There are several methods of orienting seeds for planting. Examples of orientation systems include PCT Publication Nos. WO2018013858A1, WO2018013859A1, WO2018013860A2, and WO2018013861A1. One particular seed orienter is described in U.S. Patent Publication No. US2020/0367425A1, which discloses a seed orientation coil 40. Seed is accelerated with air into the coil, and the air is dissipated via vents 68.
All references cited herein are incorporated herein in their entireties. If there is a conflict between a definition herein and in an incorporated reference, the definition herein shall control.
Referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views.
The typical row unit 10 includes seed hopper 12 for storing the seed for planting. The seed is directed to a seed meter 13. The seed meter 13 may use a conventional vacuum disk driven by a vacuum delivery line 14. The seed meter 13 acts to singulate the seed at a desired spacing for delivery to the ground. From the seed meter 13, the seed is delivered to the ground through seed tube 22.
A shank structure 16 provides the structural support for the seed hopper 12, seed meter 13 and the seed tube 22. Opener blade 18, a gauge wheels 26 and a closing wheels 20 are also attached to the shank 16. The opener blades 18 forms a trench or furrow in the soil ahead of the seed tube 22. The gauge wheel 26 control the depth of the furrow and the closing wheels 20 close the furrow over the seed.
In a first embodiment, seed orientation system 30 is mounted to the row unit 10. Seed orientations system 30 includes a seed collector 32 operably attached to the seed tube 22. The seed collector 32 gathers the seed and changes its direction by way of a seed transfer tube 36 to a seed orientation coil assembly 40. The seed passes through the helical path of the seed orientation coil assembly 40 to an oriented seed exit path 44. A sub-furrow opener 46 creates a wedge shaped trough within the furrow for capturing the oriented seed.
Movement of the seed throughout the seed orientation system 30 is aided by air from a central blower/fan. Air is first directed to system air infeed 42 disposed on the upper face of the seed orientation coil assembly 40. An air line 38 is then directed to seed collector 32 for moving the seed from the seed collector 32 to the seed orientation coil assembly 40.
A seed orientation support structure 34 provides the structural support for the seed collector 32, seed transfer tube 36, the seed orientation coil assembly 30 and the sub-furrow opener 46. The seed orientation support structure 34 may be connected to the shank structure 16 at one or more locations. The seed orientation support structure 34 also acts to keep debris out of the furrow and to protect against rock impacts
Seed transfer tube 36 attaches to seed exit aperture 50 at a first end and to seed orientation coil 40 at a second end. It is envisioned that seed transfer tube 36 will include a mating flange 56 and a retaining pin 57 for connection to the seed orientation coil 40. Pin 41 retains the seed orientation coil assembly 40 relative to the support structure 34.
Seed orientation coil 40 includes an injector core 58 that resides within vented outer coil 60. The injector core 58 includes at a first end incoming air feed 42 and outgoing air feed 62 that provides air through air line 38 to air line connection 52 on the seed collector 32. Injector core 58 further includes a plurality of nozzles 64 arrayed in a helical pattern about the outer face of the injector core 58.
Vented outer coil 60 defines an aperture injector core 58. The vented outer coil 60 includes a seed entrance 66 that mates with flange 56 of the seed transfer tube 36. A plurality of vents 68 are disposed about the outer face of the vented outer coil 60. The vents 68 may have a variety of shapes including rectangular, circular, ellipsoid or other random shapes. The vents 68 do not have to be uniform in size or shape. At a second end of the vented outer coil 60, seed exit path 44 extends towards the ground. A seed sensor 82 may be attached to the vented outer coil 60 approximate the exit path 44 so as to monitor seed flow.
Seed orientation support structure 34 connects to the row unit shank 16 through hook 76 and flange mount 78. It is envisioned that the geometry and location of such connection points can be altered depending on the structure of the row unit 10. The seed orientation support structure 34 supports the seed orientation coil 40 through flange 70 which extends from the second end of vented outer coil 60. The flange 70 mates within notch 72 of the seed orientation support structure 34. The sub-furrow opener 46 is connected to the seed orientations support structure 34 by roll pins 79 and 80.
The injector core 58 is generally cylindrical in shape with an air aperture 85 at a first end and a closed aft end 86. A plurality of nozzles 64 are shown in a helical pattern creating air passages between the central aperture 87 of the injector core and the vented outer coil 60.
The vented outer coil 40 is generally cylindrical in shape with an open central aperture for insertion of the injector core 58. The exterior wall of the vented outer coil 40 includes a plurality of vents 68 that create air passages. The vented outer coil 40 further includes seed entrance 66 that opens to helical pathway 90.
As depicted in
As the seed leaves the exit path 44 it will be airborne for a short distance, maintaining its stable state. The exit path 44 aims the seed at a sub-furrow created by a sub-furrow opener 46. The sub-furrow opener 46 shapes walls into the soil that come into contact with the flat sides of the seed, wedging the seed into the soil, retaining its orientation.
The sub-furrow opener 46 also has a blade 51 that is swept back. This is to prevent clogs from soil entering up into the seed path when the planter is initially setting down into the soil. This can be achieved because the seed is shot backward at an angle, missing contact with the former blade 51. This swept back former blade 51 also helps keep the sub-furrow walls from collapsing prematurely in loose soils. Collapsed walls would result in the seed bouncing, losing its orientation.
Movement of the seed throughout the seed orientation system 130 is aided by air from a central blower/fan. Air is first directed to system air infeed 142 disposed on the upper face of the seed orientation coil assembly 140. An air line 138 is then directed to seed collector 132 for moving the seed from the seed collector 132 to the seed orientation coil assembly 140. The seed collector 132 catches seeds directly from the seed meter 113 and gently transports the seed under air power in the most direct and efficient path possible to the seed orientation coil. This configuration improves seed spacing and minimizes seed tumbling. A seed orientation support structure 134 provides the structural support for the seed orientation coil 130 and the sub-furrow opener 142.
In operation, the seed orientation system 30 delivers seeds from a row unit 10 to the ground in an optimal growing orientation. Seeds are placed in seed hopper 12. The seed hopper 12 includes an opening to direct the seed to a seed meter 13. The seed meter 13 then attempts to singulate the seed and spaces the seed out for delivery into the ground. The seed orientation system 30 either collects the seed from the seed tube 22 or from a seed collector 132 that replaces the seed tube 22.
A high-flow pressurized air system propels the seed to from the seed collector 32, 132 through a seed transfer tube 36, 136 to the seed orientation coil assembly 40. A major factor in seed stability is catching/collecting the seed as gentle as possible from the seed meter. The seed ideally slides gently vs. tumbling into the orientation coil. This may be achieved by a very gentle and gradual collector path 132 from the meter to the coil to reduce acute angle impacts resulting in tumbling. A tumbling seed entering the orientation coil can result in tumbling through the entire coil as the air jets will just add to the disordered energy of the tumbling seed instead of stabilizing it.
The seed enters into a vented outer coil 60 of the seed orientation coil assembly 40, said vented outer coil 60 defining a helical pathway 90 to a seed exit path 44. The vented outer coil 60 includes a plurality of air vents 68 disposed radially about an outer wall of the vented outer coil 60.
Pressurized air is injected into the injector core 58 of the seed orientation coil assembly 40. The injector core includes a plurality of air injectors or nozzles 64 disposed radially about the outer wall of the injector core 58. The nozzles 64 direct a focused air stream across the helical pathway 90 of the vented outer coil 60. It is envisioned that the nozzles may be aligned with air vents 68.
The seed enters the helical pathway 90 is a random position. The airflow through the injector core and the vented outer coil 60 push the seed up the seed riding surface 92 to the seed guide wall 94. As illustrated in
After the seed is oriented it is necessary to stabilize the position of the seed all the way to the ground. It is easy to orient a seed for a few seconds but due to the shape of the seed there is a tendency for the seed to tumble out of control. Keeping the seed stable after orientation requires a combination of techniques. In order to a maintain position of the seed, a low friction surface for the helical path 90 is preferred. Low friction, low roughness and/or lubricious surface reduces any tumbling of the seed as the seed will not “dig in” or “catch” on the surface and instead induce the seed to slide, maintaining an oriented position. An energy absorbing surface is also beneficial for it will “deaden” seed impact energy from tumbling and allow the seed to ride vs. rolling and/or tumbling and help maintain an oriented position. The path from the seed meter 13 to the orientation coil 40 also benefits from the properties listed above for the orientation coil riding surface 90.
A curved path also acts to maintain the seed orientation through a centrifugal force Fc. The centrifugal force Fc acts on the seed, to drive the seed into the surface to stabilize and reduce bouncing, tumbling and to help retain an oriented position. In addition to the curved pathway 90, a riding surface shape/profile that has a guide wall helps to precisely locate, stabilize, and maintain the orientation of an oriented seed. The curved shape of the riding surface will also help align the seed longitudinally along the seed path which aids in the orientation process.
The seed is then directed to the seed exit path 44 and then into a scored sub-furrow inside a main furrow that is used to capture or wedge the seed to retain its orientation and/or position. The seed orientation can be captured/preserved if the seed is propelled into an interference fit sub-furrow in the soil that the seed wedges into. The sub-furrow profile preferably needs to taper down to allow seeds of all sizes to be captured. The profile should also have an extended bottom to prevent the seed tip from hitting the bottom of the sub-furrow and recoiling out before becoming wedge/taper locked.
The seed orientation coil assembly 40 is angled relative to the normal with the ground to help reduce the seed/ground velocity delta. At a typical 5 mph planting speed and what would be a 5 mph horizontal velocity delta, the angled coil should reduce the velocity delta to about 2 mph. At a slower 3 mph planting speed, the seed would be a dead drop into the sub-furrow.
A benefit of seed acceleration system 600 is that it eliminates the need for an additional system to supply gas, such as air, to pneumatically accelerate and transport seed.
The following are nonlimiting examples.
Example 1—a seeding system comprising: a seed meter comprising a seed disc; a pair of acceleration wheels disposed proximate to the seed disc and positioned to receive seed released from the seed disc and configured to accelerate the seed; a conduit for receiving seeds accelerated from the pair of acceleration wheels at a first end of the conduit, and the conduit having a second end opposite the first end; a seed orientation coil assembly connected to the second end to receive the accelerated seed.
Example 2—the seeding system of Example 1, wherein the conduit is curved.
Example 3—the seeding system of Example 1 or 2, wherein the seed disc has a seed path having a first side and a second side, and the pair of acceleration wheels comprises a first acceleration wheel disposed adjacent to the first side of the seed path and a second acceleration wheel disposed adjacent to the second side of the seed path.
Example 4—the seeding system of Example 3, wherein the acceleration wheel and the second acceleration wheel are each a finger wheel, such as described in WO2017/011675.
Example 5—the seeding system of Example 4, wherein the finger wheel has a sinusoidal shape, such as described in WO2017/011675.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, the singular forms “a,”, “an,” and “the” are intended to include the plural forms as well as the singular forms, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence of addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The foregoing description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment of the apparatus, and the general principles and features of the system and methods described herein will be readily apparent to those of skill in the art. Thus, the present invention is not to be limited to the embodiments of the apparatus, system and methods described above and illustrated in the drawing figures, but is to be accorded the widest scope consistent with the spirit and scope of the appended claims.
This application claims priority to U.S. Application Nos. 63/262,361, filed 11 Oct. 2021, and 63/262,362, filed 11 Oct. 2021, the disclosure of each are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2022/059679 | 10/10/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63262362 | Oct 2021 | US | |
63262361 | Oct 2021 | US |