007 | A1 |
20070130341 | Ma | Jun 2007 | A1 |
20070174419 | O'Connell et al. | Jul 2007 | A1 |
20070180449 | Croft et al. | Aug 2007 | A1 |
20070180450 | Croft et al. | Aug 2007 | A1 |
20070180493 | Croft et al. | Aug 2007 | A1 |
20070186212 | Mazzaferri et al. | Aug 2007 | A1 |
20070192082 | Gaos et al. | Aug 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070198656 | Mazzaferri et al. | Aug 2007 | A1 |
20070199000 | Shekhel et al. | Aug 2007 | A1 |
20070220009 | Morris et al. | Sep 2007 | A1 |
20070226700 | Gal et al. | Sep 2007 | A1 |
20070240160 | Paterson-Jones | Oct 2007 | A1 |
20070255604 | Seelig | Nov 2007 | A1 |
20080028409 | Cherkasova et al. | Jan 2008 | A1 |
20080052401 | Bugenhagen et al. | Feb 2008 | A1 |
20080052725 | Stoodley et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080104247 | Venkatakrishnan et al. | May 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080115143 | Shimizu et al. | May 2008 | A1 |
20080126110 | Haeberle et al. | May 2008 | A1 |
20080126486 | Heist | May 2008 | A1 |
20080127125 | Anckaert et al. | May 2008 | A1 |
20080147893 | Marripudi et al. | Jun 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080195369 | Duyanovich et al. | Aug 2008 | A1 |
20080201568 | Quinn et al. | Aug 2008 | A1 |
20080201711 | Amir Husain | Aug 2008 | A1 |
20080209423 | Hirai | Aug 2008 | A1 |
20080244547 | Wintergerst et al. | Oct 2008 | A1 |
20080288940 | Adams et al. | Nov 2008 | A1 |
20080307098 | Kelly | Dec 2008 | A1 |
20090006897 | Sarsfield | Jan 2009 | A1 |
20090013153 | Hilton | Jan 2009 | A1 |
20090018892 | Grey et al. | Jan 2009 | A1 |
20090025009 | Brunswig et al. | Jan 2009 | A1 |
20090034537 | Colrain et al. | Feb 2009 | A1 |
20090055810 | Kondur | Feb 2009 | A1 |
20090055829 | Gibson | Feb 2009 | A1 |
20090070355 | Cadarette et al. | Mar 2009 | A1 |
20090077569 | Appleton et al. | Mar 2009 | A1 |
20090125902 | Ghosh et al. | May 2009 | A1 |
20090158275 | Wang et al. | Jun 2009 | A1 |
20090158407 | Nicodemus et al. | Jun 2009 | A1 |
20090177860 | Zhu et al. | Jul 2009 | A1 |
20090183162 | Kindel et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090198769 | Keller et al. | Aug 2009 | A1 |
20090204960 | Ben-yehuda et al. | Aug 2009 | A1 |
20090204964 | Foley et al. | Aug 2009 | A1 |
20090222922 | Sidiroglou et al. | Sep 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090288084 | Astete et al. | Nov 2009 | A1 |
20090300151 | Friedman et al. | Dec 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20090307430 | Bruening et al. | Dec 2009 | A1 |
20100023940 | Iwamatsu et al. | Jan 2010 | A1 |
20100031274 | Sim-Tang | Feb 2010 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100036925 | Haffner | Feb 2010 | A1 |
20100037031 | DeSantis et al. | Feb 2010 | A1 |
20100058342 | Machida | Mar 2010 | A1 |
20100058351 | Yahagi | Mar 2010 | A1 |
20100064299 | Kacin et al. | Mar 2010 | A1 |
20100070678 | Zhang et al. | Mar 2010 | A1 |
20100070725 | Prahlad et al. | Mar 2010 | A1 |
20100083048 | Calinoiu et al. | Apr 2010 | A1 |
20100083248 | Wood et al. | Apr 2010 | A1 |
20100094816 | Groves, Jr. et al. | Apr 2010 | A1 |
20100106926 | Kandasamy et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100115098 | De Baer et al. | May 2010 | A1 |
20100122343 | Ghosh | May 2010 | A1 |
20100131936 | Cheriton | May 2010 | A1 |
20100131959 | Spiers et al. | May 2010 | A1 |
20100186011 | Magenheimer | Jul 2010 | A1 |
20100198972 | Umbehocker | Aug 2010 | A1 |
20100199285 | Medovich | Aug 2010 | A1 |
20100257116 | Mehta et al. | Oct 2010 | A1 |
20100257269 | Clark | Oct 2010 | A1 |
20100269109 | Cartales | Oct 2010 | A1 |
20100299541 | Ishikawa et al. | Nov 2010 | A1 |
20100312871 | Desantis et al. | Dec 2010 | A1 |
20100325727 | Neystadt et al. | Dec 2010 | A1 |
20100329149 | Singh et al. | Dec 2010 | A1 |
20100329643 | Kuang | Dec 2010 | A1 |
20110004687 | Takemura | Jan 2011 | A1 |
20110010690 | Howard et al. | Jan 2011 | A1 |
20110010722 | Matsuyama | Jan 2011 | A1 |
20110023026 | Oza | Jan 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110029984 | Norman et al. | Feb 2011 | A1 |
20110040812 | Phillips | Feb 2011 | A1 |
20110055378 | Ferris et al. | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055683 | Jiang | Mar 2011 | A1 |
20110078679 | Bozek et al. | Mar 2011 | A1 |
20110099204 | Thaler | Apr 2011 | A1 |
20110099551 | Fahrig et al. | Apr 2011 | A1 |
20110131572 | Elyashev et al. | Jun 2011 | A1 |
20110134761 | Smith | Jun 2011 | A1 |
20110141124 | Halls et al. | Jun 2011 | A1 |
20110153541 | Koch et al. | Jun 2011 | A1 |
20110153727 | Li | Jun 2011 | A1 |
20110153838 | Belkine et al. | Jun 2011 | A1 |
20110154353 | Theroux et al. | Jun 2011 | A1 |
20110173637 | Brandwine et al. | Jul 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110184993 | Chawla et al. | Jul 2011 | A1 |
20110225277 | Freimuth et al. | Sep 2011 | A1 |
20110231680 | Padmanabhan et al. | Sep 2011 | A1 |
20110247005 | Benedetti et al. | Oct 2011 | A1 |
20110258603 | Wisnovsky et al. | Oct 2011 | A1 |
20110265067 | Schulte et al. | Oct 2011 | A1 |
20110265069 | Fee et al. | Oct 2011 | A1 |
20110265164 | Lucovsky | Oct 2011 | A1 |
20110271276 | Ashok et al. | Nov 2011 | A1 |
20110276945 | Chasman et al. | Nov 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110296412 | Banga et al. | Dec 2011 | A1 |
20110314465 | Smith et al. | Dec 2011 | A1 |
20110321033 | Kelkar et al. | Dec 2011 | A1 |
20110321051 | Rastogi | Dec 2011 | A1 |
20120011496 | Shimamura | Jan 2012 | A1 |
20120011511 | Horvitz et al. | Jan 2012 | A1 |
20120016721 | Weinman | Jan 2012 | A1 |
20120041970 | Ghosh et al. | Feb 2012 | A1 |
20120054744 | Singh et al. | Mar 2012 | A1 |
20120060207 | Mardikar et al. | Mar 2012 | A1 |
20120072762 | Atchison et al. | Mar 2012 | A1 |
20120072914 | Ota | Mar 2012 | A1 |
20120072920 | Kawamura | Mar 2012 | A1 |
20120079004 | Herman | Mar 2012 | A1 |
20120096271 | Ramarathinam et al. | Apr 2012 | A1 |
20120096468 | Chakravorty et al. | Apr 2012 | A1 |
20120102307 | Wong | Apr 2012 | A1 |
20120102333 | Wong | Apr 2012 | A1 |
20120102481 | Mani et al. | Apr 2012 | A1 |
20120102493 | Allen et al. | Apr 2012 | A1 |
20120110155 | Adlung et al. | May 2012 | A1 |
20120110164 | Frey et al. | May 2012 | A1 |
20120110570 | Jacobson et al. | May 2012 | A1 |
20120110588 | Bieswanger et al. | May 2012 | A1 |
20120131379 | Tameshige et al. | May 2012 | A1 |
20120144290 | Goldman et al. | Jun 2012 | A1 |
20120166624 | Suit et al. | Jun 2012 | A1 |
20120173709 | Li et al. | Jul 2012 | A1 |
20120192184 | Burckart et al. | Jul 2012 | A1 |
20120197795 | Campbell et al. | Aug 2012 | A1 |
20120197958 | Nightingale et al. | Aug 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120198514 | McCune et al. | Aug 2012 | A1 |
20120204164 | Castanos et al. | Aug 2012 | A1 |
20120209947 | Glaser et al. | Aug 2012 | A1 |
20120222038 | Katragadda et al. | Aug 2012 | A1 |
20120233464 | Miller et al. | Sep 2012 | A1 |
20120254193 | Chattopadhyay et al. | Oct 2012 | A1 |
20120324236 | Srivastava et al. | Dec 2012 | A1 |
20120331113 | Jain et al. | Dec 2012 | A1 |
20130014101 | Ballani et al. | Jan 2013 | A1 |
20130042234 | DeLuca et al. | Feb 2013 | A1 |
20130054804 | Jana et al. | Feb 2013 | A1 |
20130054927 | Raj et al. | Feb 2013 | A1 |
20130055262 | Lubsey et al. | Feb 2013 | A1 |
20130061208 | Tsao et al. | Mar 2013 | A1 |
20130061212 | Krause et al. | Mar 2013 | A1 |
20130061220 | Gnanasambandam et al. | Mar 2013 | A1 |
20130067484 | Sonoda et al. | Mar 2013 | A1 |
20130067494 | Srour et al. | Mar 2013 | A1 |
20130080641 | Lui et al. | Mar 2013 | A1 |
20130091387 | Bohnet et al. | Apr 2013 | A1 |
20130097601 | Podvratnik et al. | Apr 2013 | A1 |
20130111032 | Alapati et al. | May 2013 | A1 |
20130111469 | B et al. | May 2013 | A1 |
20130124807 | Nielsen | May 2013 | A1 |
20130132942 | Wang | May 2013 | A1 |
20130132953 | Chuang et al. | May 2013 | A1 |
20130139152 | Chang et al. | May 2013 | A1 |
20130139166 | Zhang et al. | May 2013 | A1 |
20130145354 | Bruening et al. | Jun 2013 | A1 |
20130151587 | Takeshima et al. | Jun 2013 | A1 |
20130151648 | Luna | Jun 2013 | A1 |
20130151684 | Forsman et al. | Jun 2013 | A1 |
20130152047 | Moorthi et al. | Jun 2013 | A1 |
20130167147 | Corrie et al. | Jun 2013 | A1 |
20130179574 | Calder et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130179894 | Calder et al. | Jul 2013 | A1 |
20130179895 | Calder et al. | Jul 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191924 | Tedesco | Jul 2013 | A1 |
20130198319 | Shen | Aug 2013 | A1 |
20130198743 | Kruglick | Aug 2013 | A1 |
20130198748 | Sharp et al. | Aug 2013 | A1 |
20130198763 | Kunze et al. | Aug 2013 | A1 |
20130205092 | Roy et al. | Aug 2013 | A1 |
20130219390 | Lee et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227534 | Ike et al. | Aug 2013 | A1 |
20130227563 | McGrath | Aug 2013 | A1 |
20130227641 | White et al. | Aug 2013 | A1 |
20130227710 | Barak et al. | Aug 2013 | A1 |
20130232190 | Miller et al. | Sep 2013 | A1 |
20130232480 | Winterfeldt et al. | Sep 2013 | A1 |
20130239125 | Iorio | Sep 2013 | A1 |
20130246944 | Pandiyan et al. | Sep 2013 | A1 |
20130262556 | Xu et al. | Oct 2013 | A1 |
20130263117 | Konik et al. | Oct 2013 | A1 |
20130274006 | Hudlow et al. | Oct 2013 | A1 |
20130275376 | Hudlow et al. | Oct 2013 | A1 |
20130275958 | Ivanov et al. | Oct 2013 | A1 |
20130275969 | Dimitrov | Oct 2013 | A1 |
20130275975 | Masuda et al. | Oct 2013 | A1 |
20130283141 | Stevenson et al. | Oct 2013 | A1 |
20130283176 | Hoole et al. | Oct 2013 | A1 |
20130290538 | Gmach et al. | Oct 2013 | A1 |
20130291087 | Kailash et al. | Oct 2013 | A1 |
20130297964 | Hegdal et al. | Nov 2013 | A1 |
20130298183 | McGrath et al. | Nov 2013 | A1 |
20130311650 | Brandwine et al. | Nov 2013 | A1 |
20130326506 | McGrath et al. | Dec 2013 | A1 |
20130326507 | McGrath et al. | Dec 2013 | A1 |
20130339950 | Ramarathinam et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20130346946 | Pinnix | Dec 2013 | A1 |
20130346952 | Huang et al. | Dec 2013 | A1 |
20130346964 | Nobuoka et al. | Dec 2013 | A1 |
20130346987 | Raney et al. | Dec 2013 | A1 |
20130346994 | Chen et al. | Dec 2013 | A1 |
20130347095 | Barjatiya et al. | Dec 2013 | A1 |
20140007097 | Chin et al. | Jan 2014 | A1 |
20140019523 | Heymann et al. | Jan 2014 | A1 |
20140019735 | Menon et al. | Jan 2014 | A1 |
20140019965 | Neuse et al. | Jan 2014 | A1 |
20140019966 | Neuse et al. | Jan 2014 | A1 |
20140040343 | Nickolov et al. | Feb 2014 | A1 |
20140040857 | Trinchini et al. | Feb 2014 | A1 |
20140040880 | Brownlow et al. | Feb 2014 | A1 |
20140047437 | Wu et al. | Feb 2014 | A1 |
20140058871 | Marr et al. | Feb 2014 | A1 |
20140059209 | Alnoor | Feb 2014 | A1 |
20140059226 | Messerli et al. | Feb 2014 | A1 |
20140059552 | Cunningham et al. | Feb 2014 | A1 |
20140068568 | Wisnovsky | Mar 2014 | A1 |
20140068608 | Kulkarni | Mar 2014 | A1 |
20140068611 | McGrath et al. | Mar 2014 | A1 |
20140073300 | Leeder et al. | Mar 2014 | A1 |
20140081984 | Sitsky et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082201 | Shankari et al. | Mar 2014 | A1 |
20140101643 | Inoue | Apr 2014 | A1 |
20140101649 | Kamble et al. | Apr 2014 | A1 |
20140108722 | Lipchuk et al. | Apr 2014 | A1 |
20140109087 | Jujare et al. | Apr 2014 | A1 |
20140109088 | Dournov et al. | Apr 2014 | A1 |
20140129667 | Ozawa | May 2014 | A1 |
20140130040 | Lemanski | May 2014 | A1 |
20140137110 | Engle et al. | May 2014 | A1 |
20140173614 | Konik et al. | Jun 2014 | A1 |
20140173616 | Bird et al. | Jun 2014 | A1 |
20140180862 | Certain et al. | Jun 2014 | A1 |
20140189677 | Curzi et al. | Jul 2014 | A1 |
20140189704 | Narvaez et al. | Jul 2014 | A1 |
20140201735 | Kannan et al. | Jul 2014 | A1 |
20140207912 | Thibeault | Jul 2014 | A1 |
20140214752 | Rash et al. | Jul 2014 | A1 |
20140215073 | Dow et al. | Jul 2014 | A1 |
20140229221 | Shih et al. | Aug 2014 | A1 |
20140229942 | Wiseman et al. | Aug 2014 | A1 |
20140245297 | Hackett | Aug 2014 | A1 |
20140279581 | Devereaux | Sep 2014 | A1 |
20140280325 | Krishnamurthy et al. | Sep 2014 | A1 |
20140282418 | Wood et al. | Sep 2014 | A1 |
20140282559 | Verduzco et al. | Sep 2014 | A1 |
20140282615 | Gavage et al. | Sep 2014 | A1 |
20140282629 | Gupta et al. | Sep 2014 | A1 |
20140283045 | Brandwine et al. | Sep 2014 | A1 |
20140289286 | Gusak | Sep 2014 | A1 |
20140298295 | Overbeck | Oct 2014 | A1 |
20140304246 | Helmich et al. | Oct 2014 | A1 |
20140304698 | Chigurapati et al. | Oct 2014 | A1 |
20140304815 | Maeda | Oct 2014 | A1 |
20140317617 | O'Donnell | Oct 2014 | A1 |
20140337953 | Banatwala et al. | Nov 2014 | A1 |
20140344457 | Bruno, Jr. et al. | Nov 2014 | A1 |
20140344736 | Ryman et al. | Nov 2014 | A1 |
20140359093 | Raju et al. | Dec 2014 | A1 |
20140365781 | Dmitrienko et al. | Dec 2014 | A1 |
20140372489 | Jaiswal et al. | Dec 2014 | A1 |
20140372533 | Fu et al. | Dec 2014 | A1 |
20140380085 | Rash et al. | Dec 2014 | A1 |
20150033241 | Jackson et al. | Jan 2015 | A1 |
20150039891 | Ignatchenko et al. | Feb 2015 | A1 |
20150040229 | Chan et al. | Feb 2015 | A1 |
20150046926 | Kenchammana-Hosekote et al. | Feb 2015 | A1 |
20150046971 | Huh et al. | Feb 2015 | A1 |
20150052258 | Johnson et al. | Feb 2015 | A1 |
20150058914 | Yadav | Feb 2015 | A1 |
20150067019 | Balko | Mar 2015 | A1 |
20150067830 | Johansson et al. | Mar 2015 | A1 |
20150074659 | Madsen et al. | Mar 2015 | A1 |
20150074661 | Kothari et al. | Mar 2015 | A1 |
20150074662 | Saladi et al. | Mar 2015 | A1 |
20150081885 | Thomas et al. | Mar 2015 | A1 |
20150095822 | Feis et al. | Apr 2015 | A1 |
20150106805 | Melander | Apr 2015 | A1 |
20150120928 | Gummaraju et al. | Apr 2015 | A1 |
20150121391 | Wang | Apr 2015 | A1 |
20150134626 | Theimer et al. | May 2015 | A1 |
20150135287 | Medeiros et al. | May 2015 | A1 |
20150142747 | Zou | May 2015 | A1 |
20150142952 | Bragstad et al. | May 2015 | A1 |
20150143374 | Banga et al. | May 2015 | A1 |
20150143381 | Chin et al. | May 2015 | A1 |
20150146716 | Olivier et al. | May 2015 | A1 |
20150154046 | Farkas et al. | Jun 2015 | A1 |
20150161384 | Gu et al. | Jun 2015 | A1 |
20150163231 | Sobko et al. | Jun 2015 | A1 |
20150178019 | Hegdal et al. | Jun 2015 | A1 |
20150178110 | Li et al. | Jun 2015 | A1 |
20150186129 | Apte et al. | Jul 2015 | A1 |
20150188775 | Van Der Walt et al. | Jul 2015 | A1 |
20150199218 | Wilson et al. | Jul 2015 | A1 |
20150205596 | Hiltegen et al. | Jul 2015 | A1 |
20150227598 | Hahn et al. | Aug 2015 | A1 |
20150229645 | Keith et al. | Aug 2015 | A1 |
20150235144 | Gusev et al. | Aug 2015 | A1 |
20150242225 | Muller et al. | Aug 2015 | A1 |
20150254248 | Burns et al. | Sep 2015 | A1 |
20150256621 | Noda et al. | Sep 2015 | A1 |
20150261578 | Greden et al. | Sep 2015 | A1 |
20150264014 | Budhani et al. | Sep 2015 | A1 |
20150269494 | Kardes et al. | Sep 2015 | A1 |
20150271280 | Zhang et al. | Sep 2015 | A1 |
20150289220 | Kim et al. | Oct 2015 | A1 |
20150309923 | Iwata et al. | Oct 2015 | A1 |
20150319160 | Ferguson et al. | Nov 2015 | A1 |
20150324174 | Bromley et al. | Nov 2015 | A1 |
20150324182 | Barros et al. | Nov 2015 | A1 |
20150324229 | Valine | Nov 2015 | A1 |
20150332048 | Mooring et al. | Nov 2015 | A1 |
20150332195 | Jue | Nov 2015 | A1 |
20150334173 | Coulmeau et al. | Nov 2015 | A1 |
20150350701 | Lemus et al. | Dec 2015 | A1 |
20150356294 | Tan et al. | Dec 2015 | A1 |
20150363181 | Alberti et al. | Dec 2015 | A1 |
20150363304 | Nagamalla et al. | Dec 2015 | A1 |
20150370560 | Tan et al. | Dec 2015 | A1 |
20150370591 | Tuch et al. | Dec 2015 | A1 |
20150370592 | Tuch et al. | Dec 2015 | A1 |
20150371244 | Neuse et al. | Dec 2015 | A1 |
20150378762 | Saladi et al. | Dec 2015 | A1 |
20150378764 | Sivasubramanian et al. | Dec 2015 | A1 |
20150378765 | Singh et al. | Dec 2015 | A1 |
20150379167 | Griffith et al. | Dec 2015 | A1 |
20160011901 | Hurwitz et al. | Jan 2016 | A1 |
20160012099 | Tuatini et al. | Jan 2016 | A1 |
20160019081 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019082 | Chandrasekaran et al. | Jan 2016 | A1 |
20160019536 | Ortiz et al. | Jan 2016 | A1 |
20160021112 | Katieb | Jan 2016 | A1 |
20160026486 | Abdallah | Jan 2016 | A1 |
20160048606 | Rubinstein et al. | Feb 2016 | A1 |
20160070714 | D'Sa et al. | Mar 2016 | A1 |
20160072727 | Leafe et al. | Mar 2016 | A1 |
20160077901 | Roth et al. | Mar 2016 | A1 |
20160092320 | Baca | Mar 2016 | A1 |
20160092493 | Ko et al. | Mar 2016 | A1 |
20160098285 | Davis et al. | Apr 2016 | A1 |
20160100036 | Lo et al. | Apr 2016 | A1 |
20160103739 | Huang et al. | Apr 2016 | A1 |
20160110188 | Verde et al. | Apr 2016 | A1 |
20160117163 | Fukui et al. | Apr 2016 | A1 |
20160117254 | Susarla et al. | Apr 2016 | A1 |
20160119289 | Jain et al. | Apr 2016 | A1 |
20160124665 | Jain et al. | May 2016 | A1 |
20160124978 | Nithrakashyap et al. | May 2016 | A1 |
20160140180 | Park et al. | May 2016 | A1 |
20160150053 | Janczuk et al. | May 2016 | A1 |
20160188367 | Zeng | Jun 2016 | A1 |
20160191420 | Nagarajan et al. | Jun 2016 | A1 |
20160203219 | Hoch et al. | Jul 2016 | A1 |
20160212007 | Alatorre et al. | Jul 2016 | A1 |
20160226955 | Moorthi et al. | Aug 2016 | A1 |
20160282930 | Ramachandran et al. | Sep 2016 | A1 |
20160285906 | Fine et al. | Sep 2016 | A1 |
20160292016 | Bussard et al. | Oct 2016 | A1 |
20160294614 | Searle et al. | Oct 2016 | A1 |
20160306613 | Busi et al. | Oct 2016 | A1 |
20160315910 | Kaufman | Oct 2016 | A1 |
20160350099 | Suparna et al. | Dec 2016 | A1 |
20160357536 | Firlik et al. | Dec 2016 | A1 |
20160364265 | Cao et al. | Dec 2016 | A1 |
20160364316 | Bhat et al. | Dec 2016 | A1 |
20160371127 | Antony et al. | Dec 2016 | A1 |
20160371156 | Merriman | Dec 2016 | A1 |
20160378449 | Khazanchi et al. | Dec 2016 | A1 |
20160378547 | Brouwer et al. | Dec 2016 | A1 |
20160378554 | Gummaraju et al. | Dec 2016 | A1 |
20170004169 | Merrill et al. | Jan 2017 | A1 |
20170041144 | Krapf et al. | Feb 2017 | A1 |
20170041309 | Ekambaram et al. | Feb 2017 | A1 |
20170060615 | Thakkar et al. | Mar 2017 | A1 |
20170060621 | Whipple et al. | Mar 2017 | A1 |
20170068574 | Cherkasova et al. | Mar 2017 | A1 |
20170075749 | Ambichl et al. | Mar 2017 | A1 |
20170083381 | Cong et al. | Mar 2017 | A1 |
20170085447 | Chen et al. | Mar 2017 | A1 |
20170085502 | Biruduraju | Mar 2017 | A1 |
20170085591 | Ganda et al. | Mar 2017 | A1 |
20170093684 | Jayaraman et al. | Mar 2017 | A1 |
20170093920 | Ducatel et al. | Mar 2017 | A1 |
20170134519 | Chen et al. | May 2017 | A1 |
20170147656 | Choudhary et al. | May 2017 | A1 |
20170149740 | Mansour et al. | May 2017 | A1 |
20170161059 | Wood et al. | Jun 2017 | A1 |
20170177854 | Gligor et al. | Jun 2017 | A1 |
20170188213 | Nirantar et al. | Jun 2017 | A1 |
20170221000 | Anand | Aug 2017 | A1 |
20170230262 | Sreeramoju et al. | Aug 2017 | A1 |
20170230499 | Mumick et al. | Aug 2017 | A1 |
20170249130 | Smiljamic et al. | Aug 2017 | A1 |
20170264681 | Apte et al. | Sep 2017 | A1 |
20170272462 | Kraemer et al. | Sep 2017 | A1 |
20170286143 | Wagner et al. | Oct 2017 | A1 |
20170286187 | Chen et al. | Oct 2017 | A1 |
20170308520 | Beahan, Jr. et al. | Oct 2017 | A1 |
20170315163 | Wang et al. | Nov 2017 | A1 |
20170329578 | Iscen | Nov 2017 | A1 |
20170346808 | Anzai et al. | Nov 2017 | A1 |
20170353851 | Gonzalez et al. | Dec 2017 | A1 |
20170364345 | Fontoura et al. | Dec 2017 | A1 |
20170371720 | Basu et al. | Dec 2017 | A1 |
20170371724 | Wagner et al. | Dec 2017 | A1 |
20170372142 | Bilobrov | Dec 2017 | A1 |
20180004555 | Ramanathan et al. | Jan 2018 | A1 |
20180004556 | Marriner et al. | Jan 2018 | A1 |
20180004575 | Marriner et al. | Jan 2018 | A1 |
20180046453 | Nair et al. | Feb 2018 | A1 |
20180046482 | Karve et al. | Feb 2018 | A1 |
20180060132 | Maru et al. | Mar 2018 | A1 |
20180060221 | Yim et al. | Mar 2018 | A1 |
20180060318 | Yang et al. | Mar 2018 | A1 |
20180067841 | Mahimkar | Mar 2018 | A1 |
20180067873 | Pikhur et al. | Mar 2018 | A1 |
20180069702 | Ayyadevara et al. | Mar 2018 | A1 |
20180081717 | Li | Mar 2018 | A1 |
20180089232 | Spektor et al. | Mar 2018 | A1 |
20180095738 | Dürkop et al. | Apr 2018 | A1 |
20180121245 | Wagner et al. | May 2018 | A1 |
20180121665 | Anderson et al. | May 2018 | A1 |
20180129684 | Wilson et al. | May 2018 | A1 |
20180143865 | Wagner et al. | May 2018 | A1 |
20180150339 | Pan et al. | May 2018 | A1 |
20180152401 | Tandon et al. | May 2018 | A1 |
20180152405 | Kuo et al. | May 2018 | A1 |
20180152406 | Kuo et al. | May 2018 | A1 |
20180192101 | Bilobrov | Jul 2018 | A1 |
20180225096 | Mishra et al. | Aug 2018 | A1 |
20180239636 | Arora et al. | Aug 2018 | A1 |
20180253333 | Gupta | Sep 2018 | A1 |
20180268130 | Ghosh et al. | Sep 2018 | A1 |
20180275987 | Vandeputte | Sep 2018 | A1 |
20180285101 | Yahav et al. | Oct 2018 | A1 |
20180300111 | Bhat et al. | Oct 2018 | A1 |
20180314845 | Anderson et al. | Nov 2018 | A1 |
20180316552 | Subramani Nadar et al. | Nov 2018 | A1 |
20180341504 | Kissell | Nov 2018 | A1 |
20180365422 | Callaghan et al. | Dec 2018 | A1 |
20180375781 | Chen et al. | Dec 2018 | A1 |
20190004866 | Du et al. | Jan 2019 | A1 |
20190028552 | Johnson, II et al. | Jan 2019 | A1 |
20190043231 | Uzgin et al. | Feb 2019 | A1 |
20190072529 | Andrawes et al. | Mar 2019 | A1 |
20190073430 | Webster | Mar 2019 | A1 |
20190079751 | Foskett et al. | Mar 2019 | A1 |
20190108058 | Wagner et al. | Apr 2019 | A1 |
20190140831 | De Lima Junior et al. | May 2019 | A1 |
20190141015 | Nellen | May 2019 | A1 |
20190147085 | Pal et al. | May 2019 | A1 |
20190155629 | Wagner et al. | May 2019 | A1 |
20190171423 | Mishra et al. | Jun 2019 | A1 |
20190171470 | Wagner | Jun 2019 | A1 |
20190179678 | Banerjee et al. | Jun 2019 | A1 |
20190179725 | Mital et al. | Jun 2019 | A1 |
20190180036 | Shukla | Jun 2019 | A1 |
20190188288 | Holm et al. | Jun 2019 | A1 |
20190196884 | Wagner | Jun 2019 | A1 |
20190227849 | Wisniewski et al. | Jul 2019 | A1 |
20190235848 | Swiecki et al. | Aug 2019 | A1 |
20190238590 | Talukdar et al. | Aug 2019 | A1 |
20190250937 | Thomas et al. | Aug 2019 | A1 |
20190268152 | Sandoval et al. | Aug 2019 | A1 |
20190286475 | Mani | Sep 2019 | A1 |
20190286492 | Gulsvig Wood et al. | Sep 2019 | A1 |
20190303117 | Kocberber et al. | Oct 2019 | A1 |
20190311115 | Lavi et al. | Oct 2019 | A1 |
20190318312 | Foskett et al. | Oct 2019 | A1 |
20190324813 | Bogineni et al. | Oct 2019 | A1 |
20190361802 | Li et al. | Nov 2019 | A1 |
20190363885 | Schiavoni et al. | Nov 2019 | A1 |
20190384647 | Reque et al. | Dec 2019 | A1 |
20190391834 | Mullen et al. | Dec 2019 | A1 |
20190391841 | Mullen et al. | Dec 2019 | A1 |
20200007456 | Greenstein et al. | Jan 2020 | A1 |
20200026527 | Xu et al. | Jan 2020 | A1 |
20200028936 | Gupta et al. | Jan 2020 | A1 |
20200057680 | Marriner et al. | Feb 2020 | A1 |
20200065079 | Kocberber et al. | Feb 2020 | A1 |
20200073770 | Mortimore, Jr. et al. | Mar 2020 | A1 |
20200073987 | Perumala et al. | Mar 2020 | A1 |
20200081745 | Cybulski et al. | Mar 2020 | A1 |
20200104198 | Hussels et al. | Apr 2020 | A1 |
20200104378 | Wagner et al. | Apr 2020 | A1 |
20200110691 | Bryant et al. | Apr 2020 | A1 |
20200120120 | Cybulski | Apr 2020 | A1 |
20200136933 | Raskar | Apr 2020 | A1 |
20200153897 | Mestery et al. | May 2020 | A1 |
20200167208 | Floes et al. | May 2020 | A1 |
20200192646 | Yerramreddy et al. | Jun 2020 | A1 |
20200192707 | Brooker et al. | Jun 2020 | A1 |
20200213151 | Srivatsan et al. | Jul 2020 | A1 |
20200327236 | Pratt et al. | Oct 2020 | A1 |
20200366587 | White et al. | Nov 2020 | A1 |
20200412707 | Siefker et al. | Dec 2020 | A1 |
20200412720 | Siefker et al. | Dec 2020 | A1 |
20200412825 | Siefker et al. | Dec 2020 | A1 |
20210081233 | Mullen et al. | Mar 2021 | A1 |
20210117534 | Maximov et al. | Apr 2021 | A1 |
20210157645 | Yanacek et al. | May 2021 | A1 |
20210232415 | Wagner et al. | Jul 2021 | A1 |
20210389963 | Wagner | Dec 2021 | A1 |
20220004423 | Brooker et al. | Jan 2022 | A1 |
20220012083 | Brooker et al. | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2975522 | Aug 2016 | CA |
1341238 | Mar 2002 | CN |
101002170 | Jul 2007 | CN |
101267334 | Sep 2008 | CN |
101345757 | Jan 2009 | CN |
101496005 | Jul 2009 | CN |
101627388 | Jan 2010 | CN |
101640700 | Feb 2010 | CN |
102420846 | Apr 2012 | CN |
103098027 | May 2013 | CN |
103384237 | Nov 2013 | CN |
103731427 | Apr 2014 | CN |
104243479 | Dec 2014 | CN |
105122243 | Dec 2015 | CN |
112513813 | Mar 2021 | CN |
2663052 | Nov 2013 | EP |
3201762 | Aug 2017 | EP |
3254434 | Dec 2017 | EP |
3356938 | Aug 2018 | EP |
3201768 | Dec 2019 | EP |
3811209 | Apr 2021 | EP |
3814895 | May 2021 | EP |
3857375 | Aug 2021 | EP |
2002287974 | Oct 2002 | JP |
2006-107599 | Apr 2006 | JP |
2007-080161 | Mar 2007 | JP |
2007-538323 | Dec 2007 | JP |
2010-026562 | Feb 2010 | JP |
2011-065243 | Mar 2011 | JP |
2011-233146 | Nov 2011 | JP |
2011257847 | Dec 2011 | JP |
2013-156996 | Aug 2013 | JP |
2014-525624 | Sep 2014 | JP |
2017-534107 | Nov 2017 | JP |
2017-534967 | Nov 2017 | JP |
2018-503896 | Feb 2018 | JP |
2018-512087 | May 2018 | JP |
2018-536213 | Dec 2018 | JP |
10-357850 | Oct 2002 | KR |
WO 2008114454 | Sep 2008 | WO |
WO 2009137567 | Nov 2009 | WO |
WO 2012039834 | Mar 2012 | WO |
WO 2012050772 | Apr 2012 | WO |
WO 2013106257 | Jul 2013 | WO |
WO 2015078394 | Jun 2015 | WO |
WO 2015108539 | Jul 2015 | WO |
WO 2015149017 | Oct 2015 | WO |
WO 2016053950 | Apr 2016 | WO |
WO 2016053968 | Apr 2016 | WO |
WO 2016053973 | Apr 2016 | WO |
WO 2016090292 | Jun 2016 | WO |
WO 2016126731 | Aug 2016 | WO |
WO 2016164633 | Oct 2016 | WO |
WO 2016164638 | Oct 2016 | WO |
WO 2017059248 | Apr 2017 | WO |
WO 2017112526 | Jun 2017 | WO |
WO 2017172440 | Oct 2017 | WO |
WO 2018005829 | Jan 2018 | WO |
WO 2018098443 | May 2018 | WO |
WO 2018098445 | May 2018 | WO |
WO 2020005764 | Jan 2020 | WO |
WO 2020006081 | Jan 2020 | WO |
WO 2020069104 | Apr 2020 | WO |
WO 2020123439 | Jun 2020 | WO |
WO 2020264431 | Dec 2020 | WO |
WO 2021108435 | Jun 2021 | WO |
Entry |
---|
Tim Dornemann; On-Demand Resource Provisioning for BPEL Workflows Using Amazon's Elastic Compute Cloud; 2009; (Year: 2009). |
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/[retrieved on Feb. 28, 2017]. |
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages. |
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages. |
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages. |
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages. |
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages. |
CodeChef Admin discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019. |
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019. |
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012. |
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages. |
Deis, Container, 2014, 1 page. |
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37. |
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages. |
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013. |
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages. |
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages. |
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012. |
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014. |
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015. |
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages. |
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation. |
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages. |
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages. |
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages. |
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages. |
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89. |
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578. |
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321. |
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31. |
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages. |
Stack Overflow, Creating a database connection pool, 2009, 4 pages. |
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages. |
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47. |
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010. |
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41 (1):45-52, Jan. 2011. |
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp-&arnumber±7097814, 8 pages. |
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en.wikipedia.org/wiki/Application_programming_interface. |
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019. |
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015. |
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019. |
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages. |
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7. |
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012. |
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38. |
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018. |
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015. |
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018. |
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020. |
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016. |
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017. |
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018. |
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016. |
International Preliminary Reporton Patentability in PCT/US2015/064071 dated Jun. 6, 2017. |
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016. |
International Preliminary Reporton Patentability in PCT/US2016/016211 dated Aug. 17, 2017. |
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016. |
International Preliminary Reporton Patentability in PCT/US2016/026514 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016. |
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017. |
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016. |
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018. |
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017. |
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018. |
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017. |
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018. |
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017. |
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019. |
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017. |
International Preliminary Reporton Patentability in PCT/US2017/039514 dated Jan. 1, 2019. |
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019. |
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020. |
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages. |
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >. |
Dean et al., “MapReduce: Simplified Data Processing on Large Clusters”, ACM, 2008, pp. 107-113. |
Ekanayake et al., “Twister: A Runtime for Iterative MapReduce”, ACM, 2010, pp. 810-818. |
Fan et al., Online Optimization of VM Deployment in IaaS Cloud, 2012, 6 pages. |
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu (Year: 2009). |
Hammoud et al., “Locality-Aware Reduce Task Scheduling for MapReduce”, IEEE, 2011, pp. 570-576. |
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, 2012. (Year: 2012). |
Kim et al., “MRBench: A Benchmark for Map-Reduce Framework”, IEEE, 2008, pp. 11-18. |
Lagar-Cavilla, H. Andres, et al. “Snowflock: Virtual machine cloning as a first-class cloud primitive.” ACM Transactions on Computer Systems (TOCS) 29.1 (2011): 1-45. (Year: 2011). |
Lin, “MR-Apriori: Association Rules Algorithm Based on MapReduce”, IEEE, 2014, pp. 141-144. |
Search Query Report from IP.com, performed Dec. 2, 2020. |
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011). |
Yang, The Application of MapReduce in the Cloud Computing:, IEEE, 2011, pp. 154-156. |
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338. |
Office Action in Chinese Application No. 201580053106.0, dated Jul. 1, 2020, (English Translation Not Yet Received). |
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020. |
Office Action in European Application No. 19199402.9 dated Mar. 23, 2021. |
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018. |
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018. |
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020. |
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021. |
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018. |
Office Action in Indian Application No. 201717019903 dated May 18, 2020. |
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018. |
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018. |
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018. |
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020. |
Office Action in Indian Application No. 201717027369 dated May 21, 2020. |
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020. |
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020. |
Office Action in European Application No. 201817013748 dated Nov. 20, 2020. |
Office Action in European Application No. 16823419.3 dated Mar. 12, 2021. |
Office Action in European Application No. 17776325.7 dated Apr. 12, 2021. |
Office Action in European Application No. 17740533.9 dated May 4, 2021. |
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020. |
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages. |
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages. |
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019. |
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020. |
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021. |
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020. |
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020. |
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020. |
International Search Report for Application No. PCT/US2020/062060 dated Mar. 5, 2021. |
Amazon, “AWS Lambda: Developer Guide”, Jun. 26, 2016 Retrieved from the Internet, URL:http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf, [retrieved on Aug. 30, 2017], 314 pages. |
Ryden et al., “Nebula: Distributed Edge Cloud for Data-Intensive Computing”, IEEE, 2014, pp. 491-492. |
Search Query Report from IP.com, performed May 27, 2021. |
Office Action in Chinese Application No. 202110268031.5, dated Sep. 3, 2021. |
Office Action in Canadian Application No. 2,962,633 dated Jun. 18, 2021. |
Office Action in European Application No. 19199402.9 dated Dec. 3, 2021 in 4 pages. |
Office Action in Canadian Application No. 2,962,631 dated May 31, 2021. |
Office Action in Chinese Application No. 201680020768.2 dated May 14, 2021 in 23 pages. |
Office Action in Chinese Application No. 201680020768.2 dated Sep. 24, 2021 in 20 pages. |
Office Action in Chinese Application No. 2016800562398 dated Jun. 18, 2021. |
Office Action in Chinese Application No. 201680072794X dated Jun. 22, 2021. |
Office Action in Chinese Application No. 201780022789.2 dated Apr. 28, 2021. |
Office Action in Chinese Application No. 2017800451968 dated May 26, 2021. |
Office Action in Chinese Application No. 2017800451968 dated Dec. 3, 2021 in 20 pages. |
Office Action in Japanese Application No. 2020-572441 dated Dec. 22, 2021 in 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2019/065365 dated Jun. 8, 2021. |
International Preliminary Report on Patentability for Application No. PCT/US2020/039996 dated Jan. 6, 2022. |
Number | Date | Country | |
---|---|---|---|
20200341799 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15676777 | Aug 2017 | US |
Child | 16778437 | US | |
Parent | 14613735 | Feb 2015 | US |
Child | 15676777 | US |