Security system and method for controlling access to computing resources

Information

  • Patent Grant
  • 11086979
  • Patent Number
    11,086,979
  • Date Filed
    Friday, November 1, 2019
    4 years ago
  • Date Issued
    Tuesday, August 10, 2021
    3 years ago
Abstract
A security system comprises a personal digital key (PDK), a reader and a computing device. The PDK is a portable, personal transceiver that includes a controller and one or more passwords or codes. The computing device includes a detection engine, vault storage and a set up module. The detection engine detect events relating to the access of any files and third-party systems by the computing device and receives information from the reader as to whether the PDK is present/linked. The detection engine controls whether a user is able to access any of the functionality provided by the computing device based upon whether the PDK is in communication with the reader or not. The present invention also includes a number of methods such as a method for initializing the security system, a method for setting up a computing device, and a method for controlling access to computing resources.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to a system and method for controlling access to computing resources. More specifically, the present invention relates to a security system that requires the presence of a personal digital key (PDK) before secure computing resources can be accessed.


Description of the Related Art

The use and proliferation of personal computers and other similar computing systems have become widespread. In many cases, a user may have several computers with which she interacts. For example, the user may have a personal computer at their office, a laptop for personal use and a family computer. Additionally, the user may have a cell phone, a personal digital assistant, or other individualized computing devices. Increasingly, these computers store confidential and sensitive information such as contacts lists, financial information, business information and identification information. Most currently existing systems have only a minimal amount of security protection such as requiring a user to enter a password before their personal computer becomes operational.


These computer systems are often used to access third-party systems. These third-party systems often require a user identification name and a password before the user will be granted access. Each of the individual third-party systems often has different requirements both in terms of user name and in terms of password format. Moreover, as the world becomes increasingly digital, the owners of these third-party systems want to ensure security of their systems and include fraudulent use. Thus, the third parties often require that the users change their passwords after a predetermined period of time or a predetermined number of accesses to the system. Most users have several external systems, and many users have as many as a hundred of third-party systems that are accessed on a regular basis. Therefore, it is often difficult for users to remember the myriad of user name and password combinations that are required to access such third-party systems and.


Additionally, many of the third-party systems are providing highly confidential information that is received by the end stored on the user's individual computer systems. These data files often contain sensitive information such as bank account records, tax returns, credit card information, and investment information. Furthermore, other personal information is also stored on such computer systems. Such personal information can be used for identity theft in the event that information falls into the wrong hands. While there are file encryption systems and mechanisms in the prior art, these systems are often difficult to use because they require that the user specify which files are encrypted, provide a password, and such administrative overhead in securing sensitive information stored on the hard drive of a personal computer makes the use of such systems rare.


Thus there is a need for a system and method that secures computing systems automatically and in a nonintrusive way.


SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies of the prior art with a security system and method for controlling access to computing resources. In one embodiment, the security system comprises a personal digital key (PDK), a reader and a computing device. The PDK is a portable, personal transceiver that includes a controller and one or more passwords or codes. The PDK is able to link and communicate with the reader via a wireless radio frequency (RF) signal. The reader is a device that is able to wirelessly communicate with the PDK and also provides a wired output signal line for sending data, applications and other information. The reader is coupled to the computing device. The computing device includes a detection engine, vault storage and a set up module. The detection engine detects events relating to the access any files and third-party systems by the computing device and receives information from the reader as to whether the PDK is present/linked. The detection engine controls whether a user is able to access any of the functionality provided by the computing device based upon whether the PDK is in communication with the reader or not. The PDK and/or the vault storage include encrypted information such as usernames, passwords and other information utilized by the computing device to grant access to components, files and third-party systems. The security system is particularly advantageous because the PDK, reader and computing device automatically cooperate as a security system to either allow or deny access to the functionality provided by the computing device. More specifically, the user need not do anything, while in the background the PDK, the reader and the computing device communicate and exchange information to enable or disable access to information and third-party systems using the computing device. The present invention also includes a number of methods such as a method for initializing the security system, a method for setting up a computing device, and a method for controlling access to computing resources.


The features and advantages described herein are not all-inclusive and many additional features and advantages will be apparent to one of ordinary skill in the art in view of the figures and description. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not by way of limitation in the figures of the accompanying drawings in which like reference numerals are used to refer to similar elements.



FIG. 1 is a block diagram of a first embodiment of a security system in a first state in accordance with the present invention.



FIG. 2 is a block diagram of the first embodiment of the security system in a second state in accordance with the present invention.



FIG. 3 is a perspective view of a plurality of personal digital keys (PDK) in accordance with one embodiment of the present invention.



FIG. 4 is a perspective view of a reader in accordance with one embodiment of the present invention.



FIG. 5 is a block diagram of an embodiment of the PDK in accordance with the present invention.



FIG. 6 is a block diagram of an embodiment of the reader in accordance with the present invention.



FIG. 7 is a block diagram of an embodiment of the computing device in accordance with the present invention.



FIG. 8 is flowchart of a first embodiment of a method for initializing the security system in accordance with the present invention.



FIG. 9 is flowchart of a second embodiment of a method for initializing the security system in accordance with the present invention.



FIG. 10 is graphic representation of a set up user interface in accordance with one embodiment of the present invention.



FIGS. 11A-11E are a flowchart of an embodiment of a method for controlling access to computing resources in accordance with the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A security system and method for controlling access to computing resources is described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention. For example, the present invention is described in one embodiment below with reference to a controlling access to a personal computer. However, those skilled in the art will recognize that the present invention applies to access to any other device that may include a computer or is computer controlled.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment. In particular the present invention is described below in the context of two distinct architectures and some of the components are operable in both architectures while others are not.


Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


The present invention also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.


Finally, the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatuses to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is described without reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.



FIG. 1 shows an embodiment of a security system 100 for controlling access to computing resources in accordance with the present invention. The security system 100 comprises a personal digital key (PDK) 102, a reader 104 and a computing device 106. As shown in FIG. 1, the computing device 106 is also coupled by signal line 124 to a network 108.


More particularly, FIG. 1 shows the security system 100 in a first state in which the PDK 102 is linked and in communication with the reader 104.


The PDK 102 is a portable, personal key that wirelessly communicates (e.g., using radio frequency (RF) signals) with the reader 104. The PDK 102 includes an area for storing security information including sign-on records, a set up information, user names, passwords, etc. The PDK 102 is will be described below in more detail with reference to FIG. 5. The PDK 102 also includes logic for initiating and maintaining contact with the reader 104 when it is within range. FIG. 1 illustrates an example where the PDK 102 is within range of the reader 104 and a link 120 has been established between them.


The reader 104 is a device that is able to wirelessly communicate with the PDK 102 and also provides signals on line 122 for sending data, applications and other information to the computing device 106. One of the major functions of the reader 104 is to detect PDKs 102 within communication range and establish links to them. The reader 104 primarily acts as an intermediary to pass information about the PDK 102 to the computing device 106. The reader 104 automatically signals the computing device 106 when it is linked to the PDK 102 and when the link 120 is severed. The reader 104 also includes an area for storage of applications and set up information that can be provided to the computing device 106 during initialization. The reader 104 will be described in more detail below with reference to FIG. 6.


The computing device 106 may be any conventional device such as but not limited to a personal computer, a laptop computer, a smart phone, a personal digital assistant, etc. The computing device 106 also includes a detection engine 760, vault storage 762 and a set up module 764 (see FIG. 7). The detection engine 760 detects events relating to the access any components, files or third-party systems by the computing device 106. The detection engine 760 also receives information from the reader 104 as to whether the PDK is present or linked. The detection engine 760 controls whether a user is able to access any of the functionality provided by the computing device 106 based upon whether the PDK is in communication with the reader or not. One embodiment for the computing device 106 is described in more detail below with reference to FIG. 7.


The PDK 102 and/or the vault storage 762 includes encrypted information such as usernames, passwords, and other information utilized by the computing device 106 to grant access to components, files and third-party systems. The present invention is particularly advantageous because the PDK 102, reader 104 and computing device 106 automatically cooperate as a security system 100 to either allow or deny access to the functionality provided by the computing device 106. More specifically, the user need not do anything but carry the PDK 102 on his or her person, and in the background the PDK 102, reader 104 and computing device 106 communicate and exchange information to enable or disable access to information and third-party systems using the computing device.


Referring now FIG. 2, the same embodiment of the security system 100 described above with reference to FIG. 1 is shown. However, FIG. 2 depicts a situation in which the PDK 102 has moved outside of communication range with the reader 104 as indicated by arrow 128. Specifically, FIG. 2 shows a second state in which the PDK 102 is no longer in communication and linked with the reader 104. Thus, in comparison to FIG. 1, there is no longer the link 120 between the PDK 102 and the reader 104. As will be described in more detail below, when the PDK 102 and the reader 104 are within communication range of each other, they automatically establish the link 120. Similarly, when they are outside of the communication range of each other, the link 120 is automatically severed. Whether the PDK 102 and the reader 104 are in the first state (link) or the second state (no link) is automatically communicated by the reader 104 to the computing device 106 and serves as a control signal to determine whether the functionality provided by the computing device 106 is enabled. More specifically, once the PDK 102 is in the state as shown in FIG. 2, the computing device 106 is disabled and does not allow the user to use any of the components, files or third-party systems that are typically accessed were part of the computing device 106.


Referring now to FIG. 3, a plurality of PDKs 102a-102b in accordance with one embodiment of the present invention is shown. As can be seen, the PDKs 102a-102b are very small in size being less that 1″×0.5″×0.25″. Thus, the PDK 102 is small enough to be attached to a user's key chain or placed in their pocket. In other embodiments, the PDK 102 is integrated as part of a cellular telephone or other portable electronic devices. Furthermore, the PDK 102 is particularly advantageous because it is able to communicate with them and establish the link 120 with corresponding reader 104 even when positioned inside a user's pocket, within clothing or inside a purse or case. Even when obscured from direct view or line of sight, the PDK 102 can establish the link 120 as long as it is positioned within five or less meters of the reader 104. However, those skilled in the art will realize that the effective communication range between the reader 104 and PDKs 102 is completely scalable and can be distances greater than five meters for other environments and conditions when greater distances are needed. In contrast to the prior art that requires that he be placed within 10 or less inches of the reader, the PDK 102 also does not need to be placed in very close proximity to the reader 104. Therefore, the security system 100 is particularly advantageous because the PDKs 102 provide a portable, automatic, continuous, effortless way for users to provide security, automatic sign-on and protection, device protection or file protection. The users do not need to remember another username and password or be concerned about its loss. Once the PDK 102 is out of range of the reader 104, the computing device 106 and the computing resources are provided are secure.


Referring now to FIG. 4, a perspective view of the reader 104 in accordance with one embodiment of the present invention is shown. In this embodiment, the reader 104 is also small in size being about 2 to 3 times the size of the PDK 102. The reader 104 also includes an area adapted to receive a PDK 102 in the event the user wants to place the PDK 102 directly on top of the reader 104. The PDK 102 is coupled to signal line 122 in the form of a cable. At a remote end of the cable it is, it is attached to a USB connector 402. Using the USB connector 402, the reader 104 may be directly coupled to the computing device 106. Those skilled in the art will recognize that in other embodiments, the reader 104 is built into a laptop computer or a personal computer similar to other input/output devices like finger print readers and bar code readers.


Referring now to FIG. 5, an embodiment of the PDK 102 in accordance with the present invention is described. The PDK 102 comprises a controller 502, a transceiver 504, a memory 506 having a secure key storage 512, an encryption, communication and initialization module 508 and an antenna 510. The controller 502 is coupled to the transceiver 504, the memory 506 and the encryption, communication and initialization module 508. The controller 502 cooperates with the transceiver 504 to send and receive data and control signals to and from the PDK 102. The controller 502 cooperates with the memory 506 to store and retrieve information from the memory 506. In particular, the memory 506 includes the secure key storage 512. The secure key storage 512 can be used to store sign-on records and other set up data. The secure key storage area 512 is also used to store and encrypted user names and passwords. The transceiver 504 is coupled to the antenna 510 and the controller 502. The transceiver 504 receives and sends information to and from the controller 502 and also generates and receives radio frequency signals. In one embodiment the operation of the PDK 102 is dictated by the encryption, communication and initialization module 508 that is coupled to and controls the operation of the controller 502. The encryption, communication and initialization module 508 controls the initialization of the PDK 102 such as assigning it a unique ID. The encryption, communication and initialization module 508 also controls the communication of the PDK 102 with the reader 104 such as initializing and establishing the link 120, maintaining the link 120, and searching for readers 104 within range. The encryption, communication and initialization module 508 also controls the interaction of the PDK 102 with the reader 104 in terms of responding to requests for information and encrypted and storing information received from the reader 104. The encryption, communication and initialization module 508 also includes controls the encryption and decryption of data stored in and retrieved from the memory 506, in particular the secure key storage 512.


Additional details about other embodiments of the PDK 102 are shown and described in U.S. patent application Ser. No. 12/292,330, filed a Nov. 30, 2005 entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method;” U.S. patent application Ser. No. 11/620,581, filed Jan. 5, 2007 entitled “Wireless Network Synchronization Of Cells And Client Devices On A Network;” U.S. patent application Ser. No. 11/744,831, filed May 5, 2007, entitled “Two-Level Authentication For Secure Transactions;” and U.S. patent application Ser. No. 11/744,832, filed May 5, 2007, entitled “Personal Digital Key Initialization And Registration For Secure Transactions;” the contents of which are incorporated by reference herein in their entirety.



FIG. 6 is a block diagram of an embodiment of the reader 104 in accordance with the present invention. The reader 104 comprises an antenna 602, a transceiver 604, a controller 606, an encryption, communication and initialization module 608 and a memory 610. The memory 610 further comprises a setup module 612 and secure storage 614. The antenna 602 is coupled to the transceiver 604 and enables wireless communication between the reader 104 and the PDK 102. Even though only a single PDK 102 shown in FIGS. 1 and 2, it should be understood that the reader 104 communicates with and establish a link 120 with a plurality of PDKs 102. The transceiver 604 is coupled to the controller 606 to provide data received from the PDK 102 and to send data to the PDK 102. The controller 606 is coupled to and controlled by the encryption, authentication and initialization module 608. The encryption, authentication and initialization module 608 provides functionality similar to that described above with reference to FIG. 5, but for the reader 104. For example, the controller 606 under the direction and control of the encryption, authentication and initialization module 608: encrypts and decrypts information for storage in and retrieval from the memory 610, respectively; initializes the reader 104 such as recording setup information in the setup module 612 of the memory 610; and controls the communication with the PDK 102 via link 120 and the communication with the computing device 106 via signal line 122. As noted above, the memory 610 includes a setup module 612 and secure storage 614. The reader 104 includes two types of set up information that are stored in the setup module 612. First, set up information that is utilized for the reader 104 itself is stored in the setup module 612. Second, set up information that is sent to and loaded into the computing device 106 to initialize the computing device 106 is also stored in the setup module 612. In another embodiment, the setup module 612 also includes any other applications needed, and these applications can be loaded from the setup module 612 into the computing device 106. Under the direction of the encryption, communication and initialization module 608 the controller 606 retrieves this information from the setup module 612 and loads it into the computing device 106. The reader 104 also includes secure storage 614 for use when critical confidential data is passed from the PDK 102 through the reader 104 to the computing device 106. The secure storage 614 is used in conjunction with the encryption functionality provided by module 608 to store unencrypted data. The secure storage 614 is also used to store back-up passwords used to allow access to the computing device 106 when the PDK 102 is not in range.


Additional details about other embodiments of the reader or RDC 104 are shown and described in U.S. patent application Ser. No. 12/292,330, filed a Nov. 30, 2005 entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method;” U.S. patent application Ser. No. 11/620,581, filed Jan. 5, 2007 entitled “Wireless Network Synchronization Of Cells And Client Devices On A Network;” U.S. patent application Ser. No. 11/744,831, filed May 5, 2007, entitled “Two-Level Authentication For Secure Transactions;” and U.S. patent application Ser. No. 11/744,832, filed May 5, 2007, entitled “Personal Digital Key Initialization And Registration For Secure Transactions;” the contents of which are incorporated by reference herein in their entirety.


Referring now also to FIG. 7, a functional block diagram of the computing device 106 configured in accordance with an embodiment of the present invention is shown. The computing device 106 comprises a control unit 750, a display device 710, an input device 712 and a Universal Serial Bus (USB) interface 714. The computing device 106 may optionally include a network controller 716 and one or more input/output (I/O) devices 718. Those skilled in the art will recognize that FIG. 7 nearly depicts one embodiment of the computing device 106 in which it is a personal computer, and that their variety of other embodiments where the computing device 106 has a different configuration. Nonetheless, in most of these other configurations some or all of the components described below with reference to FIG. 7 have a similar or equivalent functionality in the other embodiments of the computing device 106.


The control unit 750 comprises an arithmetic logic unit, a microprocessor, a general purpose computer or some other information appliance equipped to provide electronic display signals to display device 710. In one embodiment, the control unit 750 comprises a general purpose computer having a graphical user interface, which may be generated by, for example, a program written in Java running on top of an operating system like WINDOWS® or UNIX® based operating systems. In one embodiment, one or more application programs are executed by control unit 750 including, without limitation, drawing applications, word processing applications, electronic mail applications, financial applications and web browser applications.


Still referring to FIG. 7, the control unit 750 is shown as including processor 702, memory 704 and data storage device 706, all of which are communicatively coupled to system bus 708.


Processor 702 processes data signals and may comprise various computing architectures including a complex instruction set computer (CISC) architecture, a reduced instruction set computer (RISC) architecture, or an architecture implementing a combination of instruction sets. Although only a single processor is shown in FIG. 7, multiple processors may be included.


Memory 704 stores instructions and/or data that may be executed by processor 702. The instructions and/or data may comprise code for performing any and/or all of the techniques described herein. Memory 704 may be a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, some other memory device known in the art or any combinations of the preceding. In one embodiment, the memory 704 also includes an operating system such as one of a conventional type such as, WINDOWS®, SOLARIS® or LINUX® based operating systems. Although not shown, the memory unit 704 may also include one or more application programs including, without limitation, drawing applications, word processing applications, electronic mail applications, financial applications and web browser applications. Those skilled in the art will recognized that while the present invention will now be described as modules or portions of a memory unit 704 of a computer system 100, the modules or portions thereof may also be stored in other media such as permanent data storage device 706 and may be distributed across a network 104 having a plurality of different computers such as in a client/server environment. The memory 704 is shown as including a detection engine 760, vault storage 762 and a set up module 764. These modules 760, 762, 764 are coupled by bus 708 to the processor 702 for communication and cooperation to system 100.


The detection engine 760 is instructions and/or data that may be executed by processor 702. The instructions and/or data comprise code for performing any and/or all of the techniques described herein. More specifically, the detection engine 760 detects when a protected item is accessed, performs the process steps as specified by a set up record and also controls the processor 702 to perform encryption and decryption as necessary. The operation of the detection engine 760 is described in more detail below with reference to FIG. 11 A-11D. The detection engine 760 is coupled to control the processor 702. The detection engine 760 is also coupled to the protected items 780 and/or the processor 702 to determine when the protected items 780 are accessed. For example, the detection engine 760 is coupled to either the processor 702 or this data storage device 706 to determine when the protected items 780 are accessed.


The vault storage 762 is a portion of memory 704 used to store information utilized by the detection engine 760 to control operation of the security system 100 of the present invention. In one embodiment, the vault storage 762 is encrypted so that its contents cannot be accessed and utilized by other devices or programs or decoded for circumvention. In another embodiment, the vault storage 762 is locked or controlled in a manner such that only the detection engine 760 may access and use the information stored in the vault storage 762. The vault storage 762 stores security set up data for the secure items on the computing device 106. For example, this security set up data includes a plurality of item set up records, where each item set up record corresponds to a protected item 780. It should be understood that the vault storage 762 includes one vault file per computing device 106/PDK 102 pair. The PDK 102 of the computing device 106/PDK 102 pair is preferably a master PDK. In another embodiment, the vault file also includes information about other proxy PDKs related to the master PDK and a backup password. The set up records stored in the vault file corresponding to each of the protected items 780 and specify the process that must be undertaken in order to grant access to the particular protected item 780. In a second embodiment, the vault storage 762 includes a plurality the sub-vaults, optionally implemented utilizing a directory/subdirectory where each “secured type” is maintained in its own file. An extension of this concept includes maintaining complete subdirectories (within the primary Vault directory) for each “secured type” (in place of individual files for each). In a third embodiment, the vault storage 762 is maintained as a group of individual files (within a primary Vault directory), and the processor 702 gathers analytics data such a key use, access privileges, usage stats, etc, for each. In a fourth embodiment, the vault storage 762 is located on the PDK 102 as opposed to the computing device 106. This option enables additional methods for managing secured files as they are moved, copied, and transferred. As with the vault storage 762 located on computing device 106, a “backup” password may also be utilized to unlock access to the vault storage 762 in situations where biometric authentication options are unavailable. In a fifth embodiment, the vault storage 762 is utilize an “assigned ID”, stored in & read from the PDK 102, in addition to, or in place of, a PDK's ID. This option enables another method for allowing multiple PDKs to access secured types as a “group”. Example uses include enabling groups of PDKs/users to access files, storage devices, and even applications.


The set up module 764 is instructions and/or data that may be executed by processor 702 for initializing and setting up the computing device 106. The operation of the set up module 764 is described in more detail below with reference to FIGS. 8 and 9. The set up module 764 cooperates with the set up module 612 of the reader 104. In particular, the set up module 764 accesses the reader 104 to retrieve set up module 612 and copy that information into the memory 104 of the computing device 106. The set up module 612 is then executed by the processor 702 to generate the item setup records and store them in the vault storage 762. The set up module 612 also retrieves additional applications stored at the reader 104 and install and upload them on the memory of the computing device 106.


Data storage device 706 stores data and instructions for processor 702 and comprises one or more devices including a hard disk drive, a floppy disk drive, a CD-ROM device, a DVD-ROM device, a DVD-RAM device, a DVD-RW device, a flash memory device, or some other mass storage device known in the art. In one embodiment, the data storage device 706 also stores protected items 780. For example, the protected items 780 include storage devices such as data storage device 706, directories and files such as for data on the data storage device 706 and sign-on screens such as generated in a web browser. If a storage device is a protected item 780 that means that all data on the storage device is encrypted and access to it is protected. If directories or files are protected items 780, that means that the directory or file is encrypted and access is protected. If a sign-on screen is a protected item 780, any time that sign-on screen is displayed, the detection engine 760 detects its display and retrieves information necessary to complete the sign-on screen from a corresponding item set up record in the vault storage 762 and processes as needed. In other embodiments, protected items 780 includes information used in e-commerce, electronic signatures, digital signatures, licensee key management information for digital rights management.


System bus 708 represents a shared bus for communicating information and data throughout control unit 750. System bus 708 may represent one or more buses including an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, a universal serial bus (USB), or some other bus known in the art to provide similar functionality. Additional components coupled to control unit 750 through system bus 708 include the display device 710, the input device 712, the USB interface 714, the network controller 716 and the I/O device(s) 718.


The display device 710 represents any device equipped to display electronic images and data as described herein. In one embodiment, the display device 710 is a liquid crystal display (LCD) and light emitting diodes (LEDs) similar to those on many personal computers to provide status feedback, operation settings and other information to the user. In other embodiments, the display device 710 may be, for example, a cathode ray tube (CRT) or any other similarly equipped display device, screen or monitor. In one embodiment, the display device 710 is equipped with a touch screen and/or includes a digitizer in which a touch-sensitive, transparent panel covers the screen of display device 710.


In one embodiment, the input device 712 is a series of buttons coupled to control unit 750 to communicate information and command selections to processor 702. The buttons are similar to those on any conventional computer. In another embodiment, the input device 712 includes a keyboard. The keyboard can be a QWERTY keyboard, a key pad, or representations of such created on a touch screen. In yet another embodiment, the input device 712 includes cursor control. Cursor control represents a user input device equipped to communicate positional data as well as command selections to processor 702. Cursor control 712 may include a mouse, a trackball, a stylus, a pen, a touch screen, cursor direction keys or other mechanisms to cause movement of a cursor.


The USB interface 714 is of a conventional type and is coupled to bus 708 for communication with the processor 702.


The network controller 716 links control unit 750 to a network 108 via signal line 124. The network may comprise a local area network (LAN), a wide area network (WAN) (e.g., the Internet), and/or any other interconnected data path across which multiple devices may communicate. The control unit 750 also has other conventional connections to other systems such as a network for distribution of files (media objects) using standard network protocols such as TCP/IP, http, https, and SMTP as will be understood to those skilled in the art.


As denoted by dashed lines, the computing device 106 may optionally include one or more input/output (I/O) devices 718 such as described below. One or more I/O devices 718 are coupled to the bus 708. These I/O devices may be part of computing device 106 in one embodiment and in another embodiment may be part of the other systems (not shown). For example, the I/O device 718 can include an image scanner for capturing an image of a document. The I/O device 718 may also includes a printer for generating documents. The I/O device 718 may also include audio input/output device equipped to receive audio input via a microphone and transmit audio output via speakers. In one embodiment, audio device is a general purpose; audio add-in/expansion card designed for use within a general purpose computer system. Optionally, I/O audio device may include one or more analog-to-digital or digital-to-analog converters, and/or one or more digital signal processors to facilitate audio processing.


It should be apparent to one skilled in the art that system 100 may include more or less components than those shown in FIG. 7 without departing from the spirit and scope of the present invention. For example, security system 100 may include additional memory, such as, for example, a first or second level cache, or one or more application specific integrated circuits (ASICs). Similarly, additional components input/output devices 718 may be coupled to control unit 750 including, for example, an RFID tag reader, digital still or video cameras, or other devices that may or may not be equipped to capture and/or download electronic data to control unit 750. One or more components could also be eliminated such as the keyboard & cursor control 712.



FIG. 8 shows a first embodiment of a method for initializing the security system 100 in accordance with the present invention. The method begins by connecting 802 the reader 104 to the computing device 106 and initialize reader 104. Once reader 104 is connected to the computing device 106, it receives power from computing device 106. The reader 104 upon power up performs 802 initialization of its own systems and also begins communication with the computing device 106. In particular, the reader 104 loads drivers on the computing device 106 such as its operating system (e.g., Windows) so that the reader 104 and the computing device 106 can communicate with each other. In another embodiment, the drivers may be provided on another media such as a flash drive or CD and loaded into the computing device in a conventional manner. Once the reader 104 is operational it is like a portal, in that it can link and communicate with any PDK 102. Next, the computing device 106 is initialized 804. More specifically, the computing device 106 downloads and runs the setup module 612 from the reader 104. This will also cause other applications required to be downloaded from the reader 104 to the computing device 106. Once the programs are downloaded from the reader 104 they are loaded and started. For example, the configuration application that generate and present the user interface of FIG. 10 is operation and presents the user interface 1000 so that the user's preferences for operation of the security system 100 can be entered. The initialization step 804 also creates the vault storage 764 on the computing device, load and start the detection engine 760. Finally, a PDK 102 is linked 806 to the reader 104 and initialized. In one embodiment, it is assumed that the PDK 102 has already been activated and associated with a user. Part of this activation process includes giving the PDK 102 a unique ID number and storing confidential information such as passwords and other data unique to the user in the PDK 102. The initialization of the PDK 102 process continues by identifying the PDK 102 and its unique ID so that this information can be used to determine when the PDK 102 comes within range of the reader 104 in the future. In particular, the PDK 102 is associated with the vault storage created in step 804. The first PDK 102 to interacts with the initialized computing device 106 is the master PDK 102. The master PDK 102 is the owner of the vault and acts like an administrator with the authorization to give proxies to other PDKs 102 that will allow them to access the vault but typically not to grant access to other PDKs 102. When the other PDKs are in range, the set up functionality of the computing device 106 is used for this assignment of rights (See FIG. 10, area 1012 below.) Once this is complete, the security system 100 is operational and ready for use.


Referring now to FIG. 9, a second embodiment of the method for initializing the security system 100 in accordance with the present invention is shown. The method begins by identifying 902 computing resources in the computing device 106 and the PDK 104. This effectively identifies all possible items that can be protected items and thus subject to the access control and security constraints of the security system 100. This includes identifying disk drives, directories, files and sign-on screens that will be accessed via the security system 100. The method also identifies 902 PDKs 104 and the computing resource with which they are associated. Next, the method creates 904 a local vault or allocates memory 704 to create vault storage 762. The method then presents 906 a user interface on the computing device 106. For example, this is done with the user interface 1000 of FIG. 10 which will be described below. The user interacts with the interface 1000 and inputs a variety of a set up parameters. The computing device 106 receives 908 the setup parameters. Then the method creates 910 an item set up record with the parameters received from step 908 and specifying the processes performed when interacting with the item. The item set up record is a data record for a particular item holding the details of the detection engine 760 requires to correctly process (allow access or otherwise interact with) the item. In one embodiment, the item set up record includes information about how to access the item, whether the data is encrypted, etc. but does not store the decryption key or other actual security data as it is provided by the PDK 102. Next, the method stores 912 the item set up record in the vault storage 762 or local law. In some embodiments, the PDK 102 stores login information passwords such as needed for sign-on screens. For such cases the method also stores 914 this information in the PDK 102 during this initialization process. The present invention is particularly advantageous because the item set up records are stored in the vault storage 762 while the login information needed for sign-on is stored in the PDK 102, thus enabling maximum mobility. It should be understood that the reader 104 does not store any runtime information but merely acts as a means for the PDK to indicate with the computing device 106, in particular, the protected items. When the security system 100 is operational, the detection engine 760 searches the vault storage 762 for instructions on how interaction with the protected item is undertaken at and accesses the PDK 102 if needed as appropriate. It should be understood that in one embodiment, the item set up records are processed hierarchically where the set up rules specified in a item set up record for file override the set up rules specified in an item set up record for directories, and the set up rules specified in an item set up record for a directory overrides the set up rules specified in an item set up record for a component (e.g., the entire data storage device 706).


As also shown in FIG. 9, in addition to the manual setup using user interface 1000 of FIG. 10 when the security system 100 is initially put into operation, the user may at any time during normal use 920 input command indicating that they would like to apply security constraints to an item. For example, during all operation of the computing device 106, the user may just drive and right click the mouse cursor on the icon to input a set up command to the security system 100. The system receives 922 set up command and then proceeds to perform steps 906 through 914 as has been described above. This is particularly advantageous because it allows the user at any time to modify, add or remove security controls from protected item.


Referring now FIG. 10, one embodiment of the set up user interface 1000 in accordance with the present invention will be described. The user interface 1000 includes a plurality of areas 1002, 1004, 1006, 1008, 1010, 1012, 1014 and 1016 to specify the item to be protected as well as actions or rules to be followed in granting access to the protected item. In a first region 1002, the user interface 1000 present buttons representing major categories of items that can be protected. For example, the buttons shown in FIG. 10 are three possible protected items including: storage devices, directories and files, and sign-on screens. In another embodiment, additional buttons may be provided for services such as e-commerce, digital signature, and electronic identification. Those skilled in the art will recognized that any number of buttons may be provided depending on the categories of items that are protected by the security system 100. Selecting a button in the first region 1002, causes the items displayed in window 1016 to be limited to those items that are in the selected category. The window 1016 may also be used to select a particular item from the list of items displayed in the window 1016. However as shown in FIG. 10, since no button has been selected the items of all categories are shown in the window 1016. Below the window 1016, the user interface 1000 presents a series of buttons 1014 selectable to add, delete or save the input parameters of the user interface 1000 as an item set up record. An additional button is provided for canceling the setup process. Those skilled in the art will recognize that a similar version to the user interface 1000 shown in FIG. 10, but pre-populated with information about a specific device or item, is presented when the user accesses the set up interface 1000 via a direct command (e.g., right mouse click) such as described above with reference to step 922 of FIG. 9. The regions 1004, 1006, 1008 on the right side of the user interface 1000 provides regions in which the user can specify what actions the security system 100 will perform when allowing or denying access to the protected items. For example, region 1004 presents options for whether access will be automatically allowed when the PDK 102 is detected as being within range of that reader 104. Region 1006 specifies reconfirmation options in which the user can specify how often the security system 100 must confirm that the PDK 102 continues to be within range of the reader 104. Moreover, the user can specify that biometric confirmation is required in addition to the PDK 102 being present. Such biometric confirmation can be provided by a biometric reader on the PDK 102, the reader 104 or other device connected to the computing device 106. Region 1008 allows the user to specify automatic securing options for specifying what action will be taken by the security system 100 when the PDK 102 is not detected, or a PDK 102 removal event is received. Yet another region 1010 allows the user to specify a number of other miscellaneous options. These miscellaneous options may be presented or removed depending on the type of item selected and displayed in window 1016. One option is to keep a copy of the item set up record in the PDK 102. This option is only available for the sign on setup. Another option is to apply settings to all directories and files (overriding their items set up record). This option is only available when the item type is a storage device or a directory. A third miscellaneous option is displaying a secure screensaver when the auto-secure option is enabled and the PDK is no longer detected. While this option is available for any item it has a default setting of being selected for all items. Finally, the last region 1012 provides an area in which PDKs 102 can be grouped or assigned proxies. This last region 1012 also provides an option for inputting a backup password that can be used to enable the system when the PDK 102 is not available.


Referring now to FIGS. 11A-11E, an embodiment of a method for controlling access to computing resources in accordance with the present invention is described. Referring specifically to the FIG. 11A, the method begins by monitoring 1102 for an event or trigger. An event is any attempt by the computing device 106 to access a storage device, to access a directory, to access a file, any time a login screen is displayed, or any time based trigger. While the present invention will now be described in the context of these events, those skilled in the art will recognize that other events involving the use of other computing resources of the computing system 106 may also have an item set up record established and stored in the vault storage 762 such that the use of those computing resources is controlled by the security system 100 of the present invention in a manner similar to that described below for storage devices, files, directories and sign-on screens. Next, the method determines 1104 whether an event was detected. In one embodiment, the monitoring and detecting is performed by detection engine 760. If the method determines that an event was not detected, the method returns to step 1102 to continue to monitor for events. However, if the method determines that an event was detected the method continues in step 1106. In steps 1106, 1108, 1110 and 1112, the method proceeds to determine the event type and perform the associated steps for that event type. If an event was detected but is not any of the types that the security system 100 protects, the method continues in step 1114 and processes the event and allows access to the computing resource as normal after which the process is complete and ends


Referring now also to FIG. 11B, in step 1106, the method determines whether the event is an access to a secure device, file or directory. If not the method continues to step 1108 to determine whether the event was the presentation of a sign-on screen. However, if the method determined that the event is to access a secure device, the method continues to step 1116 of the FIG. 11B. The method determines 1116 the device, directory or file being accessed. Then the method retrieves 1118 the item set up record for the device, directory or file determined in step 1116 from the vault storage 762 and determines requirements for allowing access to the storage device directory or file. For example, the item set up record may specify whether access requires encryption. Those skilled in the art will recognize that any number of other requirements may be enforced by the security system 100 by adding them as requirements to the item set up record. These steps for the protected item will be performed as it is accessed and after the PDK identified in the item step up record is validated. Next, the method performs validation 1120 of PDK 102. In particular, the detection engine utilizes the reader 104 to conduct the appropriate authentication/validation, for example, requiring that the PDK 102 associated with the item set up record be within range of the reader 104. Then the method tests 1122 whether the PDK 102 was validated. If not the method is complete and ends with the security system 100 precluding access to the device, files or directory. In one embodiment, the security system 100 also displays appropriate message indicating that access was denied and correct steps that can be taken. On the other hand, if the PDK 102 was validated, the method transitions from step 1122 to step 1114 of FIG. 11A to process the event and allow access as normal. The requirements from the item set up record are also preformed prior to or during normal access to the device, files or directory


In step 1108, the method determines whether the event was the presentation of a sign-on screen. If not the method continues to step 1110. However, if the method determined that the event was the presentation of a sign-on screen, the method continues to step 1124 of the FIG. 11C. Initially, the method determines whether an item setup record corresponding to the sign-on screen exists. If so, the method retrieves 1126 the item setup record from the vault storage 762. Then the method performs validation of 1128 of the PDK 102 and determines 1130 whether the PDK 102 is valid. If not the method is complete and ends with the security system 100 denying access to access to the sign-on screen, and thus other third party systems. However if the PDK 102 is validated, the detection engine 760 automatically fills in the fields of the sign-on screen with the information from the item setup record and submits the data for log-in. The method then returns to step 1114 of FIG. 11A to continue processing as normal. However if in step 1124, it is determined that an item set up record corresponding to the sign-on screen does not exist, the method prompts the user to determine whether to create 1134 an item setup record for this sign-on screen. If the user does not want to create a setup record, the method proceeds to step 1144 and prompts the user to manually enter the sign-on information and then continues to step 1114 of FIG. 11A to continue processing as normal. However, if the user does want to create a setup record for future use for this sign-on screen, the method continues to determine the PDK 102 for the user and whether it is in range. Then the method determines 1138 whether the PDK 102 is valid. If not, the method is complete and ends. Since the user does not have a valid PDK 102 they are not allowed to create a new record in the security system 100. On the other hand if the PDK 102 is determined to be valid in step 1138, the method prompts 1140 the user for sign-on information and receives the sign-on information. Then the method creates 1142 a new set up record corresponding to the sign-on screen and including the sign-on information received in step 1140 and stores it in the vault storage 762. The method continues to automatically fill in 1132 the fields and submit the data for login after which it proceeds to step 1114 of FIG. 11A for processing as normal.


In step 1110, the method determines whether the event was the detection of a PDK 102 entering or exiting the range of the reader 104. If not, the method proceeds to step 1122 tests for other types of events. However if the method determined that the event was the detection of a PDK 102 entering or exiting the range of the reader 104, the method proceeds to step 1146 of FIG. 11D. In step 1146, the method determines whether the event was the entry or exit of the PDK 102. If it was the exit of the PDK 102 from the range of the reader 104, the detection engine 760 retrieves 1148 exit-based rules corresponding to the PDK 102 from the vault storage 762. The detection engine 760 also determines which if any of the exit-based rules have a time dependency (e.g., an amount of time must lapse before they can be performed.) Then the detection engine 760 initializes 1150 the duration timer and provides it with the time dependent exit rules. Next, the method executes rules that are not dependent upon the duration timer and that should be executed when the PDK 102 exits the range of the reader 104. For example, depending on the configuration parameters entered by the user during initialization, some of the actions taken when the PDK exits the range of the reader 104 will be executed immediately once removal of the PDK 102 from the vicinity of the reader 104 is detected. Any such actions can be determined by reading the item set up record. Examples of such actions include automatically logging out, closing a window, or initializing the screensaver. After step 1152, the method transitions back to step 1114 of FIG. 11A. If in step 1146 the event was a determined to be the entry of a PDK 102 into the range of the reader 104 the method continues to deactivate 1154 any timers associated with the PDK 102 that are operational. The method retrieves 1156 an item set up record corresponding to the PDK 102 from the vault storage 762. The method then extracts rules from the item set up record and executes 1158 the extracted rules. For example, actions such as clearing a screensaver, launching a window, or retrieving, entering and submitting login data are executed in step 1158. After step 1158, the method transitions back to step 1114 of FIG. 11A.


In step 1112, the method determines whether the event was the detection of expiration of the duration timer. If not, the method proceeds to step 1114 to allow access as normal. However, if the event was the detection of expiration of the duration timer, the method continues in step 1160 of FIG. 11E. In step 1160, the method determines automatically initiates action associated with the duration time. For example, these are any action specified by the item set up record when the duration timer was started. They can include logging out, activating a screen saver, etc. as specified above as immediate actions. Those skilled in the art will recognize that there may be a variety of times where the duration timer is set to avoid the security system 100 to initiate action, even though the PDK 102 has only be out of range momentarily.


The foregoing description of the embodiments of the present invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the present invention be limited not by this detailed description, but rather by the claims of this application. As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Likewise, the particular naming and division of the modules, routines, features, attributes, methodologies and other aspects are not mandatory or significant, and the mechanisms that implement the present invention or its features may have different names, divisions and/or formats. Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, routines, features, attributes, methodologies and other aspects of the present invention can be implemented as software, hardware, firmware or any combination of the three. Also, wherever a component, an example of which is a module, of the present invention is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of ordinary skill in the art of computer programming. Additionally, the present invention is in no way limited to implementation in any specific programming language, or for any specific operating system or environment. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the present invention, which is set forth in the following claims.

Claims
  • 1. A computing device comprising: a processor;a data storage device including a plurality of protected items, the data storage device coupled for communication with the processor;a vault storage storing a plurality of set up records, the vault storage coupled for communication with the processor, each set up record corresponding to a particular protected item from the plurality of protected items and storing only a process including a specific security action to be automatically performed to grant or deny access to the particular protected item from the plurality of protected items; anda detection engine coupled to the processor, the data storage device, and the vault storage, the detection engine controlling the processor to determine whether access to a first protected item from the plurality of protected items is permitted based on detecting a personal digital key associated with the first protected item within a predefined range and automatically performing a first security action based on retrieving a first set up record corresponding to the first protected item from the vault storage.
  • 2. The computing device of claim 1, wherein the vault storage is encrypted.
  • 3. The computing device of claim 1, wherein the vault storage is locked such that only the detection engine may access and use information stored in the vault storage.
  • 4. The computing device of claim 1, wherein the vault storage includes one vault file per computing device and personal digital key pair.
  • 5. The computing device of claim 1, wherein the vault storage includes information about a proxy personal digital key and a back up password.
  • 6. The computing device of claim 1, wherein the vault storage stores analytics data including key use, access privileges, and usage stats for the personal digital key.
  • 7. The computing device of claim 1, wherein the predefined range is a range of the personal digital key to a reader.
  • 8. The computing device of claim 1, wherein the first security action is one from a group of: encryption, decryption, biometric confirmation, validation of the personal digital key, personal digital key presence, presentation of sign-on screen, and time duration.
  • 9. The computing device of claim 1, wherein the first set up record from the plurality of set up records specifies the first security action and a second set up record from the plurality of set up records specifies a second security action, and the first security action is different from the second security action.
  • 10. The computing device of claim 1, further comprising a set up module coupled to the processor, the data storage device and the vault storage for initializing and setting up the computing device, the set up module generating the plurality of set up records and storing them in the vault storage.
  • 11. The computing device of claim 1, wherein access includes one from a group of: an attempt by the computing device to access the data storage device, an attempt by the computing device to access a directory, an attempt by the computing device to access a file, a display of a login screen, clearing a screen saver, launching a window, launching an application, and a time based trigger.
  • 12. A method for controlling access to a protected item stored on a computing device, the method comprising: detecting, with a detection engine, a personal digital key associated with the protected item within a predefined range;responsive to detecting the personal digital key associated with the protected item within the predefined range, retrieving a set up record corresponding to the protected item from a vault storage storing a plurality of set up records, the set up record storing only a process including a specific security action to automatically perform to allow access to the protected item;determining, from the set up record, the process including the specific security action to automatically perform to allow access to the protected item;automatically performing the specific security action;andallowing access to the protected item based on the specific security action being automatically performed.
  • 13. The method of claim 12 wherein the access to the protected item is allowed if both the personal digital key is within the predefined range of the computing device and the specific security action was performed.
  • 14. The method of claim 12, wherein the specific security action is validation of the personal digital key.
  • 15. The method of claim 14 further comprising automatically filling a field of a login screen with information from the set up record and submitting a login in response to validation of the personal digital key.
  • 16. The method of claim 12, wherein the specific security action is biometric authentication.
  • 17. The method of claim 12, wherein the computing device includes a plurality of protected items, and a second protected item has a corresponding second set up record including a second security action to access the second protected item and the second security action is different from the specific security action.
  • 18. The method of claim 12, wherein the specific security action is one from a group of: encryption, decryption, biometric confirmation, validation of the personal digital key, personal digital key presence, presentation of a login screen, and time duration.
  • 19. The method of claim 12, further comprising: monitoring for an event with the detection engine;detecting the event with the detection engine; andwherein the event includes one from a group of: an attempt by the computing device to access a storage device, an attempt by the computing device to access a directory, an attempt by the computing device to access a file, a display of a login screen by the computing device, clearing a screen saver, launching a window, launching an application, and a time based trigger.
  • 20. The method of claim 12, further comprising identifying a new protected item, creating a new set up record corresponding to the new protected item including specifying a security action for the new protected item, and storing the new set up record in the vault storage.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/973,565 entitled “Security System and Method for Controlling Access to Computing Resources,” filed Dec. 17, 2015, claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/340,501 entitled “Security System and Method for Controlling Access to Computing Resources,” filed Dec. 19, 2008, which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/015,110 entitled “ProxAccess,” filed on Dec. 19, 2007 by John J. Giobbi, the entire contents of which are incorporated by reference herein. Applicants hereby notify the USPTO that the claims of the present application are different from those of the parent application and any other related applications. Therefore, Applicants rescind any disclaimer of claim scope made in the parent application or any other predecessor application in relation to the present application. The Examiner is therefore advised that any such disclaimer and the cited reference that it was made to avoid may need to be revisited at this time. Furthermore, the Examiner is also reminded that any disclaimer made in the present application should not be read into or against the parent application, the grandparent application or any other related application.

US Referenced Citations (1005)
Number Name Date Kind
3665313 Trent May 1972 A
3739329 Lester Jun 1973 A
3761883 Alvarez et al. Sep 1973 A
3906166 Cooper et al. Sep 1975 A
4101873 Anderson et al. Jul 1978 A
4430705 Cannavino et al. Feb 1984 A
4476469 Lander Oct 1984 A
4598272 Cox Jul 1986 A
4661821 Smith Apr 1987 A
4759060 Hayashi et al. Jul 1988 A
4814742 Morita et al. Mar 1989 A
4871997 Adriaenssens et al. Oct 1989 A
4993068 Piosenka et al. Feb 1991 A
5043702 Chun-Chang Aug 1991 A
5187352 Blair et al. Feb 1993 A
5224164 Elsner Jun 1993 A
5296641 Stelzel Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5317572 Satoh May 1994 A
5325285 Araki Jun 1994 A
5392287 Tiedemann, Jr. et al. Feb 1995 A
5392433 Hammersley et al. Feb 1995 A
5410588 Ito Apr 1995 A
5416780 Patel May 1995 A
5422632 Bucholtz et al. Jun 1995 A
5428684 Akiyama et al. Jun 1995 A
5450489 Ostrover et al. Sep 1995 A
5473690 Grimonprez et al. Dec 1995 A
5481265 Russell Jan 1996 A
5506863 Meidan et al. Apr 1996 A
5517502 Bestler et al. May 1996 A
5541583 Mandelbaum Jul 1996 A
5544321 Theimer et al. Aug 1996 A
5552776 Wade Sep 1996 A
5563947 Kikinis Oct 1996 A
5589838 McEwan Dec 1996 A
5594227 Deo Jan 1997 A
5598474 Johnson Jan 1997 A
5611050 Theimer et al. Mar 1997 A
5619251 Kuroiwa et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629980 Stefik et al. May 1997 A
5644354 Thompson et al. Jul 1997 A
5666412 Handelman et al. Sep 1997 A
5689529 Johnson Nov 1997 A
5692049 Johnson et al. Nov 1997 A
5719387 Fujioka Feb 1998 A
5729237 Webb Mar 1998 A
5760705 Glessner et al. Jun 1998 A
5760744 Sauer Jun 1998 A
5773954 VanHorn Jun 1998 A
5784464 Akiyama et al. Jul 1998 A
5799085 Shona Aug 1998 A
5821854 Dorinski et al. Oct 1998 A
5825876 Peterson, Jr. Oct 1998 A
5835595 Fraser et al. Nov 1998 A
5838306 O'Connor et al. Nov 1998 A
5854891 Postlewaite Dec 1998 A
5857020 Peterson, Jr. Jan 1999 A
5886634 Muhme Mar 1999 A
5892825 Mages et al. Apr 1999 A
5892900 Ginter et al. Apr 1999 A
5894551 Huggins et al. Apr 1999 A
5898880 Ryu Apr 1999 A
5910776 Black Jun 1999 A
5917913 Wang Jun 1999 A
5923757 Hocker et al. Jul 1999 A
5928327 Wang et al. Jul 1999 A
5991399 Graunke et al. Nov 1999 A
5991749 Morrill, Jr. Nov 1999 A
6016476 Maes et al. Jan 2000 A
6018739 McCoy et al. Jan 2000 A
6025780 Bowers et al. Feb 2000 A
6035038 Campinos et al. Mar 2000 A
6035329 Mages et al. Mar 2000 A
6038334 Hamid Mar 2000 A
6038666 Hsu et al. Mar 2000 A
6040786 Fujioka Mar 2000 A
6041410 Hsu et al. Mar 2000 A
6042006 Van Tilburg et al. Mar 2000 A
6055314 Spies et al. Apr 2000 A
6068184 Barnett May 2000 A
6070796 Sirbu Jun 2000 A
6076164 Tanaka et al. Jun 2000 A
6088450 Davis et al. Jul 2000 A
6088730 Kato et al. Jul 2000 A
6104290 Naguleswaran Aug 2000 A
6104334 Allport Aug 2000 A
6110041 Walker et al. Aug 2000 A
6121544 Petsinger Sep 2000 A
6134283 Sands et al. Oct 2000 A
6137480 Shintani Oct 2000 A
6138010 Rabe et al. Oct 2000 A
6148142 Anderson Nov 2000 A
6148210 Elwin et al. Nov 2000 A
6161179 Seidel Dec 2000 A
6177887 Jerome Jan 2001 B1
6185316 Buffam Feb 2001 B1
6189105 Lopes Feb 2001 B1
6209089 Selitrennikoff et al. Mar 2001 B1
6219109 Raynesford et al. Apr 2001 B1
6219439 Burger Apr 2001 B1
6219553 Panasik Apr 2001 B1
6237848 Everett May 2001 B1
6240076 Kanerva et al. May 2001 B1
6247130 Fritsch Jun 2001 B1
6249869 Drupsteen et al. Jun 2001 B1
6256737 Bianco et al. Jul 2001 B1
6266415 Campinos et al. Jul 2001 B1
6270011 Gottfried Aug 2001 B1
6279111 Jensenworth et al. Aug 2001 B1
6279146 Evans et al. Aug 2001 B1
6295057 Rosin et al. Sep 2001 B1
6307471 Xydis Oct 2001 B1
6325285 Baratelli Dec 2001 B1
6336121 Lyson et al. Jan 2002 B1
6336142 Kato et al. Jan 2002 B1
6343280 Clark Jan 2002 B2
6345347 Biran Feb 2002 B1
6363485 Adams et al. Mar 2002 B1
6367019 Ansell et al. Apr 2002 B1
6369693 Gibson Apr 2002 B1
6370376 Sheath Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6381747 Wonfor et al. Apr 2002 B1
6385596 Wiser et al. May 2002 B1
6392664 White et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6401059 Shen et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6424249 Houvener Jul 2002 B1
6424715 Saito Jul 2002 B1
6425084 Rallis et al. Jul 2002 B1
6434403 Ausems et al. Aug 2002 B1
6434535 Kupka et al. Aug 2002 B1
6446004 Cao et al. Sep 2002 B1
6446130 Grapes Sep 2002 B1
6463534 Geiger et al. Oct 2002 B1
6480101 Kelly et al. Nov 2002 B1
6480188 Horsley Nov 2002 B1
6484182 Dunphy et al. Nov 2002 B1
6484260 Scott et al. Nov 2002 B1
6484946 Matsumoto et al. Nov 2002 B2
6487663 Jaisimha et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6510350 Steen, III et al. Jan 2003 B1
6522253 Saltus Feb 2003 B1
6523113 Wehrenberg Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6546418 Schena et al. Apr 2003 B2
6550011 Sims, III Apr 2003 B1
6563465 Frecska May 2003 B2
6563805 Murphy May 2003 B1
6564380 Ma et al. May 2003 B1
6577238 Whitesmith et al. Jun 2003 B1
6593887 Luk et al. Jul 2003 B2
6597680 Lindskog et al. Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6628302 White et al. Sep 2003 B2
6632992 Hasegawa Oct 2003 B2
6633981 Davis Oct 2003 B1
6645077 Rowe Nov 2003 B2
6647417 Hunter et al. Nov 2003 B1
6657538 Ritter Dec 2003 B1
6658566 Hazard Dec 2003 B1
6667684 Waggamon et al. Dec 2003 B1
6669096 Saphar et al. Dec 2003 B1
6671808 Abbott et al. Dec 2003 B1
6683954 Searle Jan 2004 B1
6697944 Jones et al. Feb 2004 B1
6709333 Bradford et al. Mar 2004 B1
6711464 Yap et al. Mar 2004 B1
6714168 Berenbaum Mar 2004 B2
6715246 Frecska et al. Apr 2004 B1
6728397 McNeal Apr 2004 B2
6737955 Ghabra et al. May 2004 B2
6758394 Maskatiya et al. Jul 2004 B2
6771969 Chinoy et al. Aug 2004 B1
6775655 Peinado et al. Aug 2004 B1
6785474 Hirt et al. Aug 2004 B2
6788640 Celeste Sep 2004 B2
6788924 Knutson et al. Sep 2004 B1
6795425 Raith Sep 2004 B1
6804825 White et al. Oct 2004 B1
6806887 Chernock et al. Oct 2004 B2
6839542 Sibecas et al. Jan 2005 B2
6850147 Prokoski et al. Feb 2005 B2
6853988 Dickinson et al. Feb 2005 B1
6859812 Poynor Feb 2005 B1
6861980 Rowitch et al. Mar 2005 B1
6873975 Hatakeyama et al. Mar 2005 B1
6879567 Callaway et al. Apr 2005 B2
6879966 Lapsley et al. Apr 2005 B1
6886741 Salveson May 2005 B1
6889067 Willey May 2005 B2
6891822 Gubbi et al. May 2005 B1
6892307 Wood et al. May 2005 B1
6930643 Byrne et al. Aug 2005 B2
6947003 Huor Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6957086 Bahl et al. Oct 2005 B2
6961858 Fransdonk Nov 2005 B2
6963270 Gallagher, III et al. Nov 2005 B1
6963971 Bush et al. Nov 2005 B1
6973576 Giobbi Dec 2005 B2
6975202 Rodriguez et al. Dec 2005 B1
6980087 Zukowski Dec 2005 B2
6983882 Cassone Jan 2006 B2
6999023 Pakray et al. Feb 2006 B2
6999032 Pakray et al. Feb 2006 B2
7012503 Nielsen Mar 2006 B2
7020635 Hamilton et al. Mar 2006 B2
7031945 Donner Apr 2006 B1
7049963 Waterhouse et al. May 2006 B2
7055171 Martin et al. May 2006 B1
7058806 Smeets et al. Jun 2006 B2
7061380 Orlando et al. Jun 2006 B1
7068623 Barany et al. Jun 2006 B1
7072900 Sweitzer et al. Jul 2006 B2
7079079 Jo et al. Jul 2006 B2
7080049 Truitt et al. Jul 2006 B2
7082415 Robinson et al. Jul 2006 B1
7090126 Kelly et al. Aug 2006 B2
7090128 Farley et al. Aug 2006 B2
7100053 Brown et al. Aug 2006 B1
7107455 Merkin Sep 2006 B1
7107462 Fransdonk Sep 2006 B2
7111789 Rajasekaran et al. Sep 2006 B2
7112138 Hedrick et al. Sep 2006 B2
7119659 Bonalle et al. Oct 2006 B2
7123149 Nowak et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7131139 Meier Oct 2006 B1
7137008 Hamid et al. Nov 2006 B1
7137012 Kamibayashi et al. Nov 2006 B1
7139914 Arnouse Nov 2006 B2
7150045 Koelle et al. Dec 2006 B2
7155416 Shatford Dec 2006 B2
7159114 Zajkowski et al. Jan 2007 B1
7159765 Frerking Jan 2007 B2
7167987 Angelo Jan 2007 B2
7168089 Nguyen et al. Jan 2007 B2
7176797 Zai et al. Feb 2007 B2
7191466 Hamid et al. Mar 2007 B1
7209955 Major et al. Apr 2007 B1
7218944 Cromer et al. May 2007 B2
7225161 Lam et al. May 2007 B2
7230908 Vanderaar et al. Jun 2007 B2
7231068 Tibor Jun 2007 B2
7231451 Law et al. Jun 2007 B2
7242923 Perera et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7272723 Abbott et al. Sep 2007 B1
7277737 Vollmer et al. Oct 2007 B1
7278025 Saito et al. Oct 2007 B2
7283650 Sharma et al. Oct 2007 B1
7295119 Rappaport et al. Nov 2007 B2
7305560 Giobbi Dec 2007 B2
7310042 Seifert Dec 2007 B2
7314164 Bonalle et al. Jan 2008 B2
7317799 Hammersmith et al. Jan 2008 B2
7319395 Puzio et al. Jan 2008 B2
7330108 Thomas Feb 2008 B2
7333002 Bixler et al. Feb 2008 B2
7333615 Jarboe et al. Feb 2008 B1
7336181 Nowak et al. Feb 2008 B2
7336182 Baranowski et al. Feb 2008 B1
7337325 Palmer et al. Feb 2008 B2
7337326 Palmer et al. Feb 2008 B2
7341181 Bonalle et al. Mar 2008 B2
7342503 Light et al. Mar 2008 B1
7349557 Tibor Mar 2008 B2
7356393 Schlatre et al. Apr 2008 B1
7356706 Scheurich Apr 2008 B2
7361919 Setlak Apr 2008 B2
7363494 Brainard et al. Apr 2008 B2
7370366 Lacan et al. May 2008 B2
7378939 Sengupta et al. May 2008 B2
7380202 Lindhorst et al. May 2008 B1
7382799 Young et al. Jun 2008 B1
7387235 Gilbert et al. Jun 2008 B2
7401731 Pletz et al. Jul 2008 B1
7424134 Chou Sep 2008 B2
7437330 Robinson et al. Oct 2008 B1
7447911 Chou et al. Nov 2008 B2
7448087 Ohmori et al. Nov 2008 B2
7458510 Zhou Dec 2008 B1
7460836 Smith et al. Dec 2008 B2
7461444 Deaett et al. Dec 2008 B2
7464053 Pylant Dec 2008 B1
7464059 Robinson et al. Dec 2008 B1
7466232 Neuwirth Dec 2008 B2
7472280 Giobbi Dec 2008 B2
7512806 Lemke Mar 2009 B2
7525413 Jung et al. Apr 2009 B2
7529944 Hamid May 2009 B2
7533809 Robinson et al. May 2009 B1
7545312 Kiang et al. Jun 2009 B2
7565329 Lapsley et al. Jul 2009 B2
7573382 Choubey et al. Aug 2009 B2
7573841 Lee et al. Aug 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7583238 Cassen et al. Sep 2009 B2
7583643 Smith et al. Sep 2009 B2
7587502 Crawford et al. Sep 2009 B2
7587611 Johnson et al. Sep 2009 B2
7594611 Arrington, III Sep 2009 B1
7595765 Hirsch et al. Sep 2009 B1
7603564 Adachi Oct 2009 B2
7606733 Shmueli et al. Oct 2009 B2
7617523 Das et al. Nov 2009 B2
7620184 Marque Pucheu Nov 2009 B2
7624073 Robinson et al. Nov 2009 B1
7624417 Dua Nov 2009 B2
7640273 Wallmeier et al. Dec 2009 B2
7644443 Matsuyama et al. Jan 2010 B2
7646307 Plocher et al. Jan 2010 B2
7652892 Shiu et al. Jan 2010 B2
7676380 Graves et al. Mar 2010 B2
7689005 Wang et al. Mar 2010 B2
7706896 Music et al. Apr 2010 B2
7711152 Davida et al. May 2010 B1
7711586 Aggarwal et al. May 2010 B2
7715593 Adams et al. May 2010 B1
7724713 Del Prado Pavon et al. May 2010 B2
7724717 Porras et al. May 2010 B2
7724720 Korpela et al. May 2010 B2
7764236 Hill et al. Jul 2010 B2
7765164 Robinson et al. Jul 2010 B1
7765181 Thomas et al. Jul 2010 B2
7773754 Buer et al. Aug 2010 B2
7774613 Lemke Aug 2010 B2
7780082 Handa et al. Aug 2010 B2
7796551 Machiraju et al. Sep 2010 B1
7813822 Hoffberg Oct 2010 B1
7865448 Pizarro Jan 2011 B2
7865937 White et al. Jan 2011 B1
7883417 Bruzzese et al. Feb 2011 B2
7904718 Giobbi et al. Mar 2011 B2
7943868 Anders et al. May 2011 B2
7957536 Nolte Jun 2011 B2
7961078 Reynolds et al. Jun 2011 B1
7984064 Fusari Jul 2011 B2
7996514 Baumert et al. Aug 2011 B2
8026821 Reeder et al. Sep 2011 B2
8036152 Brown et al. Oct 2011 B2
8077041 Stern et al. Dec 2011 B2
8081215 Kuo et al. Dec 2011 B2
8082160 Collins, Jr. et al. Dec 2011 B2
8089354 Perkins Jan 2012 B2
8112066 Ben Ayed Feb 2012 B2
8125624 Jones et al. Feb 2012 B2
8135624 Ramalingam et al. Mar 2012 B1
8171528 Brown May 2012 B1
8193923 Rork et al. Jun 2012 B2
8200980 Robinson et al. Jun 2012 B1
8215552 Rambadt Jul 2012 B1
8248263 Shervey et al. Aug 2012 B2
8258942 Lanzone et al. Sep 2012 B1
8294554 Shoarinejad et al. Oct 2012 B2
8296573 Bolle et al. Oct 2012 B2
8307414 Zerfos et al. Nov 2012 B2
8325011 Butler et al. Dec 2012 B2
8340672 Brown et al. Dec 2012 B2
8352730 Giobbi Jan 2013 B2
8373562 Heinze et al. Feb 2013 B1
8387124 Smetters et al. Feb 2013 B2
8390456 Puleston et al. Mar 2013 B2
8395484 Fullerton Mar 2013 B2
8410906 Dacus et al. Apr 2013 B1
8421606 Collins, Jr. et al. Apr 2013 B2
8424079 Adams et al. Apr 2013 B2
8432262 Talty et al. Apr 2013 B2
8433919 Giobbi et al. Apr 2013 B2
8448858 Kundu et al. May 2013 B1
8473748 Sampas Jun 2013 B2
8484696 Gatto et al. Jul 2013 B2
8494576 Bye et al. Jul 2013 B1
8508336 Giobbi et al. Aug 2013 B2
8511555 Babcock et al. Aug 2013 B2
8519823 Rinkes Aug 2013 B2
8522019 Michaelis Aug 2013 B2
8558699 Butler et al. Oct 2013 B2
8572391 Golan et al. Oct 2013 B2
8577091 Ivanov et al. Nov 2013 B2
8646042 Brown Feb 2014 B1
8678273 McNeal Mar 2014 B2
8717346 Claessen May 2014 B2
8738925 Park et al. May 2014 B1
8799574 Corda Aug 2014 B2
8856539 Weiss Oct 2014 B2
8914477 Gammon Dec 2014 B2
8918854 Giobbi Dec 2014 B1
8931698 Ishikawa et al. Jan 2015 B2
8979646 Moser et al. Mar 2015 B2
9037140 Brown May 2015 B1
9049188 Brown Jun 2015 B1
9165233 Testanero Oct 2015 B2
9189788 Robinson et al. Nov 2015 B1
9230399 Yacenda Jan 2016 B2
9235700 Brown Jan 2016 B1
9276914 Woodward et al. Mar 2016 B2
9305312 Kountotsis et al. Apr 2016 B2
9405898 Giobbi Aug 2016 B2
9418205 Giobbi Aug 2016 B2
9542542 Giobbi et al. Jan 2017 B2
9679289 Brown Jun 2017 B1
9830504 Masood et al. Nov 2017 B2
9892250 Giobbi Feb 2018 B2
10073960 Brown Sep 2018 B1
10110385 Rush et al. Oct 2018 B1
10455533 Brown Oct 2019 B2
10817964 Guillama et al. Oct 2020 B2
20010021950 Hawley et al. Sep 2001 A1
20010024428 Onouchi Sep 2001 A1
20010026619 Howard, Jr. et al. Oct 2001 A1
20010027121 Boesen Oct 2001 A1
20010027439 Holtzman et al. Oct 2001 A1
20010044337 Rowe et al. Nov 2001 A1
20020004783 Paltenghe et al. Jan 2002 A1
20020007456 Peinado et al. Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020013772 Peinado Jan 2002 A1
20020014954 Fitzgibbon et al. Feb 2002 A1
20020015494 Nagai et al. Feb 2002 A1
20020019811 Lapsley et al. Feb 2002 A1
20020022455 Salokannel et al. Feb 2002 A1
20020023032 Pearson et al. Feb 2002 A1
20020023217 Wheeler et al. Feb 2002 A1
20020026424 Akashi Feb 2002 A1
20020037732 Gous et al. Mar 2002 A1
20020052193 Chetty May 2002 A1
20020055908 Di Giorgio et al. May 2002 A1
20020056043 Glass May 2002 A1
20020059114 Cockrill et al. May 2002 A1
20020062249 Iannacci May 2002 A1
20020068605 Stanley Jun 2002 A1
20020069364 Dosch Jun 2002 A1
20020071559 Christensen et al. Jun 2002 A1
20020073042 Maritzen et al. Jun 2002 A1
20020080969 Giobbi Jun 2002 A1
20020083178 Brothers Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020086690 Takahashi et al. Jul 2002 A1
20020089890 Fibranz et al. Jul 2002 A1
20020091646 Lake et al. Jul 2002 A1
20020095586 Doyle et al. Jul 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020097876 Harrison Jul 2002 A1
20020098888 Rowe et al. Jul 2002 A1
20020100798 Farrugia et al. Aug 2002 A1
20020103027 Rowe et al. Aug 2002 A1
20020103881 Granade et al. Aug 2002 A1
20020104006 Boate et al. Aug 2002 A1
20020104019 Chatani et al. Aug 2002 A1
20020105918 Yamada et al. Aug 2002 A1
20020108049 Xu et al. Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111919 Weller et al. Aug 2002 A1
20020112183 Baird et al. Aug 2002 A1
20020116615 Nguyen et al. Aug 2002 A1
20020124251 Hunter et al. Sep 2002 A1
20020128017 Virtanen Sep 2002 A1
20020129262 Kutaragi et al. Sep 2002 A1
20020138438 Bardwell Sep 2002 A1
20020138767 Hamid et al. Sep 2002 A1
20020140542 Prokoski et al. Oct 2002 A1
20020141586 Margalit et al. Oct 2002 A1
20020143623 Dayley Oct 2002 A1
20020143655 Elston et al. Oct 2002 A1
20020144117 Faigle Oct 2002 A1
20020147653 Shmueli et al. Oct 2002 A1
20020148892 Bardwell Oct 2002 A1
20020150282 Kinsella Oct 2002 A1
20020152391 Willins et al. Oct 2002 A1
20020153996 Chan et al. Oct 2002 A1
20020158121 Stanford-Clark Oct 2002 A1
20020158750 Almalik Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20020160820 Winkler Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020177460 Beasley et al. Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020184208 Kato Dec 2002 A1
20020187746 Cheng et al. Dec 2002 A1
20020191816 Maritzen et al. Dec 2002 A1
20020196963 Bardwell Dec 2002 A1
20020199120 Schmidt Dec 2002 A1
20030022701 Gupta Jan 2003 A1
20030034877 Miller et al. Feb 2003 A1
20030036416 Pattabiraman et al. Feb 2003 A1
20030036425 Kaminkow et al. Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030046237 Uberti Mar 2003 A1
20030046552 Hamid Mar 2003 A1
20030048174 Stevens et al. Mar 2003 A1
20030051173 Krueger Mar 2003 A1
20030054868 Paulsen et al. Mar 2003 A1
20030054881 Hedrick et al. Mar 2003 A1
20030055689 Block et al. Mar 2003 A1
20030061172 Robinson Mar 2003 A1
20030063619 Montano et al. Apr 2003 A1
20030079133 Breiter et al. Apr 2003 A1
20030087601 Agam et al. May 2003 A1
20030088441 McNerney May 2003 A1
20030105719 Berger et al. Jun 2003 A1
20030109274 Budka et al. Jun 2003 A1
20030115351 Giobbi Jun 2003 A1
20030115474 Khan et al. Jun 2003 A1
20030117969 Koo et al. Jun 2003 A1
20030117980 Kim et al. Jun 2003 A1
20030120934 Ortiz Jun 2003 A1
20030127511 Kelly et al. Jul 2003 A1
20030128866 McNeal Jul 2003 A1
20030137404 Bonneau, Jr. et al. Jul 2003 A1
20030139190 Steelberg et al. Jul 2003 A1
20030146835 Carter Aug 2003 A1
20030149744 Bierre et al. Aug 2003 A1
20030156742 Witt et al. Aug 2003 A1
20030159040 Hashimoto et al. Aug 2003 A1
20030163388 Beane Aug 2003 A1
20030167207 Berardi et al. Sep 2003 A1
20030169697 Suzuki et al. Sep 2003 A1
20030172028 Abell et al. Sep 2003 A1
20030172037 Jung et al. Sep 2003 A1
20030174839 Yamagata et al. Sep 2003 A1
20030176218 LeMay et al. Sep 2003 A1
20030177102 Timothy Sep 2003 A1
20030186739 Paulsen et al. Oct 2003 A1
20030195842 Reece Oct 2003 A1
20030199267 Iwasa et al. Oct 2003 A1
20030204526 Salehi-Had Oct 2003 A1
20030213840 Livingston et al. Nov 2003 A1
20030223394 Parantainen et al. Dec 2003 A1
20030225703 Angel Dec 2003 A1
20030226031 Proudler et al. Dec 2003 A1
20030233458 Kwon et al. Dec 2003 A1
20040002347 Hoctor et al. Jan 2004 A1
20040015403 Moskowitz et al. Jan 2004 A1
20040022384 Flores et al. Feb 2004 A1
20040029620 Karaoguz Feb 2004 A1
20040029635 Giobbi Feb 2004 A1
20040030764 Birk et al. Feb 2004 A1
20040030894 Labrou et al. Feb 2004 A1
20040035644 Ford et al. Feb 2004 A1
20040039909 Cheng Feb 2004 A1
20040048570 Oba et al. Mar 2004 A1
20040048609 Kosaka Mar 2004 A1
20040059682 Hasumi et al. Mar 2004 A1
20040059912 Zizzi Mar 2004 A1
20040064728 Scheurich Apr 2004 A1
20040068656 Lu Apr 2004 A1
20040073792 Noble et al. Apr 2004 A1
20040081127 Gardner et al. Apr 2004 A1
20040082385 Silva et al. Apr 2004 A1
20040090345 Hitt May 2004 A1
20040098597 Giobbi May 2004 A1
20040114563 Shvodian Jun 2004 A1
20040117644 Colvin Jun 2004 A1
20040123106 D'Angelo et al. Jun 2004 A1
20040123127 Teicher et al. Jun 2004 A1
20040127277 Walker et al. Jul 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128389 Kopchik Jul 2004 A1
20040128500 Cihula et al. Jul 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040128519 Klinger et al. Jul 2004 A1
20040129787 Saito et al. Jul 2004 A1
20040132432 Moores et al. Jul 2004 A1
20040137912 Lin Jul 2004 A1
20040158746 Hu et al. Aug 2004 A1
20040166875 Jenkins et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040181695 Walker Sep 2004 A1
20040193925 Safriel Sep 2004 A1
20040194133 Ikeda et al. Sep 2004 A1
20040203566 Leung Oct 2004 A1
20040203923 Mullen Oct 2004 A1
20040208139 Iwamura Oct 2004 A1
20040209690 Bruzzese et al. Oct 2004 A1
20040209692 Schober et al. Oct 2004 A1
20040214582 Lan et al. Oct 2004 A1
20040215615 Larsson et al. Oct 2004 A1
20040217859 Pucci et al. Nov 2004 A1
20040218581 Cattaneo Nov 2004 A1
20040222877 Teramura et al. Nov 2004 A1
20040230488 Beenau et al. Nov 2004 A1
20040230809 Lowensohn et al. Nov 2004 A1
20040234117 Tibor Nov 2004 A1
20040243519 Perttila et al. Dec 2004 A1
20040246103 Zukowski Dec 2004 A1
20040246950 Parker et al. Dec 2004 A1
20040250074 Kilian-Kehr Dec 2004 A1
20040252012 Beenau et al. Dec 2004 A1
20040252659 Yun et al. Dec 2004 A1
20040253996 Chen et al. Dec 2004 A1
20040254837 Roshkoff Dec 2004 A1
20040255139 Giobbi Dec 2004 A1
20040255145 Chow Dec 2004 A1
20050001028 Zuili Jan 2005 A1
20050002028 Kasapi et al. Jan 2005 A1
20050005136 Chen et al. Jan 2005 A1
20050006452 Aupperle et al. Jan 2005 A1
20050009517 Maes Jan 2005 A1
20050021561 Noonan Jan 2005 A1
20050025093 Yun et al. Feb 2005 A1
20050028168 Marcjan Feb 2005 A1
20050035897 Perl et al. Feb 2005 A1
20050039027 Shapiro Feb 2005 A1
20050040961 Tuttle Feb 2005 A1
20050044372 Aull et al. Feb 2005 A1
20050044387 Ozolins Feb 2005 A1
20050047386 Yi Mar 2005 A1
20050049013 Chang et al. Mar 2005 A1
20050050208 Chatani Mar 2005 A1
20050050324 Corbett et al. Mar 2005 A1
20050054431 Walker et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050058292 Diorio et al. Mar 2005 A1
20050074126 Stanko Apr 2005 A1
20050076242 Breuer Apr 2005 A1
20050081040 Johnson et al. Apr 2005 A1
20050084137 Kim et al. Apr 2005 A1
20050086115 Pearson Apr 2005 A1
20050086515 Paris Apr 2005 A1
20050089000 Bae et al. Apr 2005 A1
20050090200 Karaoguz et al. Apr 2005 A1
20050091338 de la Huerga Apr 2005 A1
20050091553 Chien et al. Apr 2005 A1
20050094657 Sung et al. May 2005 A1
20050097037 Tibor May 2005 A1
20050105600 Culum et al. May 2005 A1
20050105734 Buer et al. May 2005 A1
20050108164 Salafia, III et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050109841 Ryan et al. May 2005 A1
20050113070 Okabe May 2005 A1
20050114149 Rodriguez et al. May 2005 A1
20050114150 Franklin May 2005 A1
20050116020 Smolucha et al. Jun 2005 A1
20050117530 Abraham et al. Jun 2005 A1
20050119979 Murashita et al. Jun 2005 A1
20050124294 Wentink Jun 2005 A1
20050125258 Yellin et al. Jun 2005 A1
20050137977 Wankmuellerjohn Jun 2005 A1
20050138390 Adams et al. Jun 2005 A1
20050138576 Baumert et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050141451 Yoon et al. Jun 2005 A1
20050152394 Cho Jul 2005 A1
20050154897 Holloway et al. Jul 2005 A1
20050161503 Remery et al. Jul 2005 A1
20050165684 Jensen et al. Jul 2005 A1
20050166063 Huang Jul 2005 A1
20050167482 Ramachandran et al. Aug 2005 A1
20050169292 Young Aug 2005 A1
20050177716 Ginter et al. Aug 2005 A1
20050180385 Jeong et al. Aug 2005 A1
20050182661 Allard et al. Aug 2005 A1
20050182975 Guo et al. Aug 2005 A1
20050187792 Harper Aug 2005 A1
20050192748 Andric et al. Sep 2005 A1
20050195975 Kawakita Sep 2005 A1
20050200453 Turner et al. Sep 2005 A1
20050201389 Shimanuki et al. Sep 2005 A1
20050203682 Omino et al. Sep 2005 A1
20050203844 Ferguson Sep 2005 A1
20050210270 Rohatgi et al. Sep 2005 A1
20050212657 Simon Sep 2005 A1
20050215233 Perera et al. Sep 2005 A1
20050216313 Claud et al. Sep 2005 A1
20050216639 Sparer et al. Sep 2005 A1
20050218215 Lauden Oct 2005 A1
20050220046 Falck et al. Oct 2005 A1
20050221869 Liu et al. Oct 2005 A1
20050229007 Bolle et al. Oct 2005 A1
20050229240 Nanba Oct 2005 A1
20050242921 Zimmerman et al. Nov 2005 A1
20050243787 Hong et al. Nov 2005 A1
20050249385 Kondo et al. Nov 2005 A1
20050251688 Nanavati et al. Nov 2005 A1
20050253683 Lowe Nov 2005 A1
20050257102 Moyer et al. Nov 2005 A1
20050264416 Maurer Dec 2005 A1
20050268111 Markham Dec 2005 A1
20050269401 Spitzer et al. Dec 2005 A1
20050272403 Ryu et al. Dec 2005 A1
20050281320 Neugebauer Dec 2005 A1
20050282558 Choi et al. Dec 2005 A1
20050284932 Sukeda et al. Dec 2005 A1
20050287985 Balfanz et al. Dec 2005 A1
20050288069 Arunan et al. Dec 2005 A1
20050289473 Gustafson et al. Dec 2005 A1
20060001525 Nitzan et al. Jan 2006 A1
20060014430 Liang et al. Jan 2006 A1
20060022042 Smets et al. Feb 2006 A1
20060022046 Iwamura Feb 2006 A1
20060022800 Krishna et al. Feb 2006 A1
20060025180 Rajkotia et al. Feb 2006 A1
20060026673 Tsuchida Feb 2006 A1
20060030279 Michael Feb 2006 A1
20060030353 Jun Feb 2006 A1
20060034250 Kim et al. Feb 2006 A1
20060041746 Kirkup et al. Feb 2006 A1
20060046664 Paradiso et al. Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060063575 Gatto et al. Mar 2006 A1
20060069814 Abraham et al. Mar 2006 A1
20060072586 Callaway, Jr. et al. Apr 2006 A1
20060074713 Conry et al. Apr 2006 A1
20060076401 Frerking Apr 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060087407 Stewart et al. Apr 2006 A1
20060089138 Smith et al. Apr 2006 A1
20060097949 Luebke et al. May 2006 A1
20060110012 Ritter May 2006 A1
20060111955 Winter et al. May 2006 A1
20060113381 Hochstein et al. Jun 2006 A1
20060116935 Evans Jun 2006 A1
20060117013 Wada Jun 2006 A1
20060120287 Foti et al. Jun 2006 A1
20060129838 Chen et al. Jun 2006 A1
20060136728 Gentry et al. Jun 2006 A1
20060136742 Giobbi Jun 2006 A1
20060143441 Giobbi Jun 2006 A1
20060144943 Kim Jul 2006 A1
20060156027 Blake Jul 2006 A1
20060158308 McMullen et al. Jul 2006 A1
20060163349 Neugebauer Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060169771 Brookner Aug 2006 A1
20060170530 Nwosu et al. Aug 2006 A1
20060170565 Husak et al. Aug 2006 A1
20060172700 Wu Aug 2006 A1
20060173846 Omae et al. Aug 2006 A1
20060173991 Piikivi Aug 2006 A1
20060183426 Graves et al. Aug 2006 A1
20060183462 Kolehmainen Aug 2006 A1
20060184795 Doradla et al. Aug 2006 A1
20060185005 Graves et al. Aug 2006 A1
20060187029 Thomas Aug 2006 A1
20060190348 Ofer et al. Aug 2006 A1
20060190413 Harper Aug 2006 A1
20060194598 Kim et al. Aug 2006 A1
20060195576 Rinne et al. Aug 2006 A1
20060198337 Hoang et al. Sep 2006 A1
20060200467 Ohmori et al. Sep 2006 A1
20060205408 Nakagawa et al. Sep 2006 A1
20060208066 Finn et al. Sep 2006 A1
20060208853 Kung et al. Sep 2006 A1
20060222042 Teramura et al. Oct 2006 A1
20060226950 Kanou et al. Oct 2006 A1
20060229909 Kaila et al. Oct 2006 A1
20060236373 Graves et al. Oct 2006 A1
20060237528 Bishop et al. Oct 2006 A1
20060238305 Loving et al. Oct 2006 A1
20060268891 Heidari-Bateni et al. Nov 2006 A1
20060273176 Audebert et al. Dec 2006 A1
20060274711 Nelson, Jr. et al. Dec 2006 A1
20060279412 Holland et al. Dec 2006 A1
20060286969 Talmor et al. Dec 2006 A1
20060288095 Torok et al. Dec 2006 A1
20060288233 Kozlay Dec 2006 A1
20060290580 Noro et al. Dec 2006 A1
20060293925 Flom Dec 2006 A1
20060294388 Abraham et al. Dec 2006 A1
20070003111 Awatsu et al. Jan 2007 A1
20070005403 Kennedy et al. Jan 2007 A1
20070007331 Jasper et al. Jan 2007 A1
20070008070 Friedrich Jan 2007 A1
20070008916 Haugli et al. Jan 2007 A1
20070011724 Gonzalez Jan 2007 A1
20070016800 Spottswood et al. Jan 2007 A1
20070019845 Kato Jan 2007 A1
20070029381 Braiman Feb 2007 A1
20070032225 Konicek et al. Feb 2007 A1
20070032288 Nelson et al. Feb 2007 A1
20070033072 Bildirici Feb 2007 A1
20070033150 Nwosu Feb 2007 A1
20070036396 Sugita et al. Feb 2007 A1
20070038751 Jorgensen Feb 2007 A1
20070043594 Lavergne Feb 2007 A1
20070050259 Wesley Mar 2007 A1
20070050398 Mochizuki Mar 2007 A1
20070051794 Glanz et al. Mar 2007 A1
20070051798 Kawai Mar 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070060095 Subrahmanya et al. Mar 2007 A1
20070060319 Block et al. Mar 2007 A1
20070064742 Shvodian Mar 2007 A1
20070069852 Mo et al. Mar 2007 A1
20070070040 Chen et al. Mar 2007 A1
20070072636 Worfolk et al. Mar 2007 A1
20070073553 Flinn et al. Mar 2007 A1
20070084523 McLean et al. Apr 2007 A1
20070084913 Weston Apr 2007 A1
20070087682 DaCosta Apr 2007 A1
20070087834 Moser et al. Apr 2007 A1
20070100507 Simon May 2007 A1
20070100939 Bagley et al. May 2007 A1
20070109117 Heitzmann et al. May 2007 A1
20070112676 Kontio et al. May 2007 A1
20070118891 Buer May 2007 A1
20070120643 Lee May 2007 A1
20070132586 Plocher et al. Jun 2007 A1
20070133478 Armbruster et al. Jun 2007 A1
20070136407 Rudelic Jun 2007 A1
20070142032 Balsillie Jun 2007 A1
20070152826 August et al. Jul 2007 A1
20070156850 Corrion Jul 2007 A1
20070157249 Cordray et al. Jul 2007 A1
20070158411 Krieg, Jr. Jul 2007 A1
20070159301 Hirt et al. Jul 2007 A1
20070159994 Brown et al. Jul 2007 A1
20070164847 Crawford et al. Jul 2007 A1
20070169121 Hunt et al. Jul 2007 A1
20070174809 Brown et al. Jul 2007 A1
20070176756 Friedrich Aug 2007 A1
20070176778 Ando et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070187266 Porter et al. Aug 2007 A1
20070192601 Spain et al. Aug 2007 A1
20070194882 Yokota et al. Aug 2007 A1
20070198436 Weiss Aug 2007 A1
20070204078 Boccon-Gibod et al. Aug 2007 A1
20070205860 Jones et al. Sep 2007 A1
20070205861 Nair et al. Sep 2007 A1
20070213048 Trauberg Sep 2007 A1
20070214492 Gopi et al. Sep 2007 A1
20070218921 Lee et al. Sep 2007 A1
20070219926 Korn Sep 2007 A1
20070220272 Campisi et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070245157 Giobbi et al. Oct 2007 A1
20070245158 Giobbi et al. Oct 2007 A1
20070247366 Smith et al. Oct 2007 A1
20070258626 Reiner Nov 2007 A1
20070260883 Giobbi et al. Nov 2007 A1
20070260888 Giobbi et al. Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20070268862 Singh et al. Nov 2007 A1
20070271194 Walker et al. Nov 2007 A1
20070271433 Takemura Nov 2007 A1
20070277044 Graf et al. Nov 2007 A1
20070280509 Owen et al. Dec 2007 A1
20070285212 Rotzoll Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070288263 Rodgers Dec 2007 A1
20070288752 Chan Dec 2007 A1
20070293155 Liao et al. Dec 2007 A1
20070294755 Dadhia et al. Dec 2007 A1
20070296544 Beenau et al. Dec 2007 A1
20080001783 Cargonja et al. Jan 2008 A1
20080005432 Kagawa Jan 2008 A1
20080008359 Beenau et al. Jan 2008 A1
20080011842 Curry et al. Jan 2008 A1
20080012685 Friedrich et al. Jan 2008 A1
20080012767 Caliri et al. Jan 2008 A1
20080016004 Kurasaki et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080028227 Sakurai Jan 2008 A1
20080028453 Nguyen et al. Jan 2008 A1
20080040609 Giobbi Feb 2008 A1
20080046366 Bemmel et al. Feb 2008 A1
20080046715 Balazs et al. Feb 2008 A1
20080049700 Shah et al. Feb 2008 A1
20080061941 Fischer et al. Mar 2008 A1
20080071577 Highley Mar 2008 A1
20080072063 Takahashi et al. Mar 2008 A1
20080088475 Martin Apr 2008 A1
20080090548 Ramalingam Apr 2008 A1
20080095359 Schreyer et al. Apr 2008 A1
20080107089 Larsson et al. May 2008 A1
20080109895 Janevski May 2008 A1
20080111752 Lindackers et al. May 2008 A1
20080127176 Lee et al. May 2008 A1
20080129450 Riegebauer Jun 2008 A1
20080148351 Bhatia et al. Jun 2008 A1
20080149705 Giobbi et al. Jun 2008 A1
20080150678 Giobbi et al. Jun 2008 A1
20080156866 McNeal Jul 2008 A1
20080164997 Aritsuka et al. Jul 2008 A1
20080169909 Park et al. Jul 2008 A1
20080186166 Zhou et al. Aug 2008 A1
20080188308 Shepherd et al. Aug 2008 A1
20080195863 Kennedy Aug 2008 A1
20080201768 Koo et al. Aug 2008 A1
20080203107 Conley et al. Aug 2008 A1
20080209571 Bhaskar et al. Aug 2008 A1
20080218416 Handy et al. Sep 2008 A1
20080222701 Saaranen et al. Sep 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080228524 Brown Sep 2008 A1
20080235144 Phillips Sep 2008 A1
20080238625 Rofougaran et al. Oct 2008 A1
20080250388 Meyer et al. Oct 2008 A1
20080251579 Larsen Oct 2008 A1
20080278325 Zimman et al. Nov 2008 A1
20080289030 Poplett Nov 2008 A1
20080289032 Aoki Nov 2008 A1
20080303637 Gelbman et al. Dec 2008 A1
20080313728 Pandrangi et al. Dec 2008 A1
20080314971 Faith et al. Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002134 McAllister Jan 2009 A1
20090013191 Popowski Jan 2009 A1
20090016573 McAfee, II et al. Jan 2009 A1
20090024584 Dharap et al. Jan 2009 A1
20090033464 Friedrich Feb 2009 A1
20090033485 Naeve et al. Feb 2009 A1
20090036164 Rowley Feb 2009 A1
20090041309 Kim et al. Feb 2009 A1
20090045916 Nitzan et al. Feb 2009 A1
20090052389 Qin et al. Feb 2009 A1
20090070146 Haider et al. Mar 2009 A1
20090076849 Diller Mar 2009 A1
20090081996 Duggal et al. Mar 2009 A1
20090096580 Paananen Apr 2009 A1
20090125401 Beenau et al. May 2009 A1
20090140045 Evans Jun 2009 A1
20090157512 King Jun 2009 A1
20090176566 Kelly Jul 2009 A1
20090177495 Abousy et al. Jul 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090237245 Brinton et al. Sep 2009 A1
20090237253 Neuwirth Sep 2009 A1
20090239667 Rowe et al. Sep 2009 A1
20090253516 Hartmann et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090264712 Baldus et al. Oct 2009 A1
20090310514 Jeon et al. Dec 2009 A1
20090313689 Nyström et al. Dec 2009 A1
20090319788 Zick et al. Dec 2009 A1
20090320118 Müller et al. Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090328182 Malakapalli et al. Dec 2009 A1
20100005526 Tsuji et al. Jan 2010 A1
20100007498 Jackson Jan 2010 A1
20100022308 Hartmann et al. Jan 2010 A1
20100023074 Powers et al. Jan 2010 A1
20100037255 Sheehan et al. Feb 2010 A1
20100062743 Jonsson Mar 2010 A1
20100077214 Jogand-Coulomb et al. Mar 2010 A1
20100117794 Adams et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100169442 Liu et al. Jul 2010 A1
20100169964 Liu et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100174911 Isshiki Jul 2010 A1
20100188226 Seder et al. Jul 2010 A1
20100214100 Page Aug 2010 A1
20100277283 Burkart et al. Nov 2010 A1
20100277286 Burkart et al. Nov 2010 A1
20100291896 Corda Nov 2010 A1
20100305843 Yan et al. Dec 2010 A1
20100328033 Kamei Dec 2010 A1
20110072034 Sly et al. Mar 2011 A1
20110072132 Shafer et al. Mar 2011 A1
20110082735 Kannan et al. Apr 2011 A1
20110085287 Ebrom et al. Apr 2011 A1
20110091136 Danch et al. Apr 2011 A1
20110116358 Li et al. May 2011 A9
20110126188 Bernstein et al. May 2011 A1
20110227740 Wohltjen Sep 2011 A1
20110238517 Ramalingam et al. Sep 2011 A1
20110246790 Koh et al. Oct 2011 A1
20110266348 Denniston, Jr. Nov 2011 A1
20110307599 Saretto et al. Dec 2011 A1
20120028609 Hruskajohn Feb 2012 A1
20120030006 Yoder et al. Feb 2012 A1
20120069776 Caldwell et al. Mar 2012 A1
20120086571 Scalisi et al. Apr 2012 A1
20120182123 Butler et al. Jul 2012 A1
20120212322 Idsøe Aug 2012 A1
20120226451 Bacot et al. Sep 2012 A1
20120226565 Youriy Sep 2012 A1
20120226907 Hohberger et al. Sep 2012 A1
20120238287 Scherzer Sep 2012 A1
20120278188 Attar et al. Nov 2012 A1
20120310720 Balsan et al. Dec 2012 A1
20130019295 Park et al. Jan 2013 A1
20130019323 Arvidsson et al. Jan 2013 A1
20130044111 VanGilder et al. Feb 2013 A1
20130111543 Brown et al. May 2013 A1
20130135082 Xian et al. May 2013 A1
20130179201 Fuerstenberg et al. Jul 2013 A1
20130276140 Coffing et al. Oct 2013 A1
20130331063 Cormier et al. Dec 2013 A1
20140074696 Glaser Mar 2014 A1
20140147018 Argue et al. May 2014 A1
20140266604 Masood et al. Sep 2014 A1
20140266713 Sehgal et al. Sep 2014 A1
20150039451 Paul Feb 2015 A1
20150294293 Mikael Oct 2015 A1
20150310385 King et al. Oct 2015 A1
20150310440 Hynes et al. Oct 2015 A1
20160210614 Hall Jul 2016 A1
20160300236 Wiley et al. Oct 2016 A1
20170085564 Giobbi et al. Mar 2017 A1
20170091548 Agrawal et al. Mar 2017 A1
20180322718 Qian et al. Nov 2018 A1
20180357475 Honda et al. Dec 2018 A1
20190172281 Einberg et al. Jun 2019 A1
20190260724 Hefetz et al. Aug 2019 A1
Foreign Referenced Citations (12)
Number Date Country
H 10-49604 Feb 1998 JP
0062505 Oct 2000 WO
0122724 Mar 2001 WO
0135334 May 2001 WO
0175876 Oct 2001 WO
0177790 Oct 2001 WO
2004010774 Feb 2004 WO
2004038563 May 2004 WO
2005031663 Apr 2005 WO
2005050450 Jun 2005 WO
2005086802 Sep 2005 WO
2007087558 Aug 2007 WO
Non-Patent Literature Citations (79)
Entry
Micronas, “Micronas and Thomson Multimedia Showcase a New Copy Protection System that Will Drive the Future of Digital Television,” Jan. 8, 2002, retrieved from www.micronas.com/press/pressreleases/printer.php?ID=192 on Mar. 4, 2002, 3 pgs.
Muller, “Desktop Encyclopedia of the Internet,” 1999, Artech House Inc., Norwood, MA, all pages.
National Criminal Justice Reference Service, “Antenna Types,” Dec. 11, 2006, online at http://ncjrs.gov/pdfffiles/nij/185030b.pdf, retrieved from http://web.archive.org/web/*/http://www.ncjrs.gov/pdffiles1/nij/185030b.pdf on Jan. 12, 2011, 1 pg.
Nel et al., “Generation of Keys for use with the Digital Signature Standard (DSS),” Communications and Signal Processing, Proceedings of the 1993 IEEE South African Symposium, Aug. 6, 1993, pp. 6-11.
Nerd Vittles, “magicJack: Could It Be the Asterisk Killer?” Aug. 1, 2007, retrieved from http://nerdvittles.com/index.php?p=187 on or before Oct. 11, 2011, 2 pgs.
Nilsson et al., “Match-on-Card for Java Cards,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf on Jan. 7, 2007, 5 pgs.
Noore, “Highly Robust Biometric Smart Card Design.” IEEE Transactions on Consumer Electronics, vol. 46, No. 4, Nov. 2000, pp. 1059-1063.
Nordin, “Match-on-Card Technology,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf on Jan. 7, 2007, 7 pgs.
Paget, “The Security Behind Secure Extranets,” Enterprise Systems Journal, vol. 14, No. 12, Dec. 1999, 4 pgs.
Pash, “Automate proximity and location-based computer actions,” Jun. 5, 2007, retrieved from http://lifehacker.com/265822/automate-proximity-and-location+based-computer-actions on or before Oct. 11, 2011, 3 pgs.
Pope et al., “Oasis Digital Signature Services: Digital Signing without the Headaches,” IEEE Internet Computing, vol. 10, Sep./Oct. 2006, pp. 81-84.
SAFLInk Corporation, “SAFModule™: A Look Into Strong Authentication,” white paper, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/6/SAFmod_WP.pdf on Jan. 7, 2007, 8 pgs.
Sapsford, “E-Business: Sound Waves Could Help Ease Web-Fraud Woes,” Wall Street Journal, Aug. 14, 2000, p. B1.
Singh et al. “A Constraint-Based Biometric Scheme on ATM and Swiping Machine.” 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), Mar. 11, 2016, pp. 74-79.
Smart Card Alliance, “Contactless Technology for Secure Physical Access: Technology and Standards Choices,” Smart Card Alliance, Oct. 2002, pp. 1-48.
Smart Card Alliance, “Alliance Activities: Publications: Identity: Identity Management Systems, Smart Cards and Privacy,” 1997-2007, retrieved from www.smartcardalliance.org/pages/publications-identity on Jan. 7, 2007, 3 pgs.
SplashID, “SplashID—Secure Password Manager for PDAs and Smartphones,” Mar. 8, 2007, retrieved from http://www.splashdata.com/splashid/ via http://www.archive.org/ on or before Oct. 11, 2011, 2 pgs.
Srivastava, “Is internet security a major issue with respect to the slow acceptance rate of digital signatures,” Jan. 2, 2005, Computer Law & Security Report, pp. 392-404.
Thomson Multimedia, “Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security,” retrieved from www.thompson-multimedia.com/gb/06/c01/010530.htm on Mar. 4, 2002, May 30, 2001, 2 pgs.
UnixHelp, “What is a file?” Apr. 30, 1998, retrieved from unixhelp.ed.ac.uk/editors/whatisafile.html.accessed Mar. 11, 2010 via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html on Mar. 11, 2011, 1 pg.
Vainio, “Bluetooth Security,” Helsinki University of Technology, May 25, 2000, 17 pgs.
Van Winkle, “Bluetooth: The King of Connectivity,” Laptop Buyer's Guide and Handbook, Jan. 2000, pp. 148-153.
Wade, “Using Fingerprints to Make Payments at POS Slowly Gaining Popularity,” Credit Union Journal, International Biometric Group, Apr. 21, 2003, retrieved from http://www.biometricgroup.com/in_the_news/04.21.03.html on Jan. 7, 2007, 3 pgs.
Wallace, “The Internet Unplugged,” InformationWeek, vol. 765, No. 22, Dec. 13, 1999, pp. 22-24.
Weber, “In the Age of Napster, Protecting Copyright is a Digital Arms Race,” Wall Street Journal, Eastern ed., Jul. 24, 2000, p. B1.
White, “How Computers Work,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Yoshida, “Content protection plan targets wireless home networks,” EE Times, Jan. 11, 2002, retrieved from www.eetimes.com/story/OEG20020111S0060 on Mar. 4, 2002, 2 pgs.
IEEE Computer Society, “IEEE Std 802.15.4™—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” The Institute of Electrical and Electronics Engineers, Inc., New York, NY, Oct. 1, 2003, 679 pgs.
Smart Card Alliance, “Smart Cards and Biometrics White Paper: Smart Card Alliance,” May 2002, retrieved from http://www.securitymanagement.com/library/smartcard_faqtech0802.pdf on Jan. 7, 2007, 7 pgs.
Anonymous, “Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002, retrieved from http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0____ on Jan. 7, 2007, 5 pgs.
Anonymous, “Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet,” Computergram International, Jan. 18, 1996, 2 pgs.
Anonymous, “IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, last modified Mar. 21, 2009, retrieved from http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 on Apr. 30, 2009, 5 pgs.
Antonoff, “Visiting Video Valley,” Sound & Vision, Nov. 2001, pp. 116, 118-119.
Apple et al., “Smart Card Setup Guide,” 2006, downloaded from http://manuals.info.apple.com/en_US/Smart_Card_Setup_Guide.pdf on or before May 3, 2012, 16 pgs.
Balanis, “Antenna Theory: A Review,” Jan. 1992, Proceedings of the IEEE, vol. 80, No. 1, p. 13.
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), Mar. 14-17, 2004, pp. 319-328.
BioPay, LLC, “Frequently Asked Questions (FAQs) About BioPay,” at least as early as Jan. 7, 2007, retrieved from http://www.biopay.com/faqs-lowes.asp on Jan. 7, 2007, 5 pgs.
BlueProximity, “BlueProximity—Leave it—it's locked, come back, it's back too . . . ” Aug. 26, 2007, retrieved from http://blueproximity.sourceforge.net/ via http://www.archive.org/ on or before Oct. 11, 2011, 1 pg.
Bluetooth SIG, Inc. “Bluetooth,” www.bluetoothcom, Jun. 1, 2000, 8 pgs.
Bluetooth SIG, Inc., “Say Hello to Bluetooth,” retrieved from www.bluetooth.com, at least as early as Jan. 14, 2005, 4 pgs.
Blum, “Digital Rights Management May Solve the Napster ‘Problem,’” Technology Investor, Oct. 2000, pp. 24-27.
Bohrsatom et al., “Automatically unlock PC when entering proximity,” Dec. 7, 2005, retrieved from http://salling.com/forums/viewtopic.php?t=3190 on or before Oct. 11, 2011, 3 pgs.
Brown, “Techniques for Privacy and Authentication in Personal Communication Systems,” Personal Communications, IEEE, Aug. 1995, vol. 2, No. 4, pp. 6-10.
Chen et al. “On Enhancing Biometric Authentication with Data Protection.” KES2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No. 00TH8516), vol. 1, Aug. 1, 2000, pp. 249-252.
Cisco Systems, Inc., “Antenna Patterns and Their Meaning,” 1992-2007, p. 10.
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.com/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs.
Dagan, “Power over Ethernet (PoE) Midspan—The Smart Path to Providign Power for IP Telephony,” Product Manager, Systems, Aug. 2005, Power Dsine Inc., 28 pgs.
Dai et al., “Toward Blockchain-Based Accounting and Assurance”, 2017, Journal of Information Systems, vol. 31, No. 3, Fall 2017, pp. 5-21.
DeBow, “Credit/Debit Debuts in Midwest Smart Card Test,” Computers in Banking, vol. 6, No. 11, Nov. 1989, pp. 10-13.
Dennis, “Digital Passports Need Not Infringe Civil Liberties,” Newsbytes, NA, Dec. 2, 1999, 2 pgs.
Derfler, “How Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, Emeryville, CA, all pages.
Farouk et al., “Authentication Mechanisms in Grid Computing Environment: Comparative Study,” IEEE, Oct. 2012, p. 1-6.
Fasca, “S3, Via Formalize Agreement,” Electronic News, The Circuit, 45(45, Nov. 8, 1999), p. 20.
Giobbi, Specification of U.S. Appl. No. 60/824,758, filed Sep. 6, 2006, all pages.
Govindan et al. “Real Time Security Management Using RFID, Biometric and Smart Messages.” 2009 3rd International Conference on Anti-Counterfeiting, Security, and Identification in Communication, Aug. 20, 2009, pp. 282-285.
Gralla, “How the Internet Works,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Hendron, “File Security, Keychains, Encryptioin, and More with Mac OS X (10.3+)” Apr. 4, 2005, downloaded from http://www.johnhendron.net/documents/OSX_Security.pdf on or before May 3, 2012, 30 pgs.
International Search Report and Written Opinion for International Application No. PCT/US04/38124, dated Apr. 7, 2005, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/07535, dated Dec. 6, 2005, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/43447, dated Feb. 22, 2007, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/46843, dated Mar. 1, 2007, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/00349, dated Mar. 19, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11102, dated Oct. 3, 2008, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11103, dated Apr. 23, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11104, dated Jun. 26, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11105, dated Oct. 20, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/83060, dated Dec. 29, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/87835, dated Feb. 11, 2009, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US09/34095, dated Mar. 25, 2009, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/039943, dated Jun. 1, 2009, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/037609, dated Dec. 9, 2014, 13 pgs.
Jeyaprakash et al. “Secured Smart Card Using Palm Vein Biometric On-Card-Process.” 2008 International Conference on Convergence and Hybrid Information Technology, 2008, pp. 548-551.
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System,” May 2002, Smart Card Alliance, p. 1-29.
Kontzer, “Thomson Bets on Smart Cards for Video Encryption,” InformationWeek, Jun. 7, 2001, retrieved from www.informationweek.com/story/IWK20010607S0013 on Mar. 4, 2002, 1 pg.
Lake, “Downloading for Dollars: Who said buying music off the Net would be easy?,” Sound & Vision, Nov. 2000, pp. 137-138.
Lee et al., “Effects of dielectric superstrates on a two-layer electromagnetically coupled patch antenna,” Antennas and Propagation Society International Symposium, Jun. 1989, AP-S. Digest, vol. 2, pp. 26-30, found at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1347.
Lewis, “Sony and Visa in On-Line Entertainment Venture,” New York Times, vol. 145, Thurs. Ed., Nov. 16, 1995, 1 pg.
Liu et al., “A Practical Guide to Biometric Security Technology, ” IT Pro, vol. 3, No. 1, Jan./Feb. 2001, pp. 27-32.
McIver et al., “Identification and Verification Working Together,” Bioscrypt, White Paper: Identification and Verification Working Together, Aug. 27, 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf on Jan. 7, 2007, 5 pgs.
Provisional Applications (1)
Number Date Country
61015110 Dec 2007 US
Continuations (2)
Number Date Country
Parent 14973565 Dec 2015 US
Child 16672214 US
Parent 12340501 Dec 2008 US
Child 14973565 US