This application is based on and claims Convention priority to Japanese patent application No. 2018-025911, filed Feb. 16, 2018, the entire disclosure of which is herein incorporated by reference as a part of this application.
The present invention relates to a security sensor device having detector for detecting detection rays.
Hitherto, a security sensor device including an active type infrared security sensor (AIR (Active Infra-Red) sensor) which has one or more pairs of a projector and a receiver for detection rays that are electromagnetic waves such as infrared rays and which detects an object by using infrared rays that have been projected and subsequently reflected on the object, or a passive type infrared security sensor (PIR (Passive Infra-Red) sensor) which detects far-infrared rays emitted from a creature or a human body that is a detection object, has been known.
The following two conventional arts (1) and (2) have been known as a security sensor device including a PIR sensor.
(1) A passive type infrared ray detection device including: two sensor units each having a vertically two-stage configuration and having a far-infrared ray detection element with a field of view (FOV) of about 90 degrees in the horizontal direction; and a semi-cylindrical Fresnel lens including a plurality of lens pieces. The respective sensor units are configured to be individually rotatable by 90 degrees in the right-left direction and a control unit for receiving two signals from the sensor units are further provided. In the passive type infrared ray detection device, the control unit has a detection mode switching function to switch between: an AND operation in which a detection signal is outputted when both input signals are received; and an OR operation in which a detection signal is outputted when any one of the input signals is received. Each sensor unit has a vertically two-stage configuration, one of the sensor units has a function to adjust a watch distance and further includes a light-shielding sheet for limiting an infrared ray energy concentration region (area), and the light-shielding sheet is attachable in and detachable from a space behind the Fresnel lens in the device (JP Laid-open Patent Publication No. 2005-201754).
(2) A far-infrared ray human body detection device including one semi-circular cylindrical Fresnel lens and two far-infrared ray detection elements (FOV: 90 degrees) housed in different packages in order to expand the detection region of one device, for example, in order to set a range of 180 degrees as a detection region. In the far-infrared ray human body detection device, the Fresnel lens is configured to concentrate far-infrared ray energy therethrough onto the two far-infrared ray detection elements, and is specifically formed of a plurality of divisional lens pieces in order to concentrate far-infrared ray energy from a plurality of optical axis directions onto the two far-infrared ray detection elements. The two far-infrared ray detection elements are arranged (fixed) so as to be tilted by 90 degrees relative to each other, so that far-infrared ray energy from directions of 180 degrees in total is concentrated onto the far-infrared ray detection elements (JP Laid-open Utility Model Publication No. H6-81091).
In the conventional art (1) described in JP Laid-open Patent Publication No. 2005-201754, a detection direction can be easily set owing to the rotation structure of each sensor unit, but there is a possibility of damage to a joint of a board and an electric wire from the sensor unit, and there is also a possibility that the rotation structure causes a complicated structure, resulting in an increase in number of components and an increase in cost. In addition, in the conventional art (1), the lens pieces are arranged so as to be distributed equally in the horizontal direction in order to maintain the sensitivity in an area (detection sensitivity), obtained by lens pieces of the Fresnel lens that are located in a direction straight facing each far-infrared ray detection element (near the center of the FOV) at each time, at the same level regardless of the direction of rotation of the sensor unit. In this case, as characteristics of the infrared ray detection elements, the sensitivity at each end of the FOV is decreased as compared to that near the center of the FOV. Thus, when the case of a product is assumed, the sensitivity in each of areas located horizontally cannot be adjusted to be uniform. For example, the widths in the horizontal direction of the lens pieces located at the ends of the FOV cannot be made larger than those of the lens pieces located at the center of FOV. In the conventional art (2) described in JP Laid-open Utility Model Publication No. H6-81091, since the two infrared ray detection elements are fixed, no wire damage or no structure complication occurs, and thus it is possible to arrange lens pieces that make the sensitivity uniform in the horizontal direction.
In the conventional art (2) described in JP Laid-open Utility Model Publication No. H6-81091, in the case of limiting the detection direction as a countermeasure against an erroneous operation, in the case of desiring not to perform detection in a certain range of the detection range, or in the case of desiring not to perform detection in local areas, masking has to be performed using a light-shielding sheet, which is the same as in the case of JP Laid-open Patent Publication No. 2005-201754. In addition, work of attaching such a light-shielding sheet takes time and effort, and the light-shielding sheet is also attached at the Fresnel lens side and thus can be viewed through the Fresnel lens from the external side of the Fresnel lens, so that the masking region is recognized by a stranger or the appearance is impaired in terms of design. Moreover, since the light-shielding sheet is attached at the Fresnel lens side, the attaching work is work of attaching the light-shielding sheet while viewing the Fresnel lens from the inner side. Thus, when the front of the infrared ray human body detection device is viewed from the external side, there is a possibility that the position in the right-left direction at which the light-shielding sheet is attached is mistakenly opposite to the position in the right-left direction where masking is actually performed, and thus the attaching work may take further time and effort.
Therefore, an object of the present invention is to provide a security sensor device that makes masking work of attaching a light-shielding sheet at a Fresnel lens side, etc., unnecessary and can flexibly handle setting of a detection direction through simple work, in order to eliminate the above drawbacks of the conventional art.
As a result of conducting various studies, the present inventor has found that the above object is achieved by the following invention.
A security sensor device according to the present invention is a security sensor device including: a base unit having a detection element for detecting detection rays; and a cover unit covering a front face of the base unit, wherein
the cover unit has a plurality of optical members present so as to be aligned about a predetermined axis,
the base unit has the detection element disposed at a light-concentrated position onto which the detection rays from the plurality of optical members are concentrated,
the base unit further has a shielding curved plate housed in the cover unit, and
the shielding curved plate is set so as to be rotatable about the predetermined axis, and is locked at a predetermined position in a rotation direction to block the detection rays coming to the detection element.
Due to this configuration, it is not necessary to perform masking using a light-shielding sheet as in the conventional art, and it is also possible to flexibly handle setting of the detection direction by performing simple work of rotating the shielding curved plate and locking the shielding curved plate at the predetermined position at the base unit side. In the configuration having such shielding curved plate, in the case where the detection element has a fixing structure for not making a rotation motion about the predetermined axis relative to the base unit, the effect of being able to flexibly handle setting of the detection direction can be further exerted, for example, as compared to the conventional art (2).
In the above configuration, two plates rotatable independently of each other are preferably present as the shielding curved plate. Accordingly, for example, by arranging the two shielding curved plates at the left side and the right side, respectively, of the security sensor device, the directions in which detection of the detection rays at the left side and the right side is blocked can be independently set, and also, for example, by decreasing the gap between the two shielding curved plates, the range where detection is performed can be optionally reduced, and the direction of the reduced range can be a specific direction or any selected direction.
In the above configuration, the security sensor device may further include a long-length light-shielding member provided so as to be aligned about the predetermined axis and parallel to the predetermined axis and blocking the detection rays coming to the detection element. By using the light-shielding member, the detection direction in which the detection rays are blocked can be locally set in addition to the shielding curved plate. Moreover, since the light-shielding member is attached at the base unit side at which the detection element is present and not at the cover unit side at which the plurality of optical members are present, attaching work that takes time and effort as with work performed when attaching a light-shielding sheet for masking while viewing the plurality of optical members from the inner side as in the conventional art, is not required.
In the above configuration, preferably, the security sensor device has two or more far-infrared ray detection elements each having a field of view of about 90 degrees, and the two or more far-infrared ray detection elements are arranged such that a total field of view thereof is about 180 degrees. Due to the configuration of the infrared ray detection element using the two far-infrared ray detection elements each having a field of view of 90 degrees such that the field of view is 180 degrees, avoidance of the above-described wire damage or structure complication due to rotation (structure), etc., becomes possible as compared to a configuration in which adjustment is performed such that the total field of view is 180 degrees by rotating infrared ray detection elements each having a field of view of 90 degrees. In addition, a security sensor device in which the far-infrared ray detection elements are used as PIR sensors can be provided.
In the above configuration, the shielding curved plate may be transparent in a view in an incoming direction of the detection rays. If the shielding curved plate is not transparent, there is a possibility that the shielding curved plate is viewed from the outside of the security sensor device through the plurality of optical members and thus the shielding region is recognized. In this configuration, since the shielding curved plate is transparent, such a possibility can be reduced.
In the above configuration, the light-shielding member may be transparent in a view in an incoming direction of the detection rays. If the light-shielding member is not transparent, there is a possibility that the light-shielding member is viewed from the outside of the security sensor device through the plurality of optical members and thus the shielding region is recognized. In this configuration, since the light-shielding member is transparent, such a possibility can be reduced.
Any combination of at least two constructions, disclosed in the appended claims and/or the specification and/or the accompanying drawings should be construed as included within the scope of the present invention. In particular, any combination of two or more of the appended claims should be equally construed as included within the scope of the present invention.
In any event, the present invention will become more clearly understood from the following description of preferred embodiments thereof, when taken in conjunction with the accompanying drawings. However, the embodiments and the drawings are given only for the purpose of illustration and explanation, and are not to be taken as limiting the scope of the present invention in any way whatsoever, which scope is to be determined by the appended claims. In the accompanying drawings, like reference numerals are used to denote like parts throughout the several views, and:
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, like reference numeral denotes like parts, and the description thereof is omitted as appropriate unless change or the like is described otherwise.
As shown in
Specifically, in the present embodiment, the multiple lens pieces 122-1 to 122-4 present in the left half of
As shown in
In the security sensor device 1 of the present embodiment, the infrared ray detection elements 232A, 232B, 242A, and 242B are fixed such that the infrared ray detection elements 232A, 232B, 242A, and 242B do not rotate about the axes L1 and L2 or the rotation axis L3 (described later) in
The base unit 200 shown in
As for the first detection element portion 230, the infrared ray detection elements 232A and 232B each having a FOV (field of view) of 90 degrees are housed in a single case having a substantially triangular column shape. The infrared ray detection elements 232A and 232B are arranged such that detection center directions thereof form 90 degrees. Specifically, the infrared ray detection elements 232A and 232B are arranged on two sides excluding the hypotenuse of a right-angled isosceles triangle on a cross-section orthogonal to the later-described rotation axis L3, which is parallel to the axes L1 and L2, such that the infrared ray detection elements 232A and 232B face toward the external side. Here, this detection center directions are each a direction straight facing the infrared ray detection element, a direction of substantially the center of the FOV of the infrared ray detection element, or a direction in which the detection sensitivity is at its maximum. Accordingly, the total FOV of the two infrared ray detection elements 232A and 232B is 180 degrees. The first detection element portion 230 and the infrared ray detection elements 232A and 232B are fixed such that the detection element portion 230 and the infrared ray detection elements 232A and 232B do not rotate relative to the base unit 200. In addition, in the present embodiment, the infrared ray detection elements 232A and 232B are also fixed such that the positions thereof do not change relative to the base unit 200, but these positions may change, for example, in the up-down direction.
The second detection element portion 240 includes two infrared ray detection units 240A and 240B each having a substantially triangular column shape. The first infrared ray detection unit 240A has the infrared ray detection element 242A having a FOV of 90 degrees, and the second infrared ray detection unit 240B has the infrared ray detection element 242B having a FOV of 90 degrees. The infrared ray detection elements 242A and 242B are arranged such that the detection center directions thereof form 90 degrees. Specifically, the infrared ray detection elements 242A and 242B are arranged on two sides excluding the hypotenuse of a right-angled isosceles triangle on a cross-section orthogonal to the rotation axis L3, facing toward the external side, when the entire second detection element portion 240 is viewed. Accordingly, the total FOV of the two infrared ray detection elements 242A and 242B is 180 degrees. Due to the above configuration, the detection center directions of the infrared ray detection element 232A and the infrared ray detection element 242A are substantially the same, and the detection center directions of the infrared ray detection element 232B and the infrared ray detection element 242B are substantially the same. In the present embodiment, the infrared ray detection elements 232A, 232B, 242A, and 242B are PIR sensors.
Both infrared ray detection units 240A and 240B may be movable independently to each other such that the positions thereof change relative to the base unit 200 in the rotation axis L3 direction. For example, when the lengths in the axis direction of the infrared ray detection units 240A and 240B are denoted by W, the movement distance of each of the infrared ray detection units 240A and 240B may be substantially the length W.
The base unit 200 is attached to the mount 300 so as to be housed in the cover unit 100, and has a first shielding curved plate 260A and a second shielding curved plate 260B that block infrared rays coming to the infrared ray detection elements 232A, 232B, 242A, and 242B. In the present embodiment, the two shielding curved plates 260A and 260B are provided as shown in
The shielding curved plates 260A and 260B are each formed from a material having a low transmittance for the wavelength range of electromagnetic waves used as detection rays (far-infrared rays in the present embodiment), and, for example, is formed from a polycarbonate (PC) resin or the like. In addition, the shielding curved plates 260A and 260B are transparent in a view in the incoming direction of infrared rays. If the shielding curved plates 260A and 260B are not transparent, there is a possibility that the shielding curved plates 260A and 260B are viewed from the outside of the security sensor device 1 through the detection lens 120 and thus the shielding region is recognized. However, in the present embodiment, since the shielding curved plates 260A and 260B are transparent, such a possibility can be reduced.
As shown in
In addition, as shown in
Specifically, in the first shielding curved plate 260A of the present embodiment, a first arm 260Ab and a second arm 260Ac are provided at the upper end and the lower end of a partial-cylindrical curved plate body 260Aa, respectively, so as to extend radially inward. A knurled portion 260Af for preventing slip is formed only on the radially outer circumferential surface of the second arm 260Ac. Support holes 260Ad and 260Ae are formed in rotation center portions of the arms 260Ab and 260Ac, respectively. Support shafts 210b and 210c each having a circular column shape are provided at center portions of the flange portions 214 and 216, respectively, so as to project therefrom. The arms 260Ab and 260Ac are mounted to the support shafts 210b and 210c by fitting the support hole 260Ad to the support shaft 210b and fitting the support hole 260Ae to the support shaft 210c, and the first shielding curved plate 260A is rotatable about the rotation axis L3 relative to the flange portions 214 and 216. The second shielding curved plate 260B also has arm portions corresponding to the arms 260Ab and 260Ac. By mounting the arm portions to the support shafts 210b and 210c, the second shielding curved plate 260B is attached so as to be rotatable about the rotation axis L3 relative to the flange portions 214 and 216 independently of the first shielding curved plate 260A.
Meanwhile, a locking portion 218 for locking the shielding curved plates 260A and 260B at predetermined positions in the rotation direction with a click feeling is formed on one or each of the flange portions 214 and 216. In addition, a support base 210d for supporting the first detection element portion 230 and the second detection element portion 240 is provided to the main body 210 of the base unit 200. Parts of the first shielding curved plate 260A and the second shielding curved plate 260B enter a gap G between a side wall 210a of the main body 210 and the support base 210d. When the entire shielding curved plates 260A and 260B are inserted into the gap G, since the lengths of the arms 260Ab and 260Ac are equal to those of the above arm portions, if the curvatures of both shielding curved plates are equal to each other, the shielding curved plates 260A and 260B may collide with each other in the gap G. Thus, the shielding curved plates 260A and 260B have end portions that face the gap G and that respectively have a tapered shape or a reversely tapered shape corresponding to the tapered shape. Accordingly, when the entire shielding curved plates 260A and 260B are inserted into the gap G, the shielding curved plates 260A and 260B make motion of crossing each other along the respective tapered shape and reversely tapered shape.
In the present embodiment, a locking portion 218 composed of a substantially arc-shaped groove centered at the rotation axis L3 is formed only on the lower surface of the flange portion 216. Specifically, the locking portion 218 has, at a plurality of locations on the outer arc thereof, semicircular recesses facing in the radially outward direction of the arc. The first shielding curved plate 260A that rotates as described above is locked to the main body 210 with a click feeling by engaging a projection-like engagement piece 262 of the first shielding curved plate 260A shown in
The shielding curved plates 260A and 260B of the present embodiment are present on the first sensor-side virtual cylindrical surface C1, are set so as to be rotatable about the rotation axis L3 as described above, and are locked at predetermined positions in the rotation direction to block infrared rays coming to the infrared ray detection elements 232A, 232B, 242A, and 242B. Therefore, it is not necessary to perform masking using a light-shielding sheet as in the conventional art, and it is possible to flexibly handle setting of the detection direction by performing simple work of rotating the shielding curved plates 260A and 260B, which have a low infrared ray transmittance, and locking the shielding curved plates 260A and 260B at the predetermined positions. In the structure having the shielding curved plates 260A and 260B, the effect of being able to flexibly handle setting of the detection direction can be further exerted in the case where the infrared ray detection elements 232A, 232B, 242A, and 242B have a fixing structure for not making a rotation motion about the axis of the optical-system-side virtual cylindrical surface relative to the base unit 200 as in the present embodiment.
The security sensor device 1 of the present embodiment has the signal processing unit 280 as an electrical system circuit for infrared ray detection as shown in a block diagram in
In the present embodiment, in the case where the infrared ray detection elements 232A and 242A and the infrared ray detection elements 232B and 242B are configured such that two detection regions thereof overlap in the horizontal direction, the third arithmetic section 286 performs an AND operation of the detection result of the first arithmetic section 282 and the operation result of the second arithmetic section 284 so as to perform an operation for compensating for accuracy decrease due to disturbance noise, and outputs a detection signal. For example, output of a warning or the like from an alarm is performed using this detection signal, whereby a notification of appearance of an intruder is sent.
Next, a security sensor device according to a second embodiment of the present invention will be described. The contents other than the following description are the same as in the first embodiment, and the redundant description is omitted. As shown in
The light-shielding member 262 can be provided so as to extend on and between the flange portions 214 and 216 by diverting or using for the light-shielding member 262, one of 14 engagement holes 219 corresponding to position-indicating marks “a” to “n” provided on the flange portion 214 shown in
Specifically, as shown in
The light-shielding member 262 is formed from a material having a low transmittance for the wavelength range of electromagnetic waves used as detection rays (far-infrared rays in the present embodiment), and, for example, is formed from a PC resin or the like. In addition, the light-shielding member 262 is transparent in a view in the incoming direction of infrared rays. If the light-shielding member 262 is not transparent, there is a possibility that the light-shielding member 262 is viewed from the outside of the security sensor device 1 through the detection lens 120 and thus the shielding region is recognized. However, in the present embodiment, since the light-shielding member 262 is transparent, such a possibility can be reduced.
By using the light-shielding member 262 of the present embodiment, the direction in which infrared ray detection is blocked can be locally and additionally set in addition to the shielding curved plates 260A and 260B. Moreover, the light-shielding member 262 is attached at the base unit 200 side at which the infrared ray detection elements 232A, 232B, 242A, and 242B are present, not at the cover unit 100 side at which the detection lens 120 is present. Thus, attaching work of attaching a light-shielding sheet for masking while viewing the detection lens 120 from the inner side as in the conventional art is not required. Accordingly, a wrong operation during attachment of the light-shielding sheet is prevented, and time and effort for the attaching work are omitted.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings which are used only for the purpose of illustration, those skilled in the art will readily conceive numerous changes and modifications within the framework of obviousness upon the reading of the specification herein presented of the present invention. Accordingly, such changes and modifications are, unless they depart from the scope of the present invention as delivered from the claims annexed hereto, to be construed as included therein. For example, the following configurations can be included therein.
The security sensor device 1 can be similarly used for an AIR device that uses near-infrared rays as detection rays, has a light-projecting element and a light-receiving element in a base unit, emits near-infrared rays from the light-projecting element through a light-projection-side optical system disposed in a cover unit to the outside of the sensor device, and concentrates near-infrared rays, which has collided against and reflected from a detection object, onto the light-receiving element by a light-reception-side optical system disposed in the cover unit, thereby detecting the detection object. Moreover, in addition to the Fresnel lens, another optical member such as a prism may be used as an optical member. The optical-system-side virtual cylindrical surfaces Cs1 and Cs2, that is, the Fresnel lenses 120A and 120B, or the detection lens 120 including the Fresnel lenses 120A and 120B, may have an elliptic cylindrical shape or a polygonal cylindrical shape other than the circular cylindrical shape. Furthermore, the infrared ray detection elements 232A, 232B, 242A, and 242B of each embodiment described above have a fixing structure for not making a rotation motion about the axis of the optical-system-side virtual cylindrical surface relative to the base unit 200, but may make a rotation motion about the axis of the optical-system-side virtual cylindrical surface relative to the base unit 200 without having such a fixing structure. In such cases as well, the same advantageous effects as in each embodiment described above are achieved.
Number | Date | Country | Kind |
---|---|---|---|
2018-025911 | Feb 2018 | JP | national |