This application is the U.S. National Stage of International Application No. PCT/EP2007/008953, filed Oct. 16, 2007, which claims the benefit of German Patent Application DE 10 2006 050 047.4, filed Oct. 24, 2006; both of which are hereby incorporated by reference to the extent not inconsistent with the disclosure herewith.
The present invention relates to a see-through security element, for security papers, value documents and the like, having at least one micropattern having a visual appearance that is viewing-angle dependent when looked through.
For protection, data carriers, such as value or identification documents, or other valuable articles, such as branded articles, are often provided with security elements that permit the authenticity of the data carriers to be verified, and that simultaneously serve as protection against unauthorized reproduction. The security elements can be developed, for example, in the form of a security thread embedded in a banknote, a tear strip for product packaging, an applied security strip, a cover foil for a banknote having a through opening, or a self-supporting transfer element, such as a patch or a label that, after its manufacture, is applied to a value document.
Security elements having viewing-angle-dependent effects play a special role in safeguarding authenticity, as these cannot be reproduced even with the most modern copiers. Here, the security elements are furnished with optically variable elements that, from different viewing angles, convey to the viewer a different image impression and, depending on the viewing angle, display for example another color or brightness impression and/or another graphic motif.
Based on that, the object of the present invention is to specify a see-through security element of the kind cited above that avoids the disadvantages of the background art. In particular, as a security feature, the see-through security element is intended to exhibit an easily perceptible piece of optical information that offers high counterfeit protection and that requires no special illumination conditions for the authenticity check.
This object is solved by the see-through security feature having the features of the main claim. A security paper, a data carrier and a corresponding manufacturing method are specified in the coordinated claims. Developments of the present invention are the subject of the dependent claims.
According to the present invention, in a generic see-through security element, the at least one micropattern is formed from an arrangement of a plurality of pattern elements having a characteristic pattern spacing of 1 μm or more. Furthermore, according to the present invention, the see-through security element exhibits a total thickness of 50 μm or less.
The inventive arrangement of a plurality of pattern elements can be a regular or irregular arrangement, or an arrangement that is regular in some regions. The present invention thus encompasses any arrangement of a plurality of pattern elements that exhibits a pattern spacing of 1 μm or more.
The see-through security element preferably exhibits a transparent or translucent substrate and, applied on the substrate, a marking layer that includes the at least one micropattern.
In principle, any transparent or translucent substrate can be used for the see-through security element. Here, the transmittance must be at least so large that the viewing-angle-dependent appearance can be perceived by the viewer in transmitted light. The use of an additional illumination means to improve the perceptibility of the appearance by the viewer is conceivable, even if, according to the present invention, the thickness of the material is chosen such that the optically variable appearance of the see-through security element is possible also without auxiliary means.
Accordingly, paper, especially cotton vellum paper, is, in principle, conceivable as a substrate. Of course also paper that includes a portion x of polymer material in the range from 0<x<100 wt. % can be used.
However, it is particularly preferred when the substrate is a plastic, especially a plastic foil, e.g. a foil composed of polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polypropylene (PP) or polyamide (PA). Further, the foil can be stretched monoaxially or biaxially. The stretching of the foil causes it to, among other things, gain polarizing properties that can be used as a further security feature. The auxiliary means required to take advantage of these properties, such as polarization filters, are known to the person of skill in the art.
It can also be expedient when the substrate is a multilayer laminate, especially a laminate of multiple different foils (composite laminate). Here, the foils of the laminate can be formed e.g. from the above-mentioned plastic materials. Such a laminate is distinguished by an extraordinarily high stability, which is of great advantage for the durability of the security element. These laminate materials can also be used with great advantage in certain climate regions of the earth.
All materials used as a substrate can exhibit additives that serve as authenticating features. Here, primarily luminescent substances that are preferably transparent in the visible wavelength range and, in the non-visible wavelength range, can be excited by a suitable auxiliary means, e.g. a UV- or IR-radiation-emitting radiation source, are to be considered in order to produce a luminescence that is visible or at least detectable. Of course also the marking layer, that is, e.g., the lacquers or inks used for the micropattern, can exhibit the above-mentioned additives.
In an advantageous variant of the present invention, the marking layer of the see-through security element constitutes a colored embossing lacquer layer whose regions that are left standing when embossing, i.e. non-embossed regions, form the pattern elements of the at least one micropattern.
In another, likewise advantageous variant of the present invention, the marking layer of the see-through security element is a transparent or translucent embossing lacquer layer that exhibits embossed depressions that are subsequently filled with colored material and that form the pattern elements of the at least one micropattern. The depressions can exhibit any form or contour shape. Hereinafter, also the term “trenches” is used for these depressions.
In a further, likewise advantageous variant of the present invention, the marking layer of the see-through security element is a printing layer having regions of high transmittance and having regions of low transmittance, the regions of low transmittance forming the pattern elements of the at least one micropattern.
According to yet a further advantageous variant of the present invention, the marking layer of the see-through security element is a micro intaglio layer having regions of high transmittance and having regions of low transmittance, the regions of low transmittance forming the pattern elements of the at least one micropattern. The properties of such micro intaglio layers and methods for their manufacture will be described in greater detail below.
The see-through security element preferably exhibits a total thickness of 20 μm or less, particularly preferably of 3 μm to 10 μm. The pattern elements of the micropattern expediently exhibit a characteristic pattern spacing of 5 μm or more. Further, according to an advantageous embodiment, it is provided that the pattern elements each exhibit a pattern size of 1 μm or more, preferably of 3 μm or more. For the profile of the pattern elements, height-to-width ratios from about 1:5 up to about 5:1 are considered advantageous, and from about 1:1 up to about 5:1 particularly advantageous.
According to a development of the present invention, at least one of, if applicable, multiple micropatterns is formed by a lamellar pattern composed of a plurality of substantially parallel lamellae. The visual appearance of the micropatterns then changes when the security element is rotated or tilted due to the changing viewing direction relative to the parallel lamellae.
Particularly preferably, in the security element, multiple micropatterns formed by lamellar patterns are provided that differ in one or more of the parameters lateral orientation, color, width, height, relief shape and spacing.
Here, the differing lamellar patterns can advantageously be arranged in the form of patterns, characters or a code that appear, change or disappear especially when the security element is rotated or tilted.
According to another development of the present invention, at least one of, if applicable, multiple micropatterns is formed by a plurality of depressions having an increased transmittance in a marking layer, such that the visual appearance of the micropattern changes when the security element is rotated or tilted due to the changing viewing direction relative to the depressions. Here, the plurality of depressions can advantageously be arranged in the form of patterns, characters or a code that appear, change or disappear especially when the security element is rotated or tilted.
According to a preferred embodiment of the present invention, the pattern elements are provided in sub-regions with an opaque, transparent, semitransparent, reflective or absorbing coating. Here, the coating can be developed to be monolayer or multilayer and particularly advantageously as a thin-film element having a color-shift effect, that is, to be optically variable. Coatings composed of so-called pearlescent pigments are prime examples of monolayer thin-film elements. Multilayer thin-film elements are generally developed as purely dielectric thin film structures or metallic/dielectric multi-ply structures. Presently, for the multilayer thin-film elements, three-layer interference layer structures (metallic/dielectric three-ply structure) are particularly preferred.
Furthermore, the pattern elements can be provided in sub-regions with a metallic coating, with a light-absorbing moth-eye pattern or also with a diffractive pattern that diffracts substantial portions of the incident light away from the viewer.
It is particularly preferred when the pattern elements exhibit an asymmetrically arranged coating, moth-eye pattern or diffractive pattern. In the case of a coating, the asymmetric arrangement on the pattern elements can be achieved, for example, through oblique vapor deposition.
In a further advantageous embodiment of the present invention, the see-through security element exhibits a transparent or translucent substrate having a first and an opposing second surface, a see-through mask being applied to the first surface as a micropattern. A congruent see-through mask is applied to the second surface with a predetermined lateral offset of 100 μm or less.
The see-through mask preferably includes a motif in the form of patterns, characters or a code that is visually perceptible when looked through only at a certain viewing angle.
Particularly advantageously, the see-through masks are each formed by an opaque layer having light-transmitting openings, the openings exhibiting a size of less than 200 μm, preferably a size of about 3 μm to about 100 μm, and forming a motif in the form of patterns, characters or a code. The offset of the see-through mask is coordinated with the size of the openings and the thickness of the substrate and is preferably significantly less than 100 μm, for example only about 20 μm or less, or even only about 10 μm or less.
The see-through security element according to the present invention can advantageously exhibit further security elements in order to further increase the counterfeit security. For example, the additional security element can be a transparent or semitransparent coating that is structured to be mono- or multilayer. Optically variable layers, especially interference layers, can advantageously be used for the additional coatings. The person of skill in the art is sufficiently familiar with purely dielectric thin film structures, metallic/dielectric multi-ply structures and the materials used in each case for the layers of these interference layer systems. Of course an additional security element can also be taken as part of the see-through security element according to the present invention, especially when, as in the case of the already mentioned thin-film elements having a color-shift effect, the further security element (interference layer structure) is arranged on or under the micropattern. In any case, through the synergistic coaction of the micropattern with the further security element, a significant increase in the counterfeit security and an enhancement of the optical appearance of the see-through security element according to the present invention results.
The additional coating can be superimposed on or laid under the micropattern of the see-through security element. A particularly impressive, additional optically variable effect can be obtained, for example, when the additional optically variable coating is arranged between the transparent or translucent substrate and the marking layer that includes the micropattern. The synergistic coaction of the optically variable micropattern and the additional optically variable coating significantly increases the counterfeit security of the see-through security element.
The additional coating can exhibit machine-readable properties at least in some regions. The additional coating also advantageously exhibits magnetic, electrically conductive or luminescent properties.
However, the additional security element can also advantageously be diffraction patterns, kinematic patterns or matte patterns. For example, as diffraction patterns, holograms can be used that are provided with a transparent or semitransparent metal layer or high-index dielectric coating. For these additional security elements, too, the counterfeit security is increased particularly in that the additional security element is either superimposed on or laid under the micropattern of the see-through security element, or is arranged practically without spatial distance next to the micropattern.
The additional security element can also be developed in the form of a liquid crystal layer, especially as a cholesteric or nematic liquid crystal layer, or in the form of a multilayer arrangement of cholesteric and/or nematic liquid crystals. It is also possible to develop the additional security element as a printing element. The printing element can advantageously include an ink that absorbs and/or emits in the infrared (IR) or ultraviolet wavelength range (fluorescence or phosphorescence), which facilitates machine detection. The printing element can also include optically variable or iridescent pigments.
Finally, also a non-diffractive or diffractive lens structure, for example a Fresnel lens arrangement, is combinable with the micropattern according to the present invention as an additional security element.
The present invention also comprises a method for manufacturing a see-through security element of the kind described, in which the see-through security element is provided with at least one micropattern having a visual appearance that is viewing-angle dependent when looked through, the at least one micropattern is formed from an arrangement of a plurality of pattern elements having a characteristic pattern spacing of 1 μm or more, and the see-through security element is produced having a total thickness of 50 μm or less.
The at least one micropattern is formed in the form of an arrangement of a plurality of pattern elements that is regular, irregular or regular in some regions.
In the method according to the present invention, to a transparent or translucent substrate is advantageously applied a marking layer in which the at least one micropattern is developed.
According to one method variant, as a marking layer, a colored embossing lacquer layer is applied, for example, imprinted, and the embossing lacquer layer is patterned, by means of embossing techniques, in such a way that the regions that are left standing when embossing, i.e. non-embossed regions, form the pattern elements of the at least one micropattern.
In another method variant, as a marking layer, a transparent or translucent embossing lacquer layer is applied, for example imprinted, and depressions are introduced into the embossing lacquer layer by means of embossing techniques. The depressions in the embossing lacquer layer are then filled with colored material, for example a printing ink, such that the filled depressions form the pattern elements of the at least one micropattern. The depressions can exhibit any shape and, in the following, are also referred to as “trenches”.
In a further method variant, a printing layer having regions of high transmittance and having regions of low transmittance is applied as a marking layer, the regions of low transmittance forming the pattern elements of the at least one micropattern.
In principle, different methods are conceivable with which a see-through security element according to the present invention can be manufactured. Thus, the per se known methods will not be addressed in greater detail in the following.
However, the micro intaglio method is mentioned here as a particularly advantageous method variant in which the micropattern is applied to the substrate in that
For further embodiments of this micro intaglio method and the associated advantages, reference is made to German patent application 10 2006 029 852.7, whose disclosure in this regard is incorporated in the present application.
For the micro intaglio method, it is particularly preferred when the depressions in the die form are filled in step b) with a radiation-curing lacquer and the lacquer is cured in step e) by impingement with radiation, especially with UV radiation. Furthermore, the lacquer can advantageously be precured in the depressions in the die form prior to the bringing-into-contact in step d).
The micropattern of the die form is advantageously formed by micropattern elements having a line width between about 1 μm and about 10 μm. It is also preferred when the micropattern of the die form is formed by micropattern elements having a pattern depth between about 1 μm and about 10 μm, preferably between about 1 μm and about 5 μm.
In an expedient variant of the method according to the present invention, the see-through security element is produced having a total thickness of 20 μm or less, preferably of 3 μm to 10 μm.
Further, at least one micropattern can be formed by a lamellar pattern composed of a plurality of substantially parallel lamellae.
Alternatively, however, it is also conceivable that at least one micropattern is formed in a marking layer by a plurality of depressions having an increased transmittance.
In a development of the described method, the pattern elements are provided in sub-regions with an opaque, transparent, semitransparent, reflective or absorbing coating, especially with a metallic coating, a moth-eye pattern or a diffractive pattern.
In another advantageous embodiment of the method according to the present invention, a transparent or translucent substrate having a first surface and an opposing second surface is provided, a see-through mask is applied to the first surface as a micropattern, and a congruent see-through mask is applied to the second surface with a predetermined lateral offset of 100 μm or less.
Here, in an advantageous method, the see-through masks are applied simultaneously to the opposing surfaces of the substrate. Alternatively, the see-through masks can also be applied to the opposing surfaces of the substrate in succession. The see-through masks are particularly preferably applied to the opposing sides of the substrate by means of the above-described micro intaglio technique.
The present invention also comprises a security paper for the manufacture of security or value documents, such as banknotes, checks, identification cards, certificates or the like, and a data carrier, especially a branded article, a value document or the like, the security paper and the data carrier being furnished with a security element of the kind described.
Through the described measures, it is ensured that the see-through security elements according to the present invention are thin enough to also be able to be used in the realm of value documents, and that, with the proposed methods, they can also be manufactured economically in the required high quantities. The pattern spacing of 1 μm or more, or the pattern size of 1 μm or more, ensures that the micropatterns appear largely achromatic, so without distracting color splitting. The optically variable effects can thus be perceived with no problem also in unfavorable illumination conditions.
With the see-through security element according to the present invention, advantageously, a number of so-called motion effects can be achieved that, on the one hand, further improve the counterfeit security, and on the other hand, are very visually appealing for the viewer. In that the see-through security element is broken down into a plurality of regions in which micropatterns having different viewing-angle-dependent tilt effects are arranged, motion effects can be achieved that are also referred to as flip, running or pump effects. With these effects, upon tilting the see-through security element, the viewer perceives an apparent movement of the observed pattern due to the optical impression that alternates in a defined manner.
Further exemplary embodiments and advantages of the present invention are described below with reference to the drawings. To improve clarity, a depiction to scale and proportion was dispensed with in the drawings.
Shown are:
The invention will now be explained using a security element for a banknote as an example. For this,
As explained in greater detail in the following, the blind image of the see-through security element 12 displays a different visual appearance depending on the viewing direction. For example, the security element 12 can appear patternless and light when looked through vertically, while, upon tilting or rotating the banknote, dark markings in the form of patterns, characters or codes stand out. In other embodiments, the markings are already visible when looked through vertically, and disappear or change when the banknote is rotated or tilted.
What is important for the use of the see-through security element 12 in the banknote 10 or other securities is its low total thickness of less than 50 μm. The see-through security element preferably exhibits an even smaller layer thickness of only about 20 μm or even of only about 3 μm to 10 μm. The present invention provides multiple possibilities for producing optically appealing blind images with such low total thicknesses.
A first possibility for manufacturing a thin see-through security element having a blind image is illustrated based on the cross section through the security element 12 in
When viewed parallel to the lamellae 24, so in the viewing direction 26, the security element 12 appears substantially transparent when looked through. If, in contrast, the viewer tilts the security element 12 out of the parallel viewing direction, for example in the viewing direction 28, then the lamellae 24 block the view through it, that is, the security element 12 appears opaque for the viewer.
The lamellar pattern constitutes a regular arrangement of a plurality of lamellae 24 having a characteristic pattern spacing that, according to the present invention, is 1 μm or more, such that, in the visible spectral range, the lamellae 24 effect no color splitting due to wavelength-dependent diffraction effects. In the exemplary embodiment in
The rectangular profile of the lamellae 24 shown in
When looked through, the brightness of the security element 12 can be set within a broad scope through the ratio of lamella width to lamella spacing. Also the color impression can be largely freely chosen through the color of the embossing lacquer and of the transparent or translucent substrate.
Instead of a colored embossing lacquer 22, also a layer of a colorless embossing lacquer 32 can be applied to the substrate 20, as shown in
The use of the embossing technique permits, in addition to the manufacture of blind foils having a very low total thickness of 50 μm or less, also the simple production of locally differently oriented lamellar patterns on the same security element.
When viewed vertically when looked through, due to their identical areal coverage, the regions 42 and 46 differ practically not at all in their visual appearance, the security element 40 appears patternless and light. If the security element is now tilted at a certain angle to the right or left (tilt direction 50), then the tilted lamellae 44 block the viewer's view through it, while the spaces between the parallel lamellae 48 in the regions 46 permit a view through as before. Thus, for the viewer, light circles 46 stand out against a dark background 42.
If, on the other hand, the viewer tilts the security element forward or backward (tilt direction 52), then the now tilted lamellae 48 block the view through, while the spaces between the lamellae 44 keep the region 42 light-transmitting. The viewer now sees dark circles 46 against a light background 42.
In an embodiment not further depicted, it is provided that the security element in
The simple geometric pattern in
A further see-through security element according to yet a further embodiment of the present invention is shown in
The key difference in the see-through security element 140 with respect to the see-through security elements in
When viewed vertically when looked through, due to their identical areal coverage, the regions 143, as well as 144 and 145 differ practically not at all in their visual appearance, the security element 140 appears substantially patternless and light. If, however, the security element 140 is tilted at a certain angle to the right or left (tilt direction 150), then the tilted lamellae 147 block the viewer's view through it, while the spaces between the lamellae 141 in the regions 144 and 145 at least partially permit a significantly extensive view through. In contrast to the regions 42 and 46 that are very sharply delimited from each other when the security element 40 in
When tilted in a direction 152 that is substantially vertical to direction 150, the spaces between the lamellae 147 keep the region 143 light-transmitting, while the now tilted lamellae 141 in the regions 144, 145 substantially block the view through. Accordingly, the viewer now sees dark regions 144, 145 that continuously change into the light regions 142, 143 and 146.
A security element 140 developed according to
Also the security element from
The see-through security elements according to the present invention can include, instead of blind images whose micropatterns are formed by parallel lamellae, also other micropatterns, for example micropatterns composed of a plurality of depressions having increased transmittance.
Of course it is also conceivable that the substantially parallel arrangement of the lamellae is replaced, at least in regions, by a non-parallel arrangement, which in effect amounts to an increase in the counterfeit security of the security element, since such patterns can be reproduced only with great technical difficulty.
To illustrate,
Due to the high resolution of the embossing technique and the small layer thicknesses, very fine configurations and complex motifs can be realized. Here, the depiction of the motifs is not limited to two-tone depictions (light/dark), but rather, as described in the following, also halftone depictions can be realized. To avoid undesired color splittings, according to the present invention, the characteristic spacing of the depressions is 1 μm or more, also in the embodiments in which the micropatterns comprise a plurality of depressions. The lateral dimensions of the depressions are advantageously likewise about 1 μm or more.
Different grayscales in the visual impression can be realized through different densities (number of depressions of a certain shape per surface element), depths or also through different shapes and sizes of the depressions 76. In this regard,
The manufacture of the micropatterns (lamellae or depressions) can occur, as described, by embossing, especially by embossing in a UV-curing embossing lacquer or a thermoplastic lacquer. Soluble dyes as well as pigment dyes can be used as colors for the embossing lacquers.
Alternatively, to manufacture the micropatterns, also printing techniques can be used that are capable of stringing together very finely patterned opaque and non-opaque regions. Given a sufficiently low total thickness, the desired effects can be obtained with any printing technique that is capable of producing an approx. 3 μm to 20 μm thick layer having depressions or trenches having diameters between 1 μm and 30 μm.
Particularly advantageously, the micro intaglio technique described in the likewise pending German patent application 10 2006 029 852.7 can be used, which combines the advantages of printing and embossing technologies. Summarized briefly, in the micro intaglio printing technique, a die form is provided whose surface exhibits an arrangement of elevations and depressions in the form of the desired micropattern. The depressions in the die form are filled with a curable colored or colorless lacquer, and the substrate to be printed on is pretreated for a good anchoring of the lacquer. Then the surface of the die form is brought into contact with the substrate, and the lacquer that, in the depressions in the die form, is in contact with the substrate is cured and, in the process, joined with the substrate. Thereafter, the surface of the die form is removed from the support again such that the cured lacquer that is joined with the support is pulled out of the depressions in the die form.
For a more detailed description of this micro intaglio method and the associated advantages, reference is made to the cited German patent application 10 2006 029 852.7, whose disclosure in this regard is incorporated in the present application.
The pattern elements of the micropatterns, for example the lamellae in
In this way, by means of pattern elements of locally different geometries, or by means of pattern elements having surfaces of different slopes, likewise see-through images whose visibility depends on the viewing angle can be produced.
To illustrate, the exemplary embodiment in
Also the exemplary embodiment in
With the aid of surface patterns 100 having areas of different slopes, also see-through images can be produced that become effective by means of coating 102 at a vertical angle of impact of the particle vapor, especially of the metal vapor, as illustrated with reference to the exemplary embodiment in
Instead of an opaque or reflective coating, also an absorption pattern can be provided on the individual pattern elements. For example,
In other embodiments, the pattern elements of the micropattern 112 are provided with diffraction gratings that diffract substantial portions of the light incident at a certain angle in directions outside of the viewing direction. Effective see-through tilt effects can also be realized through such a combination of a geometric micropattern having a characteristic element size of 3 μm to 50 μm with a diffraction pattern having a characteristic element size of approximately 300 nm to approximately 1000 nm.
It is understood that, if desired, the patterns can additionally be provided, vertically or obliquely, with a reflective layer or with a layer having a refractive index that differs significantly from the pattern elements.
Such a see-through security element having an additional coating is shown in
Arranged over the micropattern is a three-layer optically variable coating. The individual layers 164, 165 and 166 were applied by vapor deposition from a direction oriented substantially vertical to the substrate surface. Ideally, the sides 167 of the relief pattern that are arranged parallel to the vapor deposition direction exhibit no optically variable coating. The three-ply coating having a color-shift effect is a metallic/dielectric structure having the following configuration. First, a layer 164 composed of aluminum is applied, preferably by vapor deposition, to the relief patterns fabricated from a UV-embossing lacquer. The layer serves as a reflector and exhibits a layer thickness of approximately 10 nm to 100 nm, preferably of approximately 30 nm. Over this, a layer composed of SiO2 is normally applied, likewise by vapor deposition, with a layer thickness of 100 nm to 1000 nm, particularly preferably with a layer thickness of approximately 200 nm to 600 nm. The thickness of the SiO2 layer determines the color-shift effect that is later perceptible by the viewer for the pattern. Finally, over the layer composed of SiO2 is vapor deposited a semitransparent layer composed of chrome that exhibits a layer thickness of approximately 3 nm to 10 nm. The three-layer pattern obtained in this way exhibits a color-shift effect from green (top view, direction 177) to magenta (oblique viewing angle, direction 178, 179).
The embodiment of the inventive see-through security element shown in
The security element 160 is extraordinarily counterfeit-proof due to the superimposition of a relief pattern and a coating having a color-shift effect, and the resulting synergistic effects. Furthermore, such an optically variable security element is very appealing for the viewer, such that a security element according to this embodiment has a particularly high recognition value.
A further exemplary embodiment of the present invention is illustrated in
A congruent see-through mask 130 is applied to the opposing second surface of the substrate 122 with a certain lateral offset Δ of less than 100 μm, for example of only 10 μm.
As illustrated in
The opaque layers of the see-through masks can be produced through known printing methods, by embossing in color layers, by embossing depressions in transparent lacquer and subsequently filling the depressions with ink, through metallization/demetallization, and preferably through the above-mentioned micro intaglio technique according to German patent application 10 2006 029 852.7. Also, it is conceivable, in principle, that the see-through mask on one side of the substrate is obtained through, for example, an embossing technique, but the see-through mask on the other side of the substrate through a suitable metallization or demetallization technique. In the case of demetallization, different laser techniques can be used advantageously, since see-through masks of high spatial resolution can be obtained with them.
To achieve the required small offset of the see-through masks, these can especially be applied simultaneously to the opposing surfaces of the substrate. If, on the other hand, the see-through masks are applied in succession, particular attention must be paid to the registration of the micropatterns, especially their alignment with the size of the openings 128. If larger openings 128 are used, then the registration is less critical, such that in this case, also application methods with greater register tolerance can be used.
Also for the case of the embodiment shown in
If, as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2006 050 047 | Oct 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/008953 | 10/16/2007 | WO | 00 | 4/21/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/049533 | 5/2/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2053173 | Astima | Sep 1936 | A |
3031351 | McIlvaine | Apr 1962 | A |
3542789 | Satzinger | Nov 1970 | A |
3887742 | Reinnagel | Jun 1975 | A |
4168986 | Venis, Jr. | Sep 1979 | A |
4764410 | Grzywinski | Aug 1988 | A |
4766023 | Lu | Aug 1988 | A |
5204160 | Rouser | Apr 1993 | A |
5642226 | Rosenthal | Jun 1997 | A |
5714213 | Antes et al. | Feb 1998 | A |
5928788 | Riedl | Jul 1999 | A |
5972546 | Bjelkhagen | Oct 1999 | A |
6089614 | Howland et al. | Jul 2000 | A |
6505779 | Power et al. | Jan 2003 | B1 |
6870681 | Magee | Mar 2005 | B1 |
6987590 | Phillips et al. | Jan 2006 | B2 |
7667894 | Hoffmuller | Feb 2010 | B2 |
7728931 | Hoffmuller | Jun 2010 | B2 |
7808605 | Hoffmuller | Oct 2010 | B2 |
20030230816 | Kappe et al. | Dec 2003 | A1 |
20040084893 | Fan et al. | May 2004 | A1 |
20050224203 | Boehm et al. | Oct 2005 | A1 |
20060196948 | Weber et al. | Sep 2006 | A1 |
20070165182 | Hoffmuller et al. | Jul 2007 | A1 |
20070211238 | Hoffmuller et al. | Sep 2007 | A1 |
20070216518 | Hoffmuller et al. | Sep 2007 | A1 |
20070229928 | Hoffmuller et al. | Oct 2007 | A1 |
20070241553 | Heim et al. | Oct 2007 | A1 |
20070246933 | Heim et al. | Oct 2007 | A1 |
20070274559 | Depta et al. | Nov 2007 | A1 |
20080014378 | Hoffmuller et al. | Jan 2008 | A1 |
20080054621 | Burchard et al. | Mar 2008 | A1 |
20080079257 | Fessl | Apr 2008 | A1 |
20080088859 | Depta et al. | Apr 2008 | A1 |
20080094713 | Schilling et al. | Apr 2008 | A1 |
20080095986 | Schilling et al. | Apr 2008 | A1 |
20080160226 | Kaule et al. | Jul 2008 | A1 |
20080163994 | Hoppe et al. | Jul 2008 | A1 |
20080198468 | Kaule et al. | Aug 2008 | A1 |
20080216976 | Ruck et al. | Sep 2008 | A1 |
20080250954 | Depta et al. | Oct 2008 | A1 |
20080258456 | Rahm et al. | Oct 2008 | A1 |
20090001709 | Kretschmar et al. | Jan 2009 | A1 |
20090008923 | Kaule et al. | Jan 2009 | A1 |
20090008926 | Depta et al. | Jan 2009 | A1 |
20090102605 | Kaule | Apr 2009 | A1 |
20090115185 | Hoffmuller et al. | May 2009 | A1 |
20090127844 | Dorfler et al. | May 2009 | A1 |
20090236061 | Gruszczynski et al. | Sep 2009 | A1 |
20090297805 | Dichtl | Dec 2009 | A1 |
20090322071 | Dichtl | Dec 2009 | A1 |
20100151207 | Hansen et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2309960 | May 1999 | CA |
4226906 | Feb 1994 | DE |
4421407 | Jun 1995 | DE |
102004042111 | Mar 2006 | DE |
102004042136 | Mar 2006 | DE |
102006029852 | Jan 2008 | DE |
2004209940 | Jul 2004 | JP |
2004262144 | Sep 2004 | JP |
2005035115 | Feb 2005 | JP |
WO 9718092 | May 1997 | WO |
WO 9747478 | Dec 1997 | WO |
WO 9924265 | May 1999 | WO |
WO 0211063 | Feb 2002 | WO |
WO 03054297 | Jul 2003 | WO |
WO 2005110772 | Nov 2005 | WO |
WO 2005105473 | Nov 2005 | WO |
WO 2005105474 | Nov 2005 | WO |
WO 2005105475 | Nov 2005 | WO |
WO 2005108106 | Nov 2005 | WO |
WO 2005108108 | Nov 2005 | WO |
WO 2005108110 | Nov 2005 | WO |
WO 2006005434 | Jan 2006 | WO |
WO 2006015733 | Feb 2006 | WO |
WO 2006018171 | Feb 2006 | WO |
WO 2006018172 | Feb 2006 | WO |
WO 2006040069 | Apr 2006 | WO |
WO 2006056342 | Jun 2006 | WO |
WO 2006072380 | Jul 2006 | WO |
WO 2006087138 | Aug 2006 | WO |
WO 2006087138 | Aug 2006 | WO |
WO 2006095161 | Sep 2006 | WO |
WO 2006099971 | Sep 2006 | WO |
WO 2006108611 | Oct 2006 | WO |
WO 2006119896 | Nov 2006 | WO |
WO 2006128607 | Dec 2006 | WO |
WO 2007006445 | Jan 2007 | WO |
WO 2007006455 | Jan 2007 | WO |
WO 2007076952 | Jul 2007 | WO |
WO 2007079851 | Jul 2007 | WO |
WO 2007115648 | Oct 2007 | WO |
WO 2007128426 | Nov 2007 | WO |
WO 2008000350 | Jan 2008 | WO |
WO 2008000351 | Jan 2008 | WO |
Entry |
---|
International Search Report, International Application No. PCT/ EP2007/008953, 6 pages, Oct. 20, 2008. |
International Preliminary Report on Patentability, International Application No. PCT/ EP2007/008953, 7 pages, Jul. 2, 2009, English Translation. |
Number | Date | Country | |
---|---|---|---|
20100194091 A1 | Aug 2010 | US |