This application is related to U.S. patent application Ser. No. 10/075,194, filed Feb. 12, 2002, and entitled “SYSTEM AND METHOD FOR PROVIDING MULTI-LOCATION ACCESS MANAGEMENT TO SECURED ITEMS,” which is hereby incorporated by reference for all purposes.
1. Field of the Invention
The present invention relates to security systems for data and, more particularly, to security systems that protect data in an inter/intra enterprise environment.
2. Description of Related Art
As organizations become more dependent on networks for business transactions, data sharing and everyday communications, their networks have to be increasingly accessible to customers, employees, suppliers, partners, contractors and telecommuters. Unfortunately, as the accessibility increases, so does the exposure of critical data that is stored on the network. Hackers can threaten all kinds of valuable corporate information resources including intellectual property (e.g., trade secrets, software code and competitive data), sensitive employee information (e.g., payroll figures and HR records), and classified information (e.g., passwords, databases, customer records, product information and financial data).
In protecting the proprietary information traveling across networks, one or more cryptographic techniques are often used to secure a private communication session between two communicating computers on the network. Cryptographic techniques provide a way to transmit information across an unsecure communication channel without disclosing the contents of the information to anyone who may be eavesdropping on the communication channel. An encryption process is a cryptographic technique whereby one party can protect the contents of data in transit from access by an unauthorized third party, yet the intended party can read the data using a corresponding decryption process.
Many organizations have deployed firewalls, Virtual Private Networks (VPNs) and Intrusion Detection Systems (IDS) to provide protection. Unfortunately, these various security means have been proven insufficient to reliably protect proprietary information residing on internal networks.
Electronic data is often secured through use of passwords. The passwords can be document level, operating system level or system level. While passwords do provide some security to the electronic data, users tend to mismanage their passwords. For example, users may use short passwords which are easier for an attacker to crack, resulting in possible security breaches of a system. To facilitate the use of passwords, a system has to maintain somewhere information pertaining to the passwords. However, by doing so, the passwords are put in jeopardy of being discovered by an attacker.
Moreover, security policies often request passwords be periodically changed to improve security of a system. Also, in a security system that encrypts data based on user passwords, changing user passwords can be very complicated and result in time consuming updating of all affected encrypted data in the system.
Thus, there is a need for improved approaches to utilize passwords in a security system.
The invention relates to an improved system and approaches for protecting passwords. A security system for an organization operates to protect the files of the organization and thus prevents or limits users from accessing some or all of the files (e.g., various data and documents) associated with the organization. Passwords are normally required by users seeking to access the files protected by the security system. According to one aspect of the invention, a password entered by a user is used, provided it is authenticated, to obtain a respective authentication string (a relatively longer string of numbers or characters). The retrieved authentication string is then used to enable the user to enter the security system and/or to access secured files therein. According to another aspect of the invention, user passwords are not stored in the security system to avoid security breaches due to unauthorized capture of user passwords.
The present invention may be used in many types of security systems. To facilitate the description of the present invention, unless specifically stated, a security system or a file security system is interchangeably used herein. The invention can be implemented in numerous ways, including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.
As a method for authenticating a user to a file security system, one embodiment of the invention includes at least the acts of: receiving a user-entered password to gain access to files protected by the file security system; generating a random number of a predetermined length; converting the random number into an authentication string; encrypting the authentication string using the user-entered password to produce an encrypted authentication string; and storing the encrypted authentication string in the file security system for subsequent usage.
As a method for authenticating a user to a file security system, another embodiment of the invention includes at least the acts of: receiving a user-entered password to gain access to files protected by the file security system; accessing an encrypted authentication string from the file security system; decrypting the encrypted authentication string with the user-entered password to produce an authentication string; determining whether the user is authenticated; permitting access to the file security system when the determining determines that the user is authenticated; and denying access to the file security system when the determining determines that the user is not authenticated.
As a method for re-authenticating a user to a file security system where the user was previously authenticated to the file security system, one embodiment of the invention includes at least the acts of: determining whether a re-authorization condition exists; and re-authenticating the user to the file security system when the re-authorization condition exists. Further, according to the embodiment, the re-authenticating includes at least the acts of: receiving a user-entered password; accessing an encrypted authentication string from the file security system; decrypting the encrypted authentication string with the user-entered password to produce an authentication string; determining whether the user is re-authenticated; permitting access to the file security system when the determining determines that the user is re-authenticated; and denying access to the file security system when the determining determines that the user is not re-authenticated.
As a method for changing a password of a user, the password being associated with a file security system, one embodiment of the invention includes at least the acts of: receiving a new user-entered password to gain access to files protected by the file security system; receiving an existing user password; accessing an encrypted authentication string from the file security system; decrypting the encrypted authentication string with the existing user password to produce an authentication string; determining whether the user is authenticated; denying the user from changing the password from the existing user password to the new user-entered password when the determining determines that the user is not authenticated; and permitting the user to change the password from the existing user password to the new user-entered password when the determining determines that the user is authenticated. Additionally, the method can further include the act of encrypting the authentication string with the new user-entered password.
As a computer readable medium including at least computer program code for authenticating a user to a file security system, one embodiment of the invention includes at least: computer program code for receiving a user-entered password to gain access to files protected by the file security system; computer program code for generating a random number of a predetermined length; computer program code for converting the random number into an authentication string; computer program code for encrypting the authentication string using the user-entered password to produce an encrypted authentication string; and computer program code for storing the encrypted authentication string in the file security system for subsequent usage.
As a computer readable medium including at least computer program code for authenticating a user to a file security system, another embodiment of the invention includes at least: computer program code for receiving a user-entered password to gain access to files protected by the file security system; computer program code for accessing an encrypted authentication string from the file security system; computer program code for decrypting the encrypted authentication string with the user-entered password to produce an authentication string; computer program code for determining whether the user is authenticated; computer program code for permitting access to the file security system when the computer program code for determining determines that the user is authenticated; and computer program code for denying access to the file security system when the computer program code for determining determines that the user is not authenticated.
As a computer readable medium including at least computer program code for re-authenticating a user to a file security system, where the user was previously authenticated to the file security system, one embodiment of the invention includes at least: computer program code for determining whether a re-authorization condition exists, and computer program code for re-authenticating the user to the file security system when the re-authorization condition exists. Further, according to one embodiment, the computer program code for re-authenticating includes at least: computer program code for receiving a user-entered password; computer program code for accessing an encrypted authentication string from the file security system; computer program code for decrypting the encrypted authentication string with the user-entered password to produce an authentication string; computer program code for determining whether the user is re-authenticated; computer program code for permitting access to the file security system when the computer program code for determining determines that the user is re-authenticated; and computer program code for denying access to the file security system when the computer program code for determining determines that the user is not re-authenticated.
As a computer readable medium including at least computer program code for changing a password of a user, the password being associated with a file security system, one embodiment of the invention includes at least: computer program code for receiving a new user-entered password to gain access to files protected by the file security system; computer program code for receiving an existing user password; computer program code for accessing an encrypted authentication string from the file security system; computer program code for decrypting the encrypted authentication string with the existing user password to produce an authentication string; computer program code for determining whether the user is authenticated; computer program code for denying the user from changing the password from the existing user password to the new user-entered password when the computer program code for determining determines that the user is not authenticated; and computer program code for permitting the user to change the password from the existing user password to the new user-entered password when the computer program code for determining determines that the user is authenticated. Additionally, the computer readable medium can further include computer program code for encrypting the authentication string with the new user-entered password.
Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention relates to an improved system and approaches for protecting passwords. A file security system for an organization operates to protect the files of the organization and thus prevents or limits users from accessing some or all of the files (e.g., documents) associated with the organization. Passwords are normally required by users seeking to access the files protected by the file security system. According to one aspect of the invention, a password entered by a user is used, provided it is authenticated, to obtain a respective authentication string (a relatively longer string of numbers or characters). The retrieved authentication string is then used to enable the user to enter the file security system and/or to access secured files therein. According to another aspect of the invention, user passwords are not stored in the file security system to avoid security breaches due to unauthorized capture of user passwords. The invention is suitable for use in an enterprise file security system.
A file security system (or document security system) serves to limit access to files (documents) only to authorized users. Often, an organization, such as a company, would use a file security system to limit access to its files (documents). For example, users of a group might be able to access files (documents) pertaining to the group, whereas other users not within the group would not be able to access such files (documents). Such access, when permitted, would allow a user of the group to retrieve a copy of the file (document) via a data network.
Secured files are files that require one or more keys, passwords, access privileges, etc. to gain access to their content. In one embodiment, the security is provided through encryption and access rules. The files, for example, can pertain to documents, multimedia files, data, executable code, images and text. In general, a secured file can only be accessed by authenticated users with appropriate access rights or privileges. In one embodiment, each secured file is provided with a header portion and a data portion, where the header portion contains or points to security information. The security information is used to determine whether access to associated data portions of secured files is permitted.
As used herein, a user may mean a human user, a software agent, a group of users, a member of a group of users, a device and/or application. Besides a human user who needs to access a secured document, a software application or agent sometimes needs to access secured files in order to proceed. Accordingly, unless specifically stated, the “user” as used herein does not necessarily pertain to a human being.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
Embodiments of the present invention are discussed herein with reference to
The file security system 100 can also make use of one or more local servers 110. The local server 110 illustrated in
Files are typically secured through encryption and stored in a storage device. For example, files (secured files) can be stored to a storage device 112 that is accessible by any of the client machines 104, 106 and 108 via the central server 102. Additionally, each of the client machines 104, 106 and 108 can provide their own local storage for files (secured files). For example, a user of the client machine 104 may store files pertaining to the user at the client machine 104 as well as at the storage device 112. Regardless of where the secured files are stored, for a user to be permitted access to the secured files, the file security system 100 requires that the user enter a user password at the client machine 104. The user password is then processed to determine whether the user is able to be authenticated. Thereafter, when properly authenticated, the user is thereafter able to access the secured files stored locally or remotely.
The file security system 100 is configured to utilize the user password indirectly. In other words, access to secured files in the file security system 100 is not granted based on a user password provided by an authorized user; instead, access is based on an authenticated string. The authentication string can take various forms. In one embodiment, the authentication string can be 128-bits in length and consist of numbers or characters which can be converted to 32-bytes (256 bits). For example, a user at a client machine would utilize her user password to log into a client machine (e.g., client machine 106). However, the client machine would only temporarily retain the user password in volatile memory (e.g., random access memory (RAM)) and would not use the user password to proceed with the entry to the file security system 100. Instead, the client machine is configured to use an authenticated string that is encrypted using the user password. The encrypted authentication string is stored in non-volatile memory (e.g., a file stored to a disk drive) of the client machine. After the user successfully logs into the client machine, the authenticated string is retrieved (e.g., decrypted with the provided user password) and then used to access the file security system 100 or the secured files therein.
Often, for ease of remembering, a user password pertains to some features related to its user and is relatively short, typically not more than 20 characters. In contrast, an authentication string can be made artificially long and random, such as 101101 . . . 10111 (binary) or AB01F98 . . . 001 (hexadecimal). Cracking an authentication string is much more difficult, if not possible, than cracking a user password. Consequently, access based on an authentication string to the file security system 100 is a lot more secure. Attacks to the file security system 100 by unauthorized users are thus made more difficult because user passwords are only indirectly used. Still further, the file security system 100 is able to easily perform password modifications (or changes) because the authentication string is not altered, though the encrypted authentication string would be altered given a new user password. Moreover, producing the new encrypted authenticated string is computationally easy to perform and thus can be performed quickly, even at run-time if so desired.
The security system processing 200 initially presents 202 a login window requesting that the user enter a user password. A decision 204 then determines whether a login request has been received. A login request is received when the user has entered the user password into the login window and requested login. When the decision 204 determines that a login request has not yet been received, the security system processing 200 awaits such a request. Once the decision 204 determines that a login request has been received, then a decision 206 determines whether the user is a new user. For example, the login window might also ask for a user identifier or user name, and a mismatch of any data identifying the user would signal that the user is a new user.
In any case, when the decision 206 determines that the user is a new user, then user password setup processing is performed 208 so as to set up the user as an authorized user of the file security system. It is assumed herein that the user (e.g., a new employee) has been authorized to access the file security system. The user password setup processing 208 can be achieved by an administrator or the user him/herself. Following the operation 208, the security system processing 200 returns to the beginning of the security system processing 200 so that the user may then log into the file security system.
On the other hand, when the decision 206 determines that the user is not a new user, then user authentication processing is performed 210 to determine whether the user is able to be successfully authenticated. A decision 212 then determines whether the user has been authenticated. When the decision 212 determines that the user has been successfully authenticated, then the user password is used to obtain a corresponding authentication string. The authentication string is stored or distributed in a secured manner and can only be recovered for use when a correct password is provided. According to one embodiment, the authentication string is encrypted in a file (e.g., xyz.aes when AES is used) and can only be recovered when a correct user password (e.g., passphrase) is provided. Here, the user password, when received via the login request, is temporarily stored in volatile memory (e.g., RAM). Hence, at operation 214, the previously temporarily stored user password is removed (e.g., deleted) from the volatile memory. Next, access to the file security system is permitted 216 since the user has been authenticated and thus is able to be logged into the file security system with the authentication string.
Alternatively, when the decision 212 determines that the user has not been properly authenticated, then access to the file security system is thus denied 220. Following the operation 220, the security system processing 200 ends with access to the file security system being denied.
Following the operation 216, various different operations can be performed by the security system processing 200. Two of various security related operations that are able to be performed before, during or after other operations that the file security system might perform, include password changes and user re-authentication. More particularly, a decision 222 can determine whether a password change is being requested. When the decision 222 determines that a password change is being requested, then change password processing can be performed 224. Alternatively, a decision 226 determines whether user re-authentication is requested. When the decision 226 determines that user re-authentication is requested, then user re-authentication processing is performed 228. Following the operation 228, the security system processing 200 returns to repeat the decision 212 and subsequent operations. Eventually, if no other operations are to be performed, including password change and user re-authentication, the security system processing 200 ends.
The user password setup processing 300 generates 302 a random number. Typically, the random number is generated by a random number generator provided by a computing device (e.g., client machine). Normally, the random number would be of a predetermined length. For example, the random number can be 1024 bits. Next, the random number is converted 304 to an authentication string. For example, the random number is a binary numerical value and its conversion into the authentication string involves converting the binary number to a hexadecimal value. As a result, the random number is converted into a string, which itself is a random string. The authentication string is then encrypted 306 using the user password to produce an encrypted authentication string. The user password used in encrypting 306 the authentication string was previously entered by the user. For example, the user might have entered the user password in response to the login window presented 202 during the security system processing 200 shown in
In effect, the authentication string serves as a password that is rather long and random. Such password can be considered as an indirect password and be used to enter (e.g., log into) the file security system to access secured files, secure files, and other operations involving security (e.g., certificates imports and exports).
The user authentication processing 400 initially opens 402 a security system file pertaining to the user. The security system file is a file maintained by the file security system that includes the encrypted authentication string associated with the user. For example, the security system file can store the encrypted authentication string due to operation 308 of the user password setup processing 300. Here, the security system file is opened 402 at least when user authentication is to be performed.
After the security system file has been opened 402, an encrypted authentication string associated with the user is retrieved 404 from the security system file. Next, the encrypted authentication string is decrypted 406 using the user password. Note that the user password was previously entered (e.g., during a login request) and can be held in non-volatile memory until the user authentication processing 400 is performed. The result of the decryption 406 of the encrypted authentication string produces an authentication string. A decision 408 then determines whether the decryption 406 of the encrypted authentication string was successful. In other words, the authentication string is used to determine whether the user is able to be properly and correctly authenticated based upon the decryption 406 of the encrypted authentication string with the user password supplied by the user. When the decision 408 determines that decryption of the encrypted authentication string was not successful (i.e., fails) then authentication is deemed 410 to be unsuccessful. On the other hand, when the decision 408 determines that decryption of the encrypted authentication string was successful then authentication is deemed 412 to be successful. Following the operations 410 and 412, the user authentication processing 400 is complete and ends.
The change password processing 500 initially presents 502 a password change window that requests a new user password (and perhaps an existing password). Typically, the password change window would be presented 502 at a client machine associated with the user. Next, a decision 504 determines whether the password(s) has/have been submitted. When the decision 504 determines that the password(s) have not yet been submitted, then the change password processing 500 awaits such password(s). On the other hand, when the decision 504 determines that the password(s) have been submitted, then the security system file pertaining to the user is opened 506. Next, an encrypted authentication string is retrieved 508 from the security system file. After the encrypted authentication string has been retrieved 508, the encrypted authentication string is then decrypted 510 with the existing user password. The result of the decryption 510 is that an authentication string is produced. A decision 512 then determines whether decryption was successful. Typically, the decryption is successful if the authentication string can be successfully recovered from the security system file with the old password. However, other authentication procedures or system access privileges may additionally be enforced to ensure that the user is permitted to change his/her password. When the decision 512 determines that the decryption was not successful, then the password change request is denied 514 and the change password processing 500 ends.
On the other hand, when the decision 512 determines that decryption was successful, then the authentication string is encrypted 516 using the new user password. The encryption of the authentication string produces a new encrypted authentication string. The new encrypted authentication string is then stored 518. Typically, the new encrypted authentication string would be stored where the old encrypted authentication string was previously stored. In one embodiment, the file containing at least the encrypted authentication string is referred to as a security system file. In one implementation, the storage 518 of the new encrypted authentication string would overwrite the previous encrypted authentication string. Following the operation 518, the change password processing 500 is complete and ends with the password change request having been performed.
The re-authentication processing 600 initially presents 602 a password re-enter window that requests a user to re-enter their password. A decision 604 then determines whether a user password has been submitted. When the decision 604 determines that a user password has not yet been submitted, the re-authentication processing 600 awaits such a submission. On the other hand, when the decision 604 determines that a password has been submitted, then the security system file pertaining to the user is opened 606. An encrypted authentication string is then retrieved 608 from the security system file. Here, the security system file is a file maintained by the file security system that includes at least an encrypted authentication string. In one embodiment, the security system file includes only the encrypted authentication string. In another embodiment, the security system file includes other information besides the encrypted authentication string and thus the retrieval can involve parsing the security system file to acquire the encrypted authentication string. Next, the authentication string is decrypted 610 from the security system file with the user password. The result of the decryption 610 is an authentication string that is used to authenticate the user, and allow the user to continue access to the secured files in the file security system.
Secured files may be stored in either one of the devices 701, 702, 704, 706 and 712. When a user of the client machine 701 attempts to exchange a secured file with a remote destination 712 being used by an external user, one or more of the processing 200, 300, 400, 500, and 600 discussed above can be activated and be performed by the security system 700.
The security information 826 can vary depending upon implementation. However, as shown in
According to one embodiment, the above-noted encrypted authentication strings can be provided on a per-user or a per-group of users basis. With the appropriate user or group password, the encrypted authentication string can be successfully decrypted and utilized internal to the file security system as a password. In other words, the authentication string is used as a password for access to the file security system or the secured files therein.
Additional details on a security system can be found in U.S. patent application Ser. No. 10/075,194, filed Feb. 12, 2002, and entitled “SYSTEM AND METHOD FOR PROVIDING MULTI-LOCATION ACCESS MANAGEMENT TO SECURED ITEMS,” which is hereby incorporated by reference for all purposes.
The invention is preferably implemented by software or a combination of hardware and software, but can also be implemented in hardware. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of tangible computer readable media include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, and optical data storage devices. Examples of transmission media include carrier waves. Computer readable code from the tangible computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in other various different settings with respect to various combinations, embodiments, implementations or features provided in the description herein.
The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that user passwords are only stored in a transient manner, thus minimizing opportunities for unauthorized persons to crack the user passwords. Another advantage of the invention is that indirect passwords are used in place of passwords. The indirect passwords are normally be longer and more random, thus making an attack on passwords much more difficult. Still another advantage of the invention is that password modifications are able to be easily achieved by file security systems that protect secured files (e.g., documents) using indirect passwords. Yet still another advantage of the invention is that open software can be given an indirect password so as not to compromise a user password.
The many features and advantages of the present invention are apparent from the written description, and thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4203166 | Eshram et al. | May 1980 | A |
4734568 | Watanabe | Mar 1988 | A |
4757533 | Allen et al. | Jul 1988 | A |
4796220 | Wolfe | Jan 1989 | A |
4799258 | Davies | Jan 1989 | A |
4827508 | Shear | May 1989 | A |
4888800 | Marshall et al. | Dec 1989 | A |
4972472 | Brown et al. | Nov 1990 | A |
5032979 | Hecht et al. | Jul 1991 | A |
5052040 | Preston et al. | Sep 1991 | A |
5058164 | Elmer et al. | Oct 1991 | A |
5144660 | Rose | Sep 1992 | A |
5204897 | Wyman | Apr 1993 | A |
5220657 | Bly et al. | Jun 1993 | A |
5235641 | Nozawa et al. | Aug 1993 | A |
5247575 | Sprague et al. | Sep 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5301247 | Rasmussen et al. | Apr 1994 | A |
5319705 | Halter et al. | Jun 1994 | A |
5369702 | Shanton | Nov 1994 | A |
5375169 | Seheidt et al. | Dec 1994 | A |
5404404 | Novorita | Apr 1995 | A |
5406628 | Beller et al. | Apr 1995 | A |
5414852 | Kramer et al. | May 1995 | A |
5434918 | Kung et al. | Jul 1995 | A |
5495533 | Linehan et al. | Feb 1996 | A |
5499297 | Boebert | Mar 1996 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5535375 | Eshel et al. | Jul 1996 | A |
5557765 | Lipner et al. | Sep 1996 | A |
5570108 | McLaughlin et al. | Oct 1996 | A |
5584023 | Hsu | Dec 1996 | A |
5600722 | Yamaguchi et al. | Feb 1997 | A |
5606663 | Kadooka | Feb 1997 | A |
5655119 | Davy | Aug 1997 | A |
5661806 | Nevoux et al. | Aug 1997 | A |
5671412 | Christiano | Sep 1997 | A |
5673316 | Auerbach et al. | Sep 1997 | A |
5677953 | Dolphin | Oct 1997 | A |
5680452 | Shanton | Oct 1997 | A |
5684987 | Mamiya et al. | Nov 1997 | A |
5689718 | Sakurai et al. | Nov 1997 | A |
5699428 | McDonnal et al. | Dec 1997 | A |
5708709 | Rose | Jan 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5717755 | Shanton | Feb 1998 | A |
5719941 | Swift et al. | Feb 1998 | A |
5720033 | Deo | Feb 1998 | A |
5729734 | Parker et al. | Mar 1998 | A |
5732265 | Dewitt et al. | Mar 1998 | A |
5745573 | Lipner et al. | Apr 1998 | A |
5748736 | Mittra | May 1998 | A |
5751287 | Hahn et al. | May 1998 | A |
5757920 | Misra et al. | May 1998 | A |
5765152 | Ericson | Jun 1998 | A |
5778065 | Hauser et al. | Jul 1998 | A |
5787169 | Eldridge et al. | Jul 1998 | A |
5787173 | Seheidt et al. | Jul 1998 | A |
5787175 | Carter | Jul 1998 | A |
5790789 | Suarez | Aug 1998 | A |
5790790 | Smith et al. | Aug 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5821933 | Keller et al. | Oct 1998 | A |
5825876 | Peterson | Oct 1998 | A |
5835592 | Chang et al. | Nov 1998 | A |
5835601 | Shimbo et al. | Nov 1998 | A |
5857189 | Riddle | Jan 1999 | A |
5862325 | Reed et al. | Jan 1999 | A |
5870468 | Harrison | Feb 1999 | A |
5870477 | Sasaki et al. | Feb 1999 | A |
5881287 | Mast | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5893084 | Morgan et al. | Apr 1999 | A |
5898781 | Shanton | Apr 1999 | A |
5922073 | Shimada | Jul 1999 | A |
5923754 | Angelo et al. | Jul 1999 | A |
5933498 | Schneck et al. | Aug 1999 | A |
5944794 | Okamoto et al. | Aug 1999 | A |
5953419 | Lohstroh et al. | Sep 1999 | A |
5968177 | Batten-Carew et al. | Oct 1999 | A |
5970502 | Salkewicz et al. | Oct 1999 | A |
5987440 | O'Neil et al. | Nov 1999 | A |
5991879 | Still | Nov 1999 | A |
5999907 | Donner | Dec 1999 | A |
6014730 | Ohtsu | Jan 2000 | A |
6023506 | Ote et al. | Feb 2000 | A |
6032216 | Schmuck et al. | Feb 2000 | A |
6038322 | Harkins | Mar 2000 | A |
6044155 | Thomlinson et al. | Mar 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6058424 | Dixon et al. | May 2000 | A |
6061790 | Bodnar | May 2000 | A |
6069057 | Richards | May 2000 | A |
6085323 | Shimizu et al. | Jul 2000 | A |
6088717 | Reed et al. | Jul 2000 | A |
6088805 | Davis et al. | Jul 2000 | A |
6098056 | Rusnak et al. | Aug 2000 | A |
6101507 | Cane et al. | Aug 2000 | A |
6105131 | Carroll | Aug 2000 | A |
6122630 | Strickler et al. | Sep 2000 | A |
6134327 | Van Oorschot | Oct 2000 | A |
6134658 | Multerer et al. | Oct 2000 | A |
6134660 | Boneh et al. | Oct 2000 | A |
6134664 | Walker | Oct 2000 | A |
6141754 | Choy | Oct 2000 | A |
6145084 | Zuili | Nov 2000 | A |
6158010 | Moriconi et al. | Dec 2000 | A |
6161139 | Win et al. | Dec 2000 | A |
6182142 | Win et al. | Jan 2001 | B1 |
6185684 | Pravetz et al. | Feb 2001 | B1 |
6192408 | Vahalia et al. | Feb 2001 | B1 |
6205549 | Pravetz et al. | Mar 2001 | B1 |
6212561 | Sitaraman et al. | Apr 2001 | B1 |
6223285 | Komuro et al. | Apr 2001 | B1 |
6226618 | Downs et al. | May 2001 | B1 |
6226745 | Wiederhold et al. | May 2001 | B1 |
6240188 | Dondeti et al. | May 2001 | B1 |
6249873 | Richard et al. | Jun 2001 | B1 |
6253193 | Ginter et al. | Jun 2001 | B1 |
6260040 | Kauffman et al. | Jul 2001 | B1 |
6260141 | Park | Jul 2001 | B1 |
6263348 | Kathrow et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6272632 | Carmen et al. | Aug 2001 | B1 |
6282649 | Lambert et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292895 | Baltzley | Sep 2001 | B1 |
6292899 | McBride | Sep 2001 | B1 |
6295361 | Kadansky et al. | Sep 2001 | B1 |
6299069 | Shona | Oct 2001 | B1 |
6301614 | Najork et al. | Oct 2001 | B1 |
6308256 | Folmsbee | Oct 2001 | B1 |
6308273 | Goertzel et al. | Oct 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B2 |
6317777 | Skarbo et al. | Nov 2001 | B1 |
6332025 | Takahashi et al. | Dec 2001 | B2 |
6336114 | Garrison | Jan 2002 | B1 |
6339423 | Sampson et al. | Jan 2002 | B1 |
6339825 | Pensak et al. | Jan 2002 | B2 |
6341164 | Dilkie et al. | Jan 2002 | B1 |
6343316 | Sakata | Jan 2002 | B1 |
6347374 | Drake et al. | Feb 2002 | B1 |
6349337 | Parsons et al. | Feb 2002 | B1 |
6351813 | Mooney et al. | Feb 2002 | B1 |
6356903 | Baxter et al. | Mar 2002 | B1 |
6356941 | Cohen | Mar 2002 | B1 |
6357010 | Viets et al. | Mar 2002 | B1 |
6363480 | Perlman | Mar 2002 | B1 |
6370249 | Van Oorschot | Apr 2002 | B1 |
6381698 | Devanbu et al. | Apr 2002 | B1 |
6389433 | Bolosky et al. | May 2002 | B1 |
6389538 | Gruse et al. | May 2002 | B1 |
6393420 | Peters | May 2002 | B1 |
6405315 | Burns et al. | Jun 2002 | B1 |
6421714 | Rai et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6442695 | Dutcher et al. | Aug 2002 | B1 |
6446090 | Hart | Sep 2002 | B1 |
6449721 | Pensak et al. | Sep 2002 | B1 |
6453353 | Win et al. | Sep 2002 | B1 |
6466932 | Dennis et al. | Oct 2002 | B1 |
6477544 | Bolosky et al. | Nov 2002 | B1 |
6490680 | Scheidt et al. | Dec 2002 | B1 |
6505300 | Chan et al. | Jan 2003 | B2 |
6510349 | Schnek et al. | Jan 2003 | B1 |
6519700 | Ram et al. | Feb 2003 | B1 |
6529956 | Smith et al. | Mar 2003 | B1 |
6530020 | Aoki | Mar 2003 | B1 |
6530024 | Proctor | Mar 2003 | B1 |
6542608 | Scheidt et al. | Apr 2003 | B2 |
6549623 | Scheidt et al. | Apr 2003 | B1 |
6550011 | Sims | Apr 2003 | B1 |
6557039 | Leong et al. | Apr 2003 | B1 |
6567914 | Just et al. | May 2003 | B1 |
6571291 | Chow | May 2003 | B1 |
6584466 | Serbinis et al. | Jun 2003 | B1 |
6587946 | Jakobsson | Jul 2003 | B1 |
6588673 | Chan et al. | Jul 2003 | B1 |
6594662 | Sieffert et al. | Jul 2003 | B1 |
6598161 | Kluttz et al. | Jul 2003 | B1 |
6603857 | Batten-Carew et al. | Aug 2003 | B1 |
6608636 | Roseman | Aug 2003 | B1 |
6611599 | Natarajan | Aug 2003 | B2 |
6611846 | Stoodley | Aug 2003 | B1 |
6615349 | Hair | Sep 2003 | B1 |
6615350 | Schell et al. | Sep 2003 | B1 |
6625650 | Stelliga | Sep 2003 | B2 |
6629243 | Kleinman et al. | Sep 2003 | B1 |
6633311 | Douvikas et al. | Oct 2003 | B1 |
6640307 | Viets et al. | Oct 2003 | B2 |
6646515 | Jun et al. | Nov 2003 | B2 |
6647388 | Numao et al. | Nov 2003 | B2 |
6678835 | Shah et al. | Jan 2004 | B1 |
6687822 | Jakobsson | Feb 2004 | B1 |
6711683 | Laczko et al. | Mar 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6735701 | Jacobson | May 2004 | B1 |
6738908 | Bonn et al. | May 2004 | B1 |
6775779 | England et al. | Aug 2004 | B1 |
6782403 | Kino et al. | Aug 2004 | B1 |
6801999 | Venkatesan et al. | Oct 2004 | B1 |
6807534 | Erickson | Oct 2004 | B1 |
6807636 | Hartman et al. | Oct 2004 | B2 |
6810389 | Meyer | Oct 2004 | B1 |
6810479 | Barlow et al. | Oct 2004 | B1 |
6816871 | Lee | Nov 2004 | B2 |
6826698 | Minkin et al. | Nov 2004 | B1 |
6834333 | Yoshino et al. | Dec 2004 | B2 |
6834341 | Bahl et al. | Dec 2004 | B1 |
6845452 | Roddy et al. | Jan 2005 | B1 |
6851050 | Singhal et al. | Feb 2005 | B2 |
6865555 | Novak | Mar 2005 | B2 |
6874139 | Krueger et al. | Mar 2005 | B2 |
6877136 | Bess et al. | Apr 2005 | B2 |
6889210 | Vainstein | May 2005 | B1 |
6891953 | DeMello et al. | May 2005 | B1 |
6892201 | Brown et al. | May 2005 | B2 |
6892306 | En-Seung et al. | May 2005 | B1 |
6907034 | Begis | Jun 2005 | B1 |
6909708 | Krishnaswamy et al. | Jun 2005 | B1 |
6915434 | Kuroda et al. | Jul 2005 | B1 |
6920558 | Sames et al. | Jul 2005 | B2 |
6931450 | Howard et al. | Aug 2005 | B2 |
6931530 | Pham et al. | Aug 2005 | B2 |
6931597 | Prakash | Aug 2005 | B1 |
6938042 | Aboulhosn et al. | Aug 2005 | B2 |
6941355 | Donaghey et al. | Sep 2005 | B1 |
6941456 | Wilson | Sep 2005 | B2 |
6941472 | Moriconi et al. | Sep 2005 | B2 |
6944183 | Iyer et al. | Sep 2005 | B1 |
6947556 | Matyas, Jr. et al. | Sep 2005 | B1 |
6950818 | Dennis et al. | Sep 2005 | B2 |
6950936 | Subramaniam et al. | Sep 2005 | B2 |
6950941 | Lee et al. | Sep 2005 | B1 |
6950943 | Bacha et al. | Sep 2005 | B1 |
6952780 | Olsen et al. | Oct 2005 | B2 |
6957261 | Lortz | Oct 2005 | B2 |
6959308 | Gramsamer et al. | Oct 2005 | B2 |
6961849 | Davis et al. | Nov 2005 | B1 |
6968060 | Pinkas | Nov 2005 | B1 |
6971018 | Witt et al. | Nov 2005 | B1 |
6978376 | Giroux et al. | Dec 2005 | B2 |
6978377 | Asano et al. | Dec 2005 | B1 |
6988133 | Zavalkovsky et al. | Jan 2006 | B1 |
6988199 | Toh et al. | Jan 2006 | B2 |
6993135 | Ishibashi | Jan 2006 | B2 |
6996718 | Henry et al. | Feb 2006 | B1 |
7003117 | Kacker et al. | Feb 2006 | B2 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003661 | Beattie et al. | Feb 2006 | B2 |
7013332 | Friedel et al. | Mar 2006 | B2 |
7013485 | Brown et al. | Mar 2006 | B2 |
7020645 | Bisbee et al. | Mar 2006 | B2 |
7024427 | Bobbitt et al. | Apr 2006 | B2 |
7035854 | Hsiao et al. | Apr 2006 | B2 |
7035910 | Dutta et al. | Apr 2006 | B1 |
7046807 | Hirano et al. | May 2006 | B2 |
7051213 | Kobayashi et al. | May 2006 | B1 |
7058696 | Phillips et al. | Jun 2006 | B1 |
7058978 | Feuerstein et al. | Jun 2006 | B2 |
7073063 | Peinado | Jul 2006 | B2 |
7073073 | Nonaka et al. | Jul 2006 | B1 |
7076067 | Raike et al. | Jul 2006 | B2 |
7076312 | Law et al. | Jul 2006 | B2 |
7076469 | Schreiber et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7080077 | Ramamurthy et al. | Jul 2006 | B2 |
7095853 | Takuya | Aug 2006 | B2 |
7096266 | Lewin et al. | Aug 2006 | B2 |
7099926 | Ims et al. | Aug 2006 | B1 |
7107269 | Arlein et al. | Sep 2006 | B2 |
7107416 | Stuart et al. | Sep 2006 | B2 |
7117322 | Hochberg et al. | Oct 2006 | B2 |
7120635 | Bhide et al. | Oct 2006 | B2 |
7120757 | Tsuge | Oct 2006 | B2 |
7124164 | Chemtob | Oct 2006 | B1 |
7130964 | Ims et al. | Oct 2006 | B2 |
7131071 | Gune et al. | Oct 2006 | B2 |
7134041 | Murray et al. | Nov 2006 | B2 |
7136903 | Phillips et al. | Nov 2006 | B1 |
7145898 | Elliott | Dec 2006 | B1 |
7146388 | Stakutis et al. | Dec 2006 | B2 |
7146498 | Takechi et al. | Dec 2006 | B1 |
7159036 | Hinchliffe et al. | Jan 2007 | B2 |
7171557 | Kallahalla et al. | Jan 2007 | B2 |
7174563 | Brownlie et al. | Feb 2007 | B1 |
7177427 | Komuro et al. | Feb 2007 | B1 |
7178033 | Garcia | Feb 2007 | B1 |
7181017 | Nagel et al. | Feb 2007 | B1 |
7185364 | Knouse et al. | Feb 2007 | B2 |
7187033 | Pendharkar | Mar 2007 | B2 |
7188181 | Squier et al. | Mar 2007 | B1 |
7194764 | Martherus et al. | Mar 2007 | B2 |
7200747 | Riedel et al. | Apr 2007 | B2 |
7203317 | Kallahalla et al. | Apr 2007 | B2 |
7203968 | Asano et al. | Apr 2007 | B2 |
7219230 | Riedel et al. | May 2007 | B2 |
7224795 | Takada et al. | May 2007 | B2 |
7225256 | Villavicencio | May 2007 | B2 |
7227953 | Shida | Jun 2007 | B2 |
7233948 | Shamoon et al. | Jun 2007 | B1 |
7237002 | Estrada et al. | Jun 2007 | B1 |
7249044 | Kumar et al. | Jul 2007 | B2 |
7260555 | Rossmann et al. | Aug 2007 | B2 |
7265764 | Alben et al. | Sep 2007 | B2 |
7266684 | Jancula | Sep 2007 | B2 |
7280658 | Amini et al. | Oct 2007 | B2 |
7287055 | Smith et al. | Oct 2007 | B2 |
7290148 | Tozawa et al. | Oct 2007 | B2 |
7308702 | Thomsen et al. | Dec 2007 | B1 |
7313824 | Bala et al. | Dec 2007 | B1 |
7319752 | Asano et al. | Jan 2008 | B2 |
7340600 | Corella | Mar 2008 | B1 |
7380120 | Garcia | May 2008 | B1 |
7383586 | Cross et al. | Jun 2008 | B2 |
7386529 | Kiessig et al. | Jun 2008 | B2 |
20010011254 | Clark | Aug 2001 | A1 |
20010021926 | Schneck et al. | Sep 2001 | A1 |
20010032181 | Jakstadt et al. | Oct 2001 | A1 |
20010034839 | Karjoth et al. | Oct 2001 | A1 |
20010044903 | Yamamoto et al. | Nov 2001 | A1 |
20010056550 | Lee | Dec 2001 | A1 |
20020010679 | Felsher | Jan 2002 | A1 |
20020016922 | Richards et al. | Feb 2002 | A1 |
20020031230 | Sweet et al. | Mar 2002 | A1 |
20020035624 | Kim | Mar 2002 | A1 |
20020046350 | Lordemann et al. | Apr 2002 | A1 |
20020050098 | Chan | May 2002 | A1 |
20020056042 | Van Der Kaay et al. | May 2002 | A1 |
20020062240 | Morinville | May 2002 | A1 |
20020062245 | Niu et al. | May 2002 | A1 |
20020069077 | Brophy et al. | Jun 2002 | A1 |
20020069272 | Kim et al. | Jun 2002 | A1 |
20020069363 | Winburn | Jun 2002 | A1 |
20020073320 | Rinkevich et al. | Jun 2002 | A1 |
20020077986 | Kobata et al. | Jun 2002 | A1 |
20020077988 | Sasaki et al. | Jun 2002 | A1 |
20020087479 | Malcolm | Jul 2002 | A1 |
20020099947 | Evans | Jul 2002 | A1 |
20020124180 | Hagman | Sep 2002 | A1 |
20020129235 | Okamoto et al. | Sep 2002 | A1 |
20020133699 | Pueschel | Sep 2002 | A1 |
20020138762 | Horne | Sep 2002 | A1 |
20020143710 | Liu | Oct 2002 | A1 |
20020143906 | Tormasov et al. | Oct 2002 | A1 |
20020156726 | Kleckner et al. | Oct 2002 | A1 |
20020157016 | Russell et al. | Oct 2002 | A1 |
20020169963 | Seder et al. | Nov 2002 | A1 |
20020169965 | Hale et al. | Nov 2002 | A1 |
20020172367 | Mulder et al. | Nov 2002 | A1 |
20020174109 | Chandy et al. | Nov 2002 | A1 |
20020176572 | Ananth | Nov 2002 | A1 |
20020178271 | Graham et al. | Nov 2002 | A1 |
20020194484 | Bolosky et al. | Dec 2002 | A1 |
20020198798 | Ludwig et al. | Dec 2002 | A1 |
20030009685 | Choo et al. | Jan 2003 | A1 |
20030014391 | Evans et al. | Jan 2003 | A1 |
20030023559 | Choi et al. | Jan 2003 | A1 |
20030028610 | Pearson | Feb 2003 | A1 |
20030033528 | Ozog et al. | Feb 2003 | A1 |
20030037133 | Owens | Feb 2003 | A1 |
20030037237 | Abgrall et al. | Feb 2003 | A1 |
20030037253 | Blank et al. | Feb 2003 | A1 |
20030046238 | Nonaka et al. | Mar 2003 | A1 |
20030051039 | Brown et al. | Mar 2003 | A1 |
20030056139 | Murray et al. | Mar 2003 | A1 |
20030074580 | Knouse et al. | Apr 2003 | A1 |
20030078959 | Yeung et al. | Apr 2003 | A1 |
20030079175 | Limantsev | Apr 2003 | A1 |
20030081784 | Kallahalla et al. | May 2003 | A1 |
20030081787 | Kallahalla et al. | May 2003 | A1 |
20030088517 | Medoff | May 2003 | A1 |
20030088783 | DiPierro | May 2003 | A1 |
20030101072 | Dick et al. | May 2003 | A1 |
20030110169 | Zuili | Jun 2003 | A1 |
20030110266 | Rollins et al. | Jun 2003 | A1 |
20030110397 | Supramaniam | Jun 2003 | A1 |
20030115146 | Lee et al. | Jun 2003 | A1 |
20030115570 | Bisceglia | Jun 2003 | A1 |
20030120601 | Ouye | Jun 2003 | A1 |
20030120684 | Zuili et al. | Jun 2003 | A1 |
20030126434 | Lim et al. | Jul 2003 | A1 |
20030154381 | Ouye | Aug 2003 | A1 |
20030159066 | Staw et al. | Aug 2003 | A1 |
20030172280 | Scheidt et al. | Sep 2003 | A1 |
20030177070 | Viswanath et al. | Sep 2003 | A1 |
20030177378 | Wittkotter | Sep 2003 | A1 |
20030182579 | Leporini et al. | Sep 2003 | A1 |
20030182584 | Banes et al. | Sep 2003 | A1 |
20030196096 | Sutton | Oct 2003 | A1 |
20030197729 | Denoue et al. | Oct 2003 | A1 |
20030200202 | Hsiao et al. | Oct 2003 | A1 |
20030217264 | Martin et al. | Nov 2003 | A1 |
20030217281 | Ryan | Nov 2003 | A1 |
20030217333 | Smith et al. | Nov 2003 | A1 |
20030226013 | Dutertre | Dec 2003 | A1 |
20030233650 | Zaner et al. | Dec 2003 | A1 |
20040022390 | McDonald et al. | Feb 2004 | A1 |
20040025037 | Hair | Feb 2004 | A1 |
20040039781 | LaVallee et al. | Feb 2004 | A1 |
20040064710 | Vainstein | Apr 2004 | A1 |
20040068524 | Aboulhosn et al. | Apr 2004 | A1 |
20040068664 | Nachenberg et al. | Apr 2004 | A1 |
20040073660 | Toomey | Apr 2004 | A1 |
20040073718 | Johannessen et al. | Apr 2004 | A1 |
20040088548 | Smetters et al. | May 2004 | A1 |
20040098580 | DeTreville | May 2004 | A1 |
20040103202 | Hildebrand et al. | May 2004 | A1 |
20040103280 | Balfanz et al. | May 2004 | A1 |
20040133544 | Kiessig et al. | Jul 2004 | A1 |
20040158586 | Tsai | Aug 2004 | A1 |
20040193602 | Liu et al. | Sep 2004 | A1 |
20040193905 | Lirov et al. | Sep 2004 | A1 |
20040193912 | Li et al. | Sep 2004 | A1 |
20040199514 | Rosenblatt et al. | Oct 2004 | A1 |
20040215956 | Venkatachary et al. | Oct 2004 | A1 |
20040215962 | Douceur et al. | Oct 2004 | A1 |
20040243853 | Swander et al. | Dec 2004 | A1 |
20050021467 | Franzdonk | Jan 2005 | A1 |
20050021629 | Cannata et al. | Jan 2005 | A1 |
20050028006 | Leser et al. | Feb 2005 | A1 |
20050039034 | Doyle et al. | Feb 2005 | A1 |
20050071275 | Vainstein et al. | Mar 2005 | A1 |
20050071657 | Ryan | Mar 2005 | A1 |
20050071658 | Nath et al. | Mar 2005 | A1 |
20050081029 | Thornton et al. | Apr 2005 | A1 |
20050086531 | Kenrich | Apr 2005 | A1 |
20050091484 | Thornton et al. | Apr 2005 | A1 |
20050120199 | Carter | Jun 2005 | A1 |
20050138371 | Supramaniam | Jun 2005 | A1 |
20050138383 | Vainstein | Jun 2005 | A1 |
20050177716 | Ginter et al. | Aug 2005 | A1 |
20050177858 | Ueda | Aug 2005 | A1 |
20050198326 | Schlimmer et al. | Sep 2005 | A1 |
20050223242 | Nath | Oct 2005 | A1 |
20050223414 | Kenrich et al. | Oct 2005 | A1 |
20050235154 | Serret-Avila | Oct 2005 | A1 |
20050256909 | Aboulhosn et al. | Nov 2005 | A1 |
20050273600 | Seeman | Dec 2005 | A1 |
20050283610 | Serret-Avila et al. | Dec 2005 | A1 |
20050288961 | Tabrizi | Dec 2005 | A1 |
20060005021 | Torrubia-Saez | Jan 2006 | A1 |
20060075465 | Ramanathan et al. | Apr 2006 | A1 |
20060093150 | Reddy et al. | May 2006 | A1 |
20060168147 | Inoue et al. | Jul 2006 | A1 |
20060230437 | Boyer et al. | Oct 2006 | A1 |
20070006214 | Dubal et al. | Jan 2007 | A1 |
20070067837 | Schuster | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
0 672 991 | Sep 1995 | EP |
0 674 253 | Sep 1995 | EP |
0 809 170 | Nov 1997 | EP |
0 913 966 | May 1999 | EP |
0 913 967 | May 1999 | EP |
0 950 941 | Oct 1999 | EP |
0 950 941 | Oct 1999 | EP |
1 107 504 | Jun 2001 | EP |
1 107504 | Jun 2001 | EP |
1 130 492 | Sep 2001 | EP |
1 154 348 | Nov 2001 | EP |
1324565 | Jul 2003 | EP |
2 328 047 | Feb 1999 | GB |
2001-036517 | Feb 2001 | JP |
WO 9641288 | Dec 1996 | WO |
WO 0056028 | Sep 2000 | WO |
WO 0161438 | Aug 2001 | WO |
WO 0163387 | Aug 2001 | WO |
WO 0163387 | Aug 2001 | WO |
WO 0177783 | Oct 2001 | WO |
WO 0178285 | Oct 2001 | WO |
WO 0184271 | Nov 2001 | WO |