The subject matter disclosed herein generally relates to the field of security systems.
A security system may include many devices, such as sensors for detecting unauthorized intrusion, sensors for detecting fire, smoke or toxic gas, one or more keypads for arming or disarming the security system, and one or more processors to process data received from the sensors. Alarm systems for warning of unauthorized intrusion into a structure are most commonly designed to detect the unauthorized opening or removal of the doors or windows of the structure. Security extends past the ability to secure a structure or room. The security for items contained in drawers or cabinets is also of importance.
Some premises are equipped with smart networks to provide automated control of devices, appliances and systems, such as lighting systems, heating, ventilation, and air conditioning (“HVAC”) systems, home theater, entertainment systems, as well as security systems.
Numerous electronic devices may be connected in a wireless network throughout a home or a building. For example, a security alarm system may include one or more sensors disposed at one or more windows, doors, and other entry points of the smart-home or smart-building environment for detecting when a window, door, or other entry point is opened, broken, and/or breached. Many of these sensor devices may communicate wirelessly with a hub device. The hub may also be in wireless communications with other electronic devices, such as thermostats, appliances, air conditioning units, hazard detectors to detect the presence of a hazardous substance or a substance indicative of a hazardous substance (e.g., smoke, fire, flood, or carbon monoxide), routers, doorbells, and wall switches, to name a few. The electronic devices may communicate with the hub and/or each other using one or more wireless communication channels. The electronic devices may integrate seamlessly with each other and/or with a central server or a cloud-computing system to provide home-security and smart-home features.
“Smart home” and “smart building” are terms that generally refer to constructing networks among various devices in a home or a building, in which those devices may communicate with one another through wired or wireless networks in the residential premises/building and are also linked to an external network (e.g., the Internet). Smart-home networks, for example, may include central hubs or a control panel that provides a user interface for receiving user input and controlling the various devices, appliances, and security systems in the home or building complex. When an intruder breaks into a smart-home environment, a security system in the home or building complex may trip and sound an alarm and/or send a signal to a monitoring service, law enforcement entity, or the like.
Security systems typically have two states or modes of operation, that is, armed and unarmed. A security system is considered “armed” when components of the system are operational and set in a secured state, that is, a state in which the component generates a response to an event, such as intrusion e.g., should a monitored door or window suddenly be opened. Otherwise, the security system is considered “unarmed.” Some sensors (e.g., carbon monoxide detectors and smoke, heat and freeze detectors) are armed 24 hours-a-day; other sensors are only armed when the system is armed.
A home security system may operate in two (armed) modes that may be generally referred to as “away” and “stay.” The stay mode of arming the system may refer to the home security system's state when the occupants are home. The home security system may ignore a window or door being opened (or in any event, not trigger an intrusion alarm) while in the stay mode. The away mode is used when the occupants of the home plan on arming the system and leaving the premises. Arming in the away mode will not bypass any sensors, and the entire system will be armed. Thus, the armed mode of the home security system can affect the actions taken by the home security system in response to sensed activities in the home.
There is a continuing need for improved security systems to safeguard persons and property against a broad range of hazards and prevent unauthorized persons from gaining access to protected areas of a building or premises and/or compartments disposed within objects on the premises.
Various techniques for providing home security objectives are disclosed herein.
Various embodiments of the disclosed subject matter provide security systems and methods.
In some embodiments of the disclosed subject matter, a security system may be a stand-alone, self-monitoring system. In other embodiments of the disclosed subject matter, a security system may be monitored by a central station. In some embodiments of the disclosed subject matter, a security system may be selectively switchable between a stand-alone, self-monitoring system and a system monitored by a central station.
Embodiments of the disclosed subject matter may provide, or be part of, a DIY security system.
In some embodiments of the disclosed subject matter, a security system may be part of a smart-home environment.
It will be understood that certain aspects of the disclosed systems and methods can be arranged and combined in a wide variety of different configurations, all of which are contemplated herein. The illustrative system and method embodiments described herein are not meant to be limiting.
Embodiments of the disclosed subject matter generally relate to a plurality of devices, which may include intelligent, multi-sensing, network-connected devices, that communicate with each other and/or with a central server or a cloud-computing system to provide any of a variety of home-security objectives.
Embodiments of the disclosed subject matter provide a security system and methods of providing a help alert and/or panic alarm.
Embodiments of the disclosed subject matter may provide a smart-home environment with a security system. Embodiments described herein are representative examples of devices, methods, systems, services, and/or computer program products that can be used in conjunction with an extensible devices and services platform that, while being particularly applicable and advantageous for providing security objectives in the smart home context, is generally applicable to any type of enclosure or group of enclosures (e.g., factory building, office building, retail store, high-rise building, hotel, educational facilities), vessels (e.g., automobiles, aircraft), or other resource-consuming physical systems that will be occupied by humans or with which humans will physically or logically interact. Thus, although particular examples are set forth in the context of a smart home, it is to be appreciated that the scope of applicability of the described extensible devices and services platform is not so limited.
The details of one or more embodiments are set forth in the description and drawings below. Other features will be apparent from the description and drawings, and from the claims.
Objects and features of the presently-disclosed systems and methods will become apparent to those of ordinary skill in the art when descriptions of various embodiments thereof are read with reference to the accompanying drawings, of which:
Hereinafter, embodiments of a security system and methods of providing a help alert and/or panic alarm are described with reference to the accompanying drawings. Like reference numerals may refer to similar or identical elements throughout the description of the figures.
Various aspects and possible implementations of providing home-security objectives are disclosed herein. Various embodiments of the disclosed subject matter provide devices, methods, systems, services, and/or computer program products to provide any of a variety of home-security objectives. Various aspects, embodiments or features will be presented in terms of systems that may include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, and so on, and/or may not include all of the devices, components, modules and so on, described in connection with the figures. The various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This description may use the phrases “in an embodiment,” “in embodiments,” “in some embodiments,” or “in other embodiments,” which may each refer to one or more of the same or different embodiments in accordance with the present disclosure.
It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As it is used in this description, “sensor” generally refers to any device that can obtain information about its environment. For the purposes of this description, the terms “smart-home” and “smart-building” are used interchangeably.
Embodiments disclosed herein may use one or more sensors. Sensors may be described by the type of information they collect. For example, sensor types as disclosed herein may include motion, smoke, carbon monoxide, proximity, temperature, time, physical orientation, acceleration, location, entry, presence, pressure, light, sound, and the like. A sensor also may be described in terms of the particular physical device that obtains the environmental information. For example, an accelerometer may obtain acceleration information, and thus may be used as a general motion sensor and/or an acceleration sensor. A sensor also may be described in terms of the specific hardware components used to implement the sensor. For example, a temperature sensor may include a thermistor, thermocouple, resistance temperature detector, integrated circuit temperature detector, or combinations thereof. A sensor also may be described in terms of a function or functions the sensor performs within an integrated sensor network, such as a smart-home environment as disclosed herein. For example, a sensor may operate as a security sensor when it is used to determine security events such as unauthorized entry. A sensor may operate with different functions at different times, such as where a motion sensor is used to control lighting in a smart-home environment when an authorized user is present, and is used to alert to unauthorized or unexpected movement when no authorized user is present, or when an alarm system is in an “armed” (e.g., away) state, or the like. In some cases, a sensor may operate as multiple sensor types sequentially or concurrently, such as where a temperature sensor is used to detect a change in temperature, as well as the presence of a person or animal. A sensor also may operate in different modes at the same or different times. For example, a sensor may be configured to operate in one mode during the day and another mode at night. As another example, a sensor may operate in different modes based upon a state of a home security system or a smart-home environment, or as otherwise directed by such a system.
In general, a “sensor” as disclosed herein may include multiple sensors or sub-sensors, such as where a position sensor includes both a global positioning sensor (GPS) as well as a wireless network sensor, which provides data that can be correlated with known wireless networks to obtain location information. Multiple sensors may be arranged in a single physical housing, such as where a single device includes movement, temperature, magnetic, and/or other sensors. Such a housing also may be referred to as a sensor, a sensor device, or a sensor package. For clarity, sensors are described with respect to the particular functions they perform and/or the particular physical hardware used, when such specification is necessary for understanding of the embodiments disclosed herein.
Generally, the system 100 may be configured to operate as a learning, evolving ecosystem of interconnected devices. New devices may be added, introducing new functionality or expanding existing functionality. Existing devices may be replaced or removed without causing a failure of the system 100. Such removal may encompass intentional or unintentional removal of components from the system 100 by the user, as well as removal by malfunction (e.g., loss of power, destruction by intruder, etc.).
The system shown in
A security system in accordance with the disclosed subject matter may include one or more devices including processing and/or sensing capabilities (e.g., “smart devices,” controller devices, computing devices, or the like). In some embodiments, in addition to containing processing and/or sensing capabilities, one or more of the devices is capable of data communications and information sharing with other devices (e.g., mobile internet-enabled devices, such as handhelds, Palms, PDAs, pocket PCs, smart phones, or the like), as well as to any central server or cloud-computing system or any other device that is network-connected anywhere in the world. The required data communications can be carried out using any of a variety of custom or standard wireless protocols (e.g., Wi-Fi, ZigBee®, 6LoWPAN, etc.) and/or any of a variety of custom or standard wired protocols (e.g., CAT6 Ethernet, HomePlug, etc.).
The devices for implementing certain elements that are a part of embodiments of the disclosed subject matter may include one or more network interfaces each configured to associate with and communicate via one or more communication networks (e.g., a wired network, a wireless network, a cellular network, etc.). In embodiments, one or more of the network interfaces may be virtual or logical as opposed to physical. In some embodiments, one or more communication networks may be a decentralized type of wireless network (e.g., a wireless ad hoc network (WANET)).
In some embodiments, the majority of network interfaces may include distinct hardware relative to the type, kind, or protocol of a communications network that a network interface is intended to access (e.g., an antenna tuned to the frequency of the RF transmission protocol it is configured to detect). For example, embodiments may use an antenna tuned to ˜2.4 GHz for detecting Bluetooth and Wi-Fi transmissions, an antenna tuned to 2-8 GHz, an antenna tuned to other frequencies such as 800 MHZ, 900 MHZ, 1800 MHZ, 1900 MHZ, and/or 2100 MHZ, and/or a range of frequencies, a registered jack 45 (RJ45) physical port for accepting a wire/cable with an 8 position 8 conductor (8P8C) modular plug, etc. The network interface may include a component that enables the device to communicate between devices. In an embodiment, the network interface may communicate using a standard network protocol, such as Bluetooth® Low Energy (BLE), Dust Networks®, Z-Wave®, Wi-Fi, and ZigBee®. Additionally, or alternatively, the network interface may communicate via an efficient network layer protocol (e.g., Thread™). The network interface may also include a wired component, in certain embodiments. The wired component may enable wired communication (e.g., Ethernet communication) with other devices.
Each of these network interfaces may access the communications network via a different communications protocol (e.g., a Wi-Fi or Wireless Local Area Network (LAN) protocol, a cellular data protocol, a wired protocol, etc.) or communication network (e.g., a home LAN, a cellular company's communications network, a business intranet, etc.).
Examples of a Wi-Fi protocol may include, but are not limited to: Institute of Electrical and Electronics Engineers (IEEE) 802.11g, IEEE 802.11n, etc. Examples of a cellular protocol may include, but are not limited to: IEEE 802.16m (a.k.a Wireless-MAN (Metropolitan Area Network) Advanced), Long Term Evolution (LTE) Advanced), Enhanced Data rates for GSM (Global System for Mobile Communications) Evolution (EDGE), Evolved High-Speed Packet Access (HSPA+), etc. Examples of a wired protocol may include, but are not limited to: IEEE 802.3 (a.k.a. Ethernet), Fibre Channel, Power Line communication (e.g., HomePlug AV, GP and AV2, IEEE 1901, etc.), etc. It is understood that the above are merely a few illustrative examples to which the disclosed subject matter is not limited.
The device 20 may be used to implement, for example, a controller device (e.g., controller device 160 shown in
The device 20 may store the data in intervals on an on-going basis, for example, in fixed storage 23, removable media 25, or in a storage external to the device 20 via network interface 29. In some embodiments, data may be stored in association with a timestamp indicating a time that the data was generated. Immediately stored data, such as the most-recently stored data, may be referred to as “current data,” while stored data which is no longer current may be referred to as “historical data.”
Historical data may remain stored for a predetermined amount of time. For example, to conserve storage space the device 20 may be configured to store historical data for a period of one week, after which the data is deleted. This period of time may be adjusted by the user and/or automatically by the device 20 in accordance with available storage space and/or other parameter(s).
The system 300 shown in
The system shown in
The system shown in
The premises 301 may include a plurality of rooms, for example, six rooms (e.g., as illustrated as R1, R2, R3, R4, R5, R6 in
The system 300 shown in
In some embodiments of the system 300, the activation of a predetermined number of sensors located within compartments of an object is indicative of an alarm event (e.g., a help alert alarm, or unauthorized access alarm). For example, the object 311 may be a bedroom closet dresser having three or more drawers. In one example scenario, an unauthorized person (e.g., intruder) successively opens three (or two, or four, etc.) of the drawers of the dresser within a predetermined timeframe. The predetermined timeframe may be a time period (e.g., twenty seconds) during which the predetermined number of sensors (e.g., three sensors) must all be activated to be indicative of an alarm event. In some embodiments, the predetermined timeframe may be, for example, a time period between the activation of the individual sensors, for example, ten seconds.
The system 300 shown in
The system 300 shown in
Safes are used for a variety of purposes. For example, at home, a safe may be used to protect valuables, such as watch and jewelry collections, keepsakes, heirlooms, art and collectables, etc. In an office, a safe may be used to protect important documents and other items, such as checks, petty cash and employees' personal possessions. Safes are available in a wide variety of sizes and shapes to fit a wide range of office environments, home or home-office environments, non-office environments (e.g., restaurants, bars, retail establishments, schools, hotels, museums, and gyms), etc.
According to some embodiments of the disclosed subject matter, an alarm event can be determined based on an analysis of the data generated by one or more sensors associated with a first object (e.g., object 311 located in room R1 of premises 300 of
In an example embodiment shown in
In embodiments, the safe 3200 includes a box structure having two opposed and spaced apart parallel planar surfaces defining a top surface and a bottom surface and four side surfaces substantially at right angles to the top and bottom surfaces. The box structure generally includes: an interior 3210 for storing contents disposed therein; one surface formed with an opening in at least a portion of the surface for providing access to the interior 3210; and a door 3202 mounted in the opening and movable between a closed and an open position. In an embodiment, the safe 3200 includes a lock mechanism (not shown) and an electronic keypad 3204 mounted on the door 3202 and coupled to an actuator coupled to the lock mechanism for selectively placing the door 3202 in a locked condition.
The safe 3200 may include a device 3231 for monitoring of the opening of the door 3202. The device 3231 may include one or more sensors for detecting when the safe door 3202 is opened. A processor may be operably coupled to the one or more sensors and configured to generate an alert upon detection of the opening of the door 3202. In an embodiment, the device 3231 includes a protruding switch lever arm (not shown) arranged such that it is held open during closure of the door 3202, but is allowed to close when the door 3202 is opened.
In an embodiment of the system 300, the opening of one or more drawers of the table 3100 and the subsequent opening of the safe 3200 within a predetermined period of time (e.g., a short interval, such as a 10-minute interval, or the like) is indicative of an alarm event. Although, in the example embodiment depicted in
For example, in one scenario, where an intruder makes entry into a premises 301 and threatens to use force upon or toward a person who occupies the premises 301 to coerce the occupant to open a safe 3200, the distressed occupant is able to assert, plausibly enough, under the circumstances, that he or she cannot remember how to open the safe (perhaps after a failed attempt(s), which might be purposeful, or not) and inform the intruder that the combination to the safe 3200 is written in a log 3145 contained in a table drawer (e.g., table 3100). In accordance with an embodiment of the system 300, the opening of a drawer within the table 3100, followed by the opening of the safe 3200 within a predetermined period of time is indicative of an alarm event. In such case, the system 300 may sound an alarm and/or send a signal to a monitoring service, law enforcement entity, or the like.
In
The processes of the home security system are described in the context of the controller 401, but the remote system 405 may perform some or all of the processes disclosed herein. The remote system 405 is described in detail with respect to
A security event may be detected based on an analysis of the data generated by the sensors (e.g., a door is opened from the outside when there are no authorized users nearby). The processor 410 may generate the second response based on the home security system operating in the vacation mode and provide the second response.
A sensor may include hardware in addition to the specific physical sensor that obtains information about the environment.
In some configurations, two or more sensors may generate data that can be used by a processor of a system to generate a response and/or infer a state of the environment. For example, an ambient light sensor in a room may determine that the room is dark (e.g., less than 60 lux). A microphone in the room may detect a sound above a set threshold, such as 60 dB. A processor of a system may determine, based on the data generated by both sensors that it should activate one or more lights in the room. In the event the processor only received data from the ambient light sensor, the system may not have any basis to alter the state of the lighting in the room. Similarly, if the processor only received data from the microphone, the system may lack sufficient data to determine whether activating the lights in the room is necessary, for example, during the day the room may already be bright or during the night the lights may already be on. As another example, two or more sensors may communicate with one another. Thus, data generated by multiple sensors simultaneously or nearly simultaneously may be used to determine a state of an environment and, based on the determined state, generate a response.
As another example, a security system may employ a magnetometer affixed to a door jamb and a magnet affixed to the door. When the door is closed, the magnetometer may detect the magnetic field emanating from the magnet. If the door is opened, the increased distance may cause the magnetic field near the magnetometer to be too weak to be detected by the magnetometer. If the security system is activated, it may interpret such non-detection as the door being ajar or open. In some configurations, a separate sensor or a sensor integrated into one or more of the magnetometer and/or magnet may be incorporated to provide data regarding the status of the door. For example, an accelerometer and/or a compass may be affixed to the door and indicate the status of the door and/or augment the data provided by the magnetometer.
The sensors may be integrated into a home security system, mesh network (e.g., Thread™), or work in combination with other sensors positioned in and/or around an environment.
In some configurations, an accelerometer may be employed to indicate how quickly the door is moving. For example, the door may be lightly moving due to a breeze. This may be contrasted with a rapid movement due to a person swinging the door open. The data generated by the compass, accelerometer, and/or magnetometer may be analyzed and/or provided to a central system such as a controller 73 and/or remote system 74. The data may be analyzed to learn a user behavior, an environment state, and/or as a component of a home security or home automation system. While the above example is described in the context of a door, a person having ordinary skill in the art will appreciate the applicability of the disclosed subject matter to other embodiments such as a window, garage door, fireplace doors, vehicle windows/doors, faucet positions (e.g., an outdoor spigot), a gate, seating position, etc.
Data generated by one or more sensors may indicate a behavior pattern of one or more users and/or an environment state over time, and thus may be used to “learn” such characteristics. For example, data generated by an ambient light sensor in a room of a house and the time of day may be stored in a local or remote storage medium with the permission of an end user. A processor in communication with the storage medium may compute a behavior based on the data generated by the light sensor. The light sensor data may indicate that the amount of light detected increases until an approximate time or time period, such as 3:30 PM, and then declines until another approximate time or time period, such as 5:30 PM, at which point there is an abrupt increase in the amount of light detected. In many cases, the amount of light detected after the second time period may be either below a dark level of light (e.g., under or equal to 60 Ix) or bright (e.g., equal to or above 400 Ix). In this example, the data may indicate that after 5:30 PM, an occupant is turning on/off a light as the occupant of the room in which the sensor is located enters/leaves the room. At other times, the light sensor data may indicate that no lights are turned on/off in the room. The system, therefore, may learn that occupant's patterns of turning on and off lights, and may generate a response to the learned behavior. For example, at 5:30 PM, a smart-home environment or other sensor network may automatically activate the lights in the room if it detects an occupant in proximity to the home. In some embodiments, such behavior patterns may be verified using other sensors. Continuing the example, user behavior regarding specific lights may be verified and/or further refined based upon states of, or data gathered by, smart switches, outlets, lamps, and the like.
Sensors as disclosed herein may operate within a communication network, such as a conventional wireless network, and/or a sensor-specific network through which sensors may communicate with one another and/or with dedicated other devices. In some configurations, one or more sensors may provide information to one or more other sensors, to a central controller, or to any other device capable of communicating on a network with the one or more sensors. A central controller may be general- or special-purpose. For example, one type of central controller is a home automation network that collects and analyzes data from one or more sensors within the home. Another example of a central controller is a special-purpose controller that is dedicated to a subset of functions, such as a security controller that collects and analyzes sensor data primarily or exclusively as it relates to various security considerations for a location. A central controller may be located locally with respect to the sensors with which it communicates and from which it obtains sensor data, such as in the case where it is positioned within a home that includes a home automation and/or sensor network. Alternatively, or in addition, a central controller as disclosed herein may be remote from the sensors, such as where the central controller is implemented as a cloud-based system that communicates with multiple sensors, which may be located at multiple locations and may be local or remote with respect to one another.
The devices of the security system and smart-home environment of the disclosed subject matter may be communicatively connected via the network 70, which may be a mesh-type network such as Thread™, which provides network architecture and/or protocols for devices to communicate with one another. Typical home networks may have a single device point of communications. Such networks may be prone to failure, such that devices of the network cannot communicate with one another when the single device point does not operate normally. The mesh-type network of Thread™, which may be used in the security system of the disclosed subject matter, may avoid communication using a single device. That is, in the mesh-type network, such as network 70, there is no single point of communication that may fail and prohibit devices coupled to the network from communicating with one another.
The communication and network protocols used by the devices communicatively-coupled to the network 70 may provide secure communications, minimize the amount of power used (i.e., be power efficient), and support a wide variety of devices and/or products in a home, such as appliances, access control, climate control, energy management, lighting, safety, and security. For example, the protocols supported by the network and the devices connected thereto may have an open protocol that may carry IPv6 natively.
The Thread™ network, such as network 70, may be easy to set up and secure to use. The network 70 may use an authentication scheme, AES (Advanced Encryption Standard) encryption, or the like to reduce and/or minimize security holes that exist in other wireless protocols. The Thread™ network may be scalable to connect devices (e.g., 2, 5, 10, 20, 50, 100, 150, 200, or more devices) into a single network supporting multiple hops (e.g., to provide communications between devices when one or more nodes of the network is not operating normally). The network 70, which may be a Thread™ network, may provide security at the network and application layers. One or more devices communicatively-coupled to the network 70 (e.g., controller 73, remote system 74, and the like) may store product install codes to ensure only authorized devices can join the network 70. One or more operations and communications of network 70 may use cryptography, such as public-key cryptography.
The devices communicatively-coupled to the net-work 70 of the smart-home environment and/or security system disclosed herein may low power consumption and/or reduced power consumption. That is, devices efficiently communicate to with one another and operate to provide functionality to the user, where the devices may have reduced battery size and increased battery lifetimes over conventional devices. The devices may include sleep modes to increase battery life and reduce power requirements. For example, communications between devices coupled to the network 70 may use the power-efficient IEEE 802.15.4 MAC/PHY protocol. In embodiments of the disclosed subject matter, short messaging between devices on the network 70 may conserve bandwidth and power. The routing protocol of the network 70 may reduce network overhead and latency. The communication interfaces of the devices coupled to the smart-home environment may include wireless system-on-chips to support the low-power, secure, stable, and/or scalable communications network 70.
The sensor network shown in
The smart-home environment can control and/or be coupled to devices outside of the structure. For example, one or more of the sensors 71, 72 may be located outside the structure, for example, at one or more distances from the structure (e.g., sensors 71, 72 may be disposed outside the structure, at points along a land perimeter on which the structure is located, and the like. One or more of the devices in the smart-home environment need not physically be within the structure. For example, the controller 73 which may receive input from the sensors 71, 72 may be located outside of the structure.
The structure of the smart-home environment may include a plurality of rooms, separated at least partly from each other via walls. The walls can include interior walls or exterior walls. Each room can further include a floor and a ceiling. Devices of the smart-home environment, such as the sensors 71, 72, may be mounted on, integrated with and/or supported by a wall, floor, or ceiling of the structure.
The smart-home environment including the sensor network shown in
For example, a smart thermostat may detect ambient climate characteristics (e.g., temperature and/or humidity) and may control an HVAC (heating, ventilating, and air conditioning) system accordingly of the structure. For example, the ambient client characteristics may be detected by sensors 71, 72 shown in
As another example, a smart hazard detector may detect the presence of a hazardous substance or a substance indicative of a hazardous substance (e.g., smoke, fire, flood, or carbon monoxide). For example, smoke, fire, and/or carbon monoxide may be detected by sensors 71, 72 shown in
As another example, a smart doorbell may control doorbell functionality, detect a person's approach to or departure from a location (e.g., an outer door to the structure), and announce a person's approach or departure from the structure via audible and/or visual message that is output by a speaker and/or a display coupled to, for example, the controller 73.
In some embodiments, the smart-home environment of the sensor network shown in
In implementations of the disclosed subject matter, a smart-home environment may include one or more intelligent, multi-sensing, network-connected entry detectors (e.g., “smart entry detectors”). Such detectors may be or include one or more of the sensors 71, 72 shown in
The smart-home environment of the sensor net-work shown in
The smart thermostats, the smart hazard detectors, the smart doorbells, the smart wall switches, the smart wall plugs, the smart entry detectors, the smart doorknobs, the keypads, and other devices of a smart-home environment (e.g., as illustrated as sensors 71, 72 of
A user can interact with one or more of the network-connected smart devices (e.g., via the network 70). For example, a user can communicate with one or more of the network-connected smart devices using a computer (e.g., a desktop computer, laptop computer, tablet, or the like) or other portable electronic device (e.g., a smartphone, a tablet, a key FOB, or the like). A webpage or application can be configured to receive communications from the user and control the one or more of the network-connected smart devices based on the communications and/or to present information about the device's operation to the user. For example, the user can view or change the mode of the security system of the home.
One or more users can control one or more of the network-connected smart devices in the smart-home environment using a network-connected computer or portable electronic device. In some examples, some or all of the users (e.g., individuals who live in the home) can register their mobile device and/or key FOBs with the smart-home environment (e.g., with the controller 73). Such registration can be made at a central server (e.g., the controller 73 and/or the remote system 74) to authenticate the user and/or the electronic device as being associated with the smart-home environment, and to provide permission to the user to use the electronic device to control the network-connected smart devices and the security system of the smart-home environment. A user can use their registered electronic device to remotely control the network-connected smart devices and security system of the smart-home environment, such as when the occupant is at work or on vacation. The user may also use their registered electronic device to control the network-connected smart devices when the user is located inside the smart-home environment.
Alternatively, or in addition to registering electronic devices, the smart-home environment may make inferences about which individuals live in the home and are therefore users and which electronic devices are associated with those individuals. As such, the smart-home environment may “learn” who is a user (e.g., an authorized user) and permit the electronic devices associated with those individuals to control the network-connected smart devices of the smart-home environment (e.g., devices communicatively-coupled to the network 70), in some embodiments including sensors used by or within the smart-home environment. Various types of notices and other information may be provided to users via messages sent to one or more user electronic devices. For example, the messages can be sent via email, short message service (SMS), multimedia messaging service (MMS), unstructured supplementary service data (USSD), as well as any other type of messaging services and/or communication protocols.
A smart-home environment may include communication with devices outside of the smart-home environment but within a proximate geographical range of the home. For example, the smart-home environment may include an outdoor lighting system (not shown) that communicates information through the communication network 70 or directly to a central server or cloud-computing system (e.g., controller 73 and/or remote system 74) regarding detected movement and/or presence of people, animals, and any other objects and receives back commands for controlling the lighting accordingly.
The controller 73 and/or remote system 74 can control the outdoor lighting system based on information received from the other network-connected smart devices in the smart-home environment. For example, in the event that any of the network-connected smart devices, such as smart wall plugs located outdoors, detect movement at nighttime, the controller 73 and/or remote system 74 can activate the outdoor lighting system and/or other lights in the smart-home environment.
In some configurations, a remote system 74 may aggregate data from multiple locations, such as multiple buildings, multi-resident buildings, and individual residences within a neighborhood, multiple neighborhoods, and the like. In general, multiple sensor/controller systems 81, 82 as previously described with respect to
Embodiments of the presently disclosed subject matter may be implemented in and used with a variety of component and network architectures.
The bus 721 allows data communication between the central processor 724 and the memory 727, which may include read-only memory (ROM) or flash memory (neither shown), and random access memory (RAM) (not shown), as previously noted. The RAM is generally the main memory into which the operating system and application programs are loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output system (BIOS) that controls basic hardware operation such as the interaction with peripheral components. Applications resident with the computer 720 are generally stored on and accessed via a computer readable medium, such as a hard disk drive (e.g., fixed storage 723), an optical drive, floppy disk, or other storage medium 725.
The fixed storage 723 may be integral with the computer 720 or may be separate and accessed through other interfaces. A network interface 729 may provide a direct connection to a remote server via a telephone link, to the Internet via an Internet service provider (ISP), or a direct connection to a remote server via a direct network link to the Internet via a POP (point of presence) or other technique. The network interface 729 may provide such connection using wireless techniques, including digital cellular tele-phone connection, Cellular Digital Packet Data (CDPD) connection, digital satellite data connection, or the like. For example, the network interface 729 may allow the computer to communicate with other computers via one or more local, wide-area, or other networks, as shown in
Many other devices or components (not shown) may be connected in a similar manner (e.g., document scanners, digital cameras, and so on). Conversely, all of the components shown in
In an example embodiment shown in
In embodiments, the desk 801 includes a first sensor 841 and may include a second sensor 843. The first sensor 841 and the second sensor 843 may be located, for example, on opposing lateral walls defining, in part, the interior region 810. Additionally, or alternatively, the desk 801 may include a third sensor 845 and/or a fourth sensor 843 located on an upper wall defining, in part, the interior region 810. In embodiments, the desk 801 includes one or more partitions secured by one or more magnetic members. In an example embodiment shown in
In embodiments, when the drawer is extended from within the interior region 810 to a first position, data from one or more sensors indicative of a first configuration of the desk 801 is communicated to a processor. For example, in the first configuration of the desk 801, a partition (e.g., first partition 811) is disposed in vertical alignment with the proximal edge of the desk 801 (demarked by the dashed line in
In an example embodiment shown in
More generally, various embodiments of the presently disclosed subject matter may include or be implemented in the form of computer-implemented processes and apparatuses for practicing those processes. The disclosed subject matter also may be implemented in the form of a computer program product having computer program code containing instructions implemented in non-transitory and/or tangible media, such as floppy diskettes, CD-ROMs, hard drives, USB (universal serial bus) drives, or any other machine readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing implementations of the disclosed subject matter. Implementations also may be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing implementations of the disclosed subject matter. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits. In some configurations, a set of computer-readable instructions stored on a computer-readable storage medium may be implemented by a general-purpose processor, which may transform the general-purpose processor or a device containing the general-purpose processor into a special-purpose device configured to implement or carry out the instructions.
Implementations may use hardware that includes a processor, such as a general-purpose microprocessor and/or an Application Specific Integrated Circuit (ASIC) that includes all or part of the techniques according to embodiments of the disclosed subject matter in hardware and/or firmware. The processor may be coupled to memory, such as RAM, ROM, flash memory, a hard disk or any other device capable of storing electronic information. The memory may store instructions adapted to be executed by the processor to perform the techniques according to embodiments of the disclosed subject matter.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative descriptions above are not intended to be exhaustive or to limit embodiments of the disclosed subject matter to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to explain the principles of embodiments of the disclosed subject matter and their practical applications, to thereby enable others skilled in the art to utilize those embodiments as well as various embodiments with various modifications as may be suited to the particular use contemplated.
Although embodiments have been described in detail with reference to the accompanying drawings for the purpose of illustration and description, it is to be understood that the disclosed systems and processes and apparatus are not to be construed as limited thereby. All or a portion of any embodiment may be utilized with all or a portion of any other embodiments, unless stated otherwise. It will be apparent to those of ordinary skill in the art that various modifications to the foregoing embodiments may be made without departing from the scope of the disclosure. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application is a continuation of U.S. patent application Ser. No. 17/397,969, filed Aug. 9, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/435,456, filed Jun. 7, 2019, which claims the benefit of the filing date of U.S. Provisional Application Ser. No. 62/682,019, filed on Jun. 7, 2018, the entireties of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3710371 | Whalen | Jan 1973 | A |
3842410 | Gopperton | Oct 1974 | A |
4054752 | Dennis | Oct 1977 | A |
4234875 | Williams | Nov 1980 | A |
4242670 | Smith | Dec 1980 | A |
4337462 | Lemelson | Jun 1982 | A |
4559880 | Lacka | Dec 1985 | A |
4692745 | Simanowitz | Sep 1987 | A |
4797663 | Rios | Jan 1989 | A |
4977392 | Loda | Dec 1990 | A |
5493273 | Smurlo | Feb 1996 | A |
5716114 | Holmes | Feb 1998 | A |
5745366 | Higham | Apr 1998 | A |
5786755 | Cicchino | Jul 1998 | A |
5805456 | Higham | Sep 1998 | A |
5905653 | Higham | May 1999 | A |
5927540 | Godlewski | Jul 1999 | A |
6039467 | Holmes | Mar 2000 | A |
6075441 | Maloney | Jun 2000 | A |
6084511 | Kil | Jul 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6263260 | Bodmer | Jul 2001 | B1 |
6429893 | Xin | Aug 2002 | B1 |
6640159 | Holmes | Oct 2003 | B2 |
6831559 | Chen | Dec 2004 | B2 |
6965294 | Elliott | Nov 2005 | B1 |
7116226 | Pollard | Oct 2006 | B1 |
7119678 | Katz | Oct 2006 | B2 |
7385521 | Macari | Jun 2008 | B2 |
7567175 | Takahashi | Jul 2009 | B2 |
7659816 | Wandel | Feb 2010 | B2 |
7665326 | LeClear | Feb 2010 | B2 |
7668620 | Shoenfeld | Feb 2010 | B2 |
7737840 | Kopp | Jun 2010 | B2 |
7847675 | Thyen | Dec 2010 | B1 |
8067915 | Hooker | Nov 2011 | B2 |
8339261 | Wolski | Dec 2012 | B1 |
8436731 | Davis | May 2013 | B2 |
8478447 | Fadell | Jul 2013 | B2 |
8588966 | Michael | Nov 2013 | B2 |
8730041 | Roberts | May 2014 | B2 |
8742889 | Kaczmarz | Jun 2014 | B2 |
8744621 | Michael | Jun 2014 | B2 |
9052994 | Lockwood | Jun 2015 | B2 |
9195804 | Shoenfeld | Nov 2015 | B2 |
9208676 | Fadell | Dec 2015 | B2 |
9483896 | Lockwood | Nov 2016 | B2 |
9501924 | Kennedy | Nov 2016 | B2 |
9514636 | Modi | Dec 2016 | B2 |
9524626 | Brühwiler | Dec 2016 | B2 |
9672705 | Modi | Jun 2017 | B2 |
9681722 | Simpson | Jun 2017 | B2 |
9787424 | Filson | Oct 2017 | B2 |
9881492 | Vildosola | Jan 2018 | B2 |
9940798 | Peterson | Apr 2018 | B2 |
10229567 | Ricks | Mar 2019 | B2 |
10258131 | Yim | Apr 2019 | B2 |
10339773 | Kennedy | Jul 2019 | B2 |
10401018 | Smith | Sep 2019 | B1 |
10445961 | Chen | Oct 2019 | B1 |
10475305 | Jonsson | Nov 2019 | B2 |
10504199 | Tada | Dec 2019 | B2 |
10551051 | Smith | Feb 2020 | B2 |
10721444 | Rabinowitz | Jul 2020 | B2 |
10801717 | Smith | Oct 2020 | B2 |
11293630 | Paul | Apr 2022 | B2 |
11631320 | Lamb | Apr 2023 | B2 |
11657687 | Thibault | May 2023 | B2 |
11754331 | Trammell | Sep 2023 | B2 |
11771220 | Brooks | Oct 2023 | B1 |
11908307 | Hoofe, IV | Feb 2024 | B2 |
20100033329 | Davis | Feb 2010 | A1 |
20130076898 | Philippe | Mar 2013 | A1 |
20150048625 | Weusten | Feb 2015 | A1 |
20160106622 | van de Wouw | Apr 2016 | A1 |
20160189527 | Peterson | Jun 2016 | A1 |
20160239723 | Ge | Aug 2016 | A1 |
20180004840 | Herbelin | Jan 2018 | A1 |
20180256427 | Volek | Sep 2018 | A1 |
20180330597 | Burke | Nov 2018 | A1 |
20200088464 | Coradetti | Mar 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20240233515 A1 | Jul 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17397969 | Aug 2021 | US |
Child | 18397460 | US |