1. Field of the Invention
This invention relates to security and more particularly to an improved security system for print material and method such as printed documents and the like.
2. Description of the Related Art
Until the advent and commercial availability of the modern copy machine in the 1950's, copying a document was difficult if not substantially impossible. Therefore, copy protection schemes and systems were not required. The modern copy machine enabled high quality black & white copies of documents to be easily produced. As copier technology further improved and color copiers were developed, the range of documents which could be copied vastly increased even to include currency and checks.
There then became the need to produce schemes, systems and equipment to prevent unauthorized copying of documents. Paper type, quality and printing method became one attempt to prevent counterfeiting these documents. Paper containing fluorescent fibers and chemical stains and watermarks, and specialty inks such as thermo-chromic inks were used.
The printing process itself was used in an attempt to thwart counterfeiting. Security inks, various taggants, intaglio printing were utilized. Likewise, printing interference patterns, microprinting and bar codes were also employed. Post-printing techniques include bio-metrics and radio frequency identification devices.
Concurrent with copy machine development, various computer systems and devices such as I/O devices enabled a person to create an electronic copy of a document. The ability to produce an electronic copy opened new opportunities for counterfeiters when combined with high level printing devices. New opportunities were also opened for legitimate handlers of these types of documents. The need for a system to identify a document led to the development of several magnetic ink character recognition (MCIR) systems. These systems comprise fonts used on bank checks.
Two such systems are the MICR E-13B and the CMC-7. Both systems were developed in accordance with ISO (International Standards Organization) specifications. The E-13B font further complies with strict ABA and ANSI standards. The E-13B font is used for magnetic and optical character recognition in the US, Canada, the UK and several other countries. The CMC-7 system is an MICR barcode font used in Mexico, France Spain and most Spanish speaking countries.
Although these systems have provided a degree of copy protection in addition to recognition of a document, there is still a significant need to provide a more secure system to prevent unauthorized reproduction. There have been many in the prior art who have attempted to solve these problems with varying degrees of success. None, however completely satisfies the requirements for a complete solution to the aforestated problem. The following U.S. patents are attempts of the prior art to solve this problem.
U.S. Pat. No. 3,938,089 to McGregor, et al. discloses an improved character reading system that utilizes two separate read devices. A first read device and a second read device are provided in combination with a random access memory for storing each character read by the first read device, and a memory control circuit for writing each character into the random access memory. A comparison logic circuit is provided for comparing each character as read by the second read device with the corresponding character stored in the random access memory. The system also includes a time-out counter for indicating when the last character has been read and a comparison logic timing circuit for controlling the comparison logic and triggering the random access memory read control circuit so as to provide the corresponding character to the comparison logic.
U.S. Pat. No. 3,949,363 to Holm discloses a redundant character recognition system which minimizes both read failures and ambiguities caused by conflicting read signals by merging character recognition signals from MICR, OCR and Bar-Code read heads to produce a single data stream for automatic sorting of a constant velocity train of documents. In the event the MICR and OCR readers are unable to identify a character image, a Bar-Code reader is used to supplement MICR/OCR data by replacing MICR data field rejects with bar-code data field recognition signals. When rejects are generated from both the MICR and bar-code data fields, only self-checking fields within the bar-code data field are merged upon a successful self-check test being performed. If self-checking errors occur, the MICR read data is restored.
U.S. Pat. No. 4,168,088 to Somlyody discloses a document which is made secure from illegal copying by color copiers. The invention comprises including in the printed document a warning word of phrase which is made up of picture elements which are less dense than its surrounding background, but the density changes gradually and not sharply with respect to the surrounding background density.
U.S. Pat. No. 4,315,246 to Milford discloses a character recognition system for selectively reading and identifying a plurality of characters printed in magnetic ink on a first document and a second document. The documents are bank checks and the like. The system used with reader/sorter equipment for delivering data to an on-line computer. The system is characterized by the ability to store all of the character codes of the magnetic ink characters on the documents, compare the character codes and logically edit the codes. The result of the system provides the reader/sorter equipment with a superior performance due to fewer rejects and misread characters.
U.S. Pat. No. 4,351,547 To Brooks, II discloses an improved copy-proof document having a cancellation phrase with an alternating dot pattern which enhances both the detail rendition and protection of such documents. The method of making such a document by preprinting the cancellation phrase in a single tone pattern of alternating dot sizes is also disclosed.
U.S. Pat. No. 4,420,175 To Mowry, Jr. discloses a color-copier resistant document which includes a repeated invalidating phrase printed on a document, together with a background tone. In addition to having an overlay camouflage tone printed over the entire surface of the document, each of the invalidating images is formed of irregular, smooth-shaped letters which further advance their hiding characteristics. Overall sizes are suggested for the use of the invalidating word VOID, and stroke sizes for each of the letters are also disclosed.
U.S. Pat. No. 4,797,938 to Will discloses a method of improving the accuracy of identifying or reading magnetic ink characters (MICR) of the type used on checks and other documents, by choosing key values of a waveform selected using one of several templates which best fits recognized peaks. The steps of the improved method include periodically sampling the signal generated from a magnetic read head, digitizing each sample, locating peaks (in an absolute-value sense), comparing the pattern of peaks against templates (stored values preferably in the form of a saw-tooth) representative of various periods and offsets between positive and negative peaks to determine which template fits the sensed peaks best, then using that template to select samples for identification of the character. The samples thus selected are preferably in the location of the peaks and zero-crossings predicted by the best template or pattern, but are not necessarily the peaks of zero-crossings themselves. If the character is not recognized, it may be identified as a reject, or alternatively, another template (such as the next best template) may be used. Advantageously, means for differentiating an ink spot from a character are also included in the system as is a system which normalizes the character over all the peaks and not just the initial perceived peak of the character.
U.S. Pat. No. 5,271,645 to Wicker discloses commercially available pigments mixed with fluorescence compound to obtain print stuff mixtures for transfer thereafter to mattes. The print stuff mixtures obtainable thereby are used to print security and face-value documents which will be color copier resistant, that is, not be accurately reproducible or replicable by a photocopier. An empirical test is provided which will allow the ordinary skilled printer to determine the best titer of commercially available fluorescence to be used in the ink/pigment mixing scheme.
U.S. Pat. No. 5,340,159 to Mowry, Jr. discloses an improved security document according to the present invention including a substrate having a surface for carrying indicia. The document has background printed matter, consisting of a pattern of elements of a first size and frequency, printed at a first density on the surface. The document further has a cancellation term, consisting of a pattern of elements of a second size and frequency, printed at a second density on the surface. Elements of one of the first size or the second size are sufficiently small such that they are not reproduced by a color copier at a particular copier setting, and elements of the other of the first size or the second size are sufficiently large such that they are reproduced by the color copier at the particular copier setting. As a result, a copy of the security document made on a color copier displays the cancellation term. At least a portion of the security document surface is divisible into a plurality of bands extending across the surface. The sizes of the elements and the density of the background printed matter and the cancellation term vary together across the bands in a direction generally normal to the bands. As an alternative, the frequencies of the elements may vary across the bands such that the density of the background printed matter and the density of the cancellation term are changed. Such a document may be printed with different colors of ink on different portions of the document, and with the bands in which a color transition occurs being printed with two colors of ink at differing screen angles.
U.S. Pat. No. 6,171,734 to Warner, et al. discloses a paper substrate is laminated with a metalized layer forming a mirrored surface. A partially transparent black diffraction grating is applied by stochastic screening to the mirrored surface. The diffraction grating forms a random pattern from selected geometric shapes. Information, such as alphanumeric indicia or graphics, is printed on the stochastic screen to thus form a reflective diffraction device which is printable in a conventional manner while inhibiting reproduction of the printed information by conventional techniques, including black and white and color photo-reproduction and facsimile machines. The partially transparent black stochastic screen forms a diffraction grating on the metalized layer so that when illuminated from the light source of either a specular or diffuse illumination-type photocopier, random interference patterns of light occur at the interface of the metalized surface and the stochastic screen. The diffracted light is not readable by a photocopier drum with the result that the indicia is not legibly reproduced. Thus, the indicia printed on the security document is protected from counterfeiting and unauthorized copying.
U.S. Pat. No. 6,243,504 to Kruppa discloses an integrated character recognition system for providing high-accuracy detection of a magnetic ink character string of a printed medium. The character recognition system includes a magnetic ink character recognition system for reading and decoding the magnetic ink character string. An optical character recognition system is also included performing the integrated character recognition system thereby overcoming many of the limitations presented by conventional technologies. A system and method for performing complete processing of a printed media having a magnetic ink character string utilizes both the optical and magnetic ink character recognition systems to perform virtually error-free character recognition of the magnetic ink character string.
U.S. Pat. No. 7,393,623 to Conroy, et al. discloses optical media having markings that are non-interfering, or substantially non-interfering with readout of data from the optical media. The optical media make use of certain formulations of color forming coatings described herein. Protective coatings used to enhance the color forming coatings are also presented. Methods for incorporating the coatings into the optical media are included. In preferred embodiments, the marking is formed in a photosensitive coating that is applied to the optical media, and then cured with a first light. A second light, having a substantially separate band of wavelengths from the first light, is used to image a marking into the coating. The coating is robust to many external influences, such as ambient environmental conditions, and physical wear.
Although the aforementioned prior art have contributed to the development of the art of diving safety devices, none of these prior art patents have solved the needs of this art.
Therefore, it is an object of the present invention to provide an improved security system for print material and method that provides fraud identification for printed characters and symbols.
Another object of this invention is to provide an improved security system for print material and method that provides copy detection and tamper detection for printed material.
Another object of this invention is to provide an improved security system for print material and method that provides an overt level of security incorporating obvious security features.
Another object of this invention is to provide an improved security system for print material and method that provides a covert level of security incorporating hidden security features.
Another object of this invention is to provide an improved security system for print material and method that provides a forensic level of security for providing evidence of copying for law enforcement.
Therefore, it is an object of the present invention to provide an improved security system for print material and method that provides fraud identification for printed characters and symbols.
Another object of this invention is to provide an improved security system for print material and method that provides copy detection and tamper detection for printed material.
Another object of this invention is to provide an improved security system for print material and method that provides an overt level of security incorporating obvious security features.
Another object of this invention is to provide an improved security system for print material and method that provides a covert level of security incorporating hidden security features.
Another object of this invention is to provide an improved security system for print material and method that provides a forensic level of security for providing evidence of copying for law enforcement.
The foregoing has outlined some of the more pertinent objects of the present invention. These objects should be construed as being merely illustrative of some of the more prominent features and applications of the invention. Many other beneficial results can be obtained by modifying the invention within the scope of the invention. Accordingly other objects in a full understanding of the invention may be had by referring to the summary of the invention, the detailed description describing the preferred embodiment in addition to the scope of the invention defined by the claims taken in conjunction with the accompanying drawings.
The present invention is defined by the appended claims with specific embodiments being shown in the attached drawings. For the purpose of summarizing the invention, the invention an relates to an improved security system for material printed on a substrate comprising a primary marking printed on the substrate for conveying information. A secondary marking provides security to the primary marking.
In a more specific example of the invention, the substrate is a paper substrate. The primary marking is selected from the group consisting of a letter, a number and a symbol. In one embodiment, the secondary marking is embedded within the marking primary. In another embodiment, the secondary marking is printed within the primary marking and adjacent areas of the primary marking.
Preferably, the secondary marking provides a variation in optical properties, magnetic properties or variation in both in optical properties and magnetic properties of the primary marking. In one example, the substrate is a translucent substrate. The primary marking is distinguishable from the secondary marking through light transmission through the translucent substrate. The primary marking is indistinguishable from the secondary marking through light reflection from the primary and secondary markings.
In another embodiment of the invention, the invention is incorporated into an improved security system for material printed on a substrate. A primary marking is printed on the substrate for conveying information. A secondary marking having a security pattern is embedded within the primary marking for encoding identifiable security information to the primary marking.
In a more specific embodiment, the security pattern includes a magnetic polarization pattern embedded within the primary marking. In one example, the security pattern includes a magnetic density pattern embedded within the primary marking. In another example, the security pattern includes an optical density pattern embedded within the primary marking. In a further example, the security pattern includes a magnetic and optical pattern embedded within the primary marking.
The invention is also incorporated into a method of adding a security to material printed on a substrate comprising providing a substrate. A primary and a secondary marking are printed on the substrate with the primary marking conveying information and with the secondary marking providing security to the primary marking.
The invention is also incorporated into a method of printing material with a security on a substrate comprising providing a substrate. A printer is driven with a primary printer signal for generating a primary marking on the substrate for conveying information. The primary printer signal is modulated with a secondary printer signal for generating a secondary marking embedded within the primary marking for providing security to the primary marking.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention in order that the detailed description that follows may be better understood so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description taken in connection with the accompanying drawings in which:
Similar reference characters refer to similar parts throughout the several Figures of the drawings.
A data signal containing data from an information source (not shown) provides a primary data signal 21 to a printer driver 24. A security signal provides a secondary security signal 22 to the printer driver 24. The primary data signal and secondary security signals 21 and 22 are processed by the printer driver 24 to control the output of printer 26.
The printer 26 is shown as a variable data printer capable of printing variable data on the substrate. A variable data printer 26 may be characterized as a printer capable of printing a series of unique documents in contrast to other printing methods were in all of the printed documents are identical. Preferably, the printer 26 is capable of printing variable optical markings in or variable magnetically readable markings such as a laser or an inkjet printer. Although the invention is described with reference to a laser or an inkjet printer, it should be understood that the present invention is equally applicable to lithographic, gravure, screen printing and the like.
The printer driver 24 converts the primary data signal 21 is into a data stream compatible with the printer 26. The data stream is converted by a printer controller (not shown) within the printer 26 into a map of the location of the material to be printed on the substrate 14. The primary data signal 21 results in the primary marking 11 on the substrate 14 shown as the character B.
In a similar manner, the printer driver 24 converts the secondary security signal 22 into a data stream compatible with the printer 26. The secondary security signal 22 results in the secondary marking 12 on the substrate 14 shown as security markings embedded within the primary marking 11 to enhance the security of the primary marking 11.
The primary marking 11 and the secondary marking 12 may be printed utilizing optical ink or toner 17 or magnetic ink or toner 18 or combination thereof. In the example, the secondary marking 12 are shown as lines located within the character B representative of variations in optical transmission, optical reflectively, magnetic strength, magnetic polarity or a combination of the foregoing.
As will be described in greater detail hereinafter, the secondary marking 12 may be overt, covert or forensic. In an overt security system 15, the secondary marking 12 is an obvious security features facilitating the detection of tampered or copied documents. In addition, the overt security system 15 may be used for verification and the tracking of documents.
In a covert security system, the secondary marking 12 is a hidden security feature making the printing difficult to reproduce without special knowledge of the hidden security feature. Typically, the detection of a hidden security feature of a covert security system requires special detection equipment. The present security system 15 also provides forensic evidence of tampered or copied documents for law enforcement and the like.
The document 16 is shown having a marking 11 utilizing the magnetic ink or toner 18 defining a leading character edge 19. As the document 16 is moved past the slot 35, the coil 36 senses the leading edge 19 of the primary marking 11 and provides a current flow (im) through the ammeter 37.
MICR characters are unique dimensions human readable character printed with magnetic ink. The ink is then uniformly magnetized by what is referred to as a write head. Once a MICR character is magnetized it can be read by passing a read head over the character as shown in
The signal amplitude is determined by the amount of magnetic material present including the height (h) and the thickness (t). The magnetic characteristics are derived from the use of very small magnetic particles suspended in the magnetic ink or toner 18.
When the layer thickness is increased beyond the threshold line, the magnetic strength will change with thickness variations but the change in thickness will not be detected visually or with copying techniques due to the flattening of the curve of the optical density (OR). In the event the document 16 is intentionally or accidentally demagnetized, the information that is coded into thickness changes can be recovered by simply uniformly magnetizing the document 16. This would also serve to detect tampering of the document 16.
The thickness of the ink or toner layer “Δt” is modulated with the reflection density of the minimum thickness above the threshold of reflection optical density (OR). An increase in thickness of (Δt) produces a negligible change (ΔOR) in reflection optical density (OR). The same increase in thickness (Δt) produces a substantial change (ΔB) in the magnetic strength response (B).
The security system 15 of the present invention adds coded optical or magnetic information to the document 16 are printed using optical ink or toner 17 or magnetic inks and toners 18. Magnetic inks and toners 18 have the characteristic of retaining a magnetic field once the magnetic inks or toners 18 are magnetized. The information is added by varying the thickness (or mass density) of the ink or toner layer, spatially, or by magnetizing the ink with a magnetic field that varies spatially, across the document 16 or both simultaneously. Preferably, the ink or toner layer thickness or mass density variations of magnetic ink or toner 18 is established to operate near or above the saturation level of the optical density (OR) thereby providing the substantial change (ΔB) in the magnetic strength response (B) as shown in
When the thickness or mass density variations of optical inks and toners 17 s are used to encode information, the variations can be detected by measuring the point to point optical transmission density of the print.
Preferably, the ink or toner layer thickness or mass density variations of optical ink or toner 17 is established to operate near or above the saturation level of the optical density (OR) thereby permitting substantial change in the optical transmission density (OT) as shown in
The thickness or mass density of the toner layer can be controlled, in the case of conventional photoelectrophotography, by varying the exposure level of the printer 26 (i.e. laser, LED array, etc.) printing the information on the photoconductor, or by systematically varying the development bias in response to the thickness that is required or by both in combination. In the case of e-beam or ionographic processes, the thickness can be controlled by the amount of charge laid down by the write beam in addition to the bias levels.
The security system 15 of the present invention embeds information in a coded fashion to a document 16 by varying the magnetic readout of printed magnetic ink or toner by varying the thickness or mass density of the ink or toner or by varying the magnetic strength of the magnetizing field in a systematic way across the document 16. The magnetic and optical density characteristics of the document can be varied from point to point on the document either spatially, by controlling how much toner or ink or a magnetic characteristics if the toner or ink is magnetic is laid down during the printing process, or by differentially magnetizing printed areas of the document, if the toner or ink is magnetic, or both simultaneously.
The security system 15 can be enhanced by using the variable data that is used to create the document 16 as a source for the coded information. Information that must be verified, validated, or tracked can be imprinted into each document, on a document by document basis, as it is being printed. In addition, the variable data which is unique to each document can also be used to individualize the security feature. The security is coded into variations in the magnetic or optical density response of the printed toner or ink. All coded information imparted to the document printed with magnetic ink or toner will be magnetic and essentially invisible to the naked eye if the variations in ink or toner thickness or mass density are kept above the reflection density threshold.
The present disclosure includes that contained in the appended claims as well as that of the foregoing description. Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention.
This application claims benefit of U.S. Patent Provisional application No. 61/276,790 filed Sep. 16, 2009 and U.S. Patent Provisional application No. 61/278,667 filed Oct. 9, 2009. All subject matter set forth in provisional application No. 61/276,790 and provisional application No. 61/278,667 are hereby incorporated by reference into the present application as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
61276790 | Sep 2009 | US | |
61278667 | Oct 2009 | US |