Seed firming device for improving seed to soil contact in a planter furrow with feature designed to prevent the buildup of soil on the outer surfaces by discharging pressurized fluid

Information

  • Patent Grant
  • 12089518
  • Patent Number
    12,089,518
  • Date Filed
    Friday, April 23, 2021
    3 years ago
  • Date Issued
    Tuesday, September 17, 2024
    a month ago
Abstract
A system for controlling the depth of at least one closing wheel in an agricultural row unit for planting seeds in a furrow. The row unit includes a firming device that passes the seeds into the soil at the bottom of the furrow, and at least one closing wheel that is pressed into a side of the furrow to close the furrow over the seeds. A control system senses the depth of the closing wheels in the furrow relative to the depth of the firming device, and adjusts the downward pressure on the closing wheel, based on changes in the sensed depth of the closing wheel, to compensate for changes in the hardness of the soil. The up and down movement of the firming device can be adjusted independently of the movement of the closing wheel. The firming device can include multiple holes through which pressurized air is forced to dislodge any dirt or mud that accumulates on the soil-engaging parts of the firming device, and can be made according to an additive manufacturing process that allows narrow channels to be formed internal to the firming device.
Description
FIELD OF THE INVENTION

The present invention relates generally to agricultural planters and, more particularly, to control systems for row units having height-adjustable furrow closing devices and a height-adjustable firming device that is used to firm the soil over seeds which have been planted by the planter.


BRIEF SUMMARY

In accordance with an embodiment, a system is also provided for controlling the depth of at least one closing wheel in an agricultural row unit for planting seeds in a furrow and including at least one closing wheel that is pressed into at least one side of the furrow to close the furrow over the seeds. The system senses the depth of the closing wheel in the furrow relative to the location of the bottom of the furrow, and adjusting the downward pressure on the closing wheel based on changes in the sensed depth of the closing wheel, to compensate for changes in the hardness of the soil.


In an embodiment, the row unit includes a firming device, such as a firming wheel or a firming blade, that presses seeds into the bottom of the furrow, and the depth of the closing wheel is determined by the difference between the elevations of the firming wheel and the closing wheel. The closing wheel and the firming device may be carried on two different arms that are mounted to pivot about a common axis for changing the elevations of the closing wheel and the firming device, and including a sensing device that produces an electrical output signal that changes according to changes in the angle between the arms. That output signal can be used by an electrical controller to produce an electrical control signal for adjusting the down pressure on the closing wheel according to the magnitude of a change in the angle between the arms. The elevation of the firming device can be controlled independently from that of the closing wheel by a mechanical linkage that is decoupled from the mechanical linkage that determines the elevations of the firming device and the closing wheel. Normally, the firming device and closing wheel move up and down together, but the firming device can be independently controlled to move up and down independently of the closing wheel.


Part or all of the firming device, which can take the form of a blade or a wheel, for example, can be made by an additive manufacturing process, such as a process that includes 3D printing. The additive manufacturing process allows channels to be incorporated into the firming device so that fluids can be conveyed from the row unit and expelled out of the soil-engaging area of the firming device. Examples of fluids include soil fertilizer in gas or liquid form or weed killer. Separate channels can be provided to force fluid such as air out of holes positioned about the soil-engaging parts of the firming device to dislodge or remove any dirt (soil) of mud that has accumulated there.


When the firming device takes on the form of a blade, the soil-engaging part is relatively narrow, resembles a finger or has a finger-like shape, and includes very small holes that exit from channels that run internally down the length of the firming device for the fertilizer fluids and the air to pass through. The seed firmer or firming device can be made using an additive manufacturing process such as 3D printing, which allows one long thin piece to be made with very small internal channels passing through the length of the part leading to openings that allow fluid passed through the channels to exit out of the firming device. Conventional molding methods would require that the firming device be made in two pieces and putting tubes between them. Advantageously, the 3D printed part can make flexible and complex internal geometries (such as taking a serpentine or snaking pathway inside the device) for the air passageway that greatly facilitates and speeds up manufacture of the firming device.


According to some aspects, a seed firming device is provided. The seed firming device has at least one opening to allow a pressurized fluid that passes internally through the seed firming device to exit an outer portion thereof, which is configured to engage soil of a furrow in which seeds are planted. The opening is positioned along an outer soil-engaging surface of the firming device to prevent a buildup of soil or mud thereon as the seed firming device is moved along a furrow.


The firming device can include a finger portion having the soil-engaging surface that engages and firms the soil of the furrow as the finger portion passes through the furrow. The firming device can include a wheel that allows fluid to exit via the at least one opening as the wheel rotates, the outer soil-engaging surface being about a periphery of the wheel. The fluid can be air. The finger portion can have a width that is narrower than the furrow.


The producing can be carried out by an additive manufacturing process. The additive manufacturing process can include an additive 3D printing processes that prints an internal channel inside the finger leading to the at least one opening to allow the fluid to pass through the internal channel and out the at least one opening.


The firming can be part of a system that includes a valve configured to detect a buildup of back pressure caused by an accumulation of soil or mud on the soil-engaging surface, thereby causing another valve to open and allow the fluid through the finger and out the at least one opening.


According to still further aspects of the present disclosure, a method is disclosed of passing a pressurized fluid through at least one internal channel formed inside a firming device as the firming device is moved along a furrow by an agricultural row unit. The method includes causing a pressurized fluid to be passed through an internal channel of the firming device as the firming device is moved along the furrow until the pressurized fluid exits an opening in a soil-engaging portion of the firming device to dislodge an accumulation of mud or dirt thereon.


The method can further include causing a second pressurized fluid to be passed through a separate internal channel of the firming device until it exits a separate opening in the firming device. The second pressurized fluid can be a fertilizer or a weed killer. The separate opening can be positioned in soil of or surrounding the furrow to inject the second pressurized fluid into the soil during movement of the agricultural row unit relative to the furrow. The pressurized fluid can be air. The soil firming device can be a wheel or can include a blade having a finger portion that engages soil of the furrow.


The method can further include manufacturing the firming device according to an additive manufacturing process that forms the internal channel in the firming device as it is being constructed. The additive manufacturing process can include a 3D printing process.


According to other aspects of the present disclosure, a method is disclosed of controlling a depth of at least one closing wheel in an agricultural row unit for planting seeds in a furrow and including at least one closing wheel that is pressed into at least one side of the furrow to close the furrow over the seeds. The method includes sensing the depth of the closing wheel in the furrow relative to the location of the bottom of the furrow, and adjusting a downward pressure on the closing wheel based on changes in the sensed depth of the closing wheel, to compensate for changes in the hardness of the soil.


The row unit can include a firming device that presses seeds into the bottom of the furrow. The depth of the closing wheel can be determined by the difference between the elevations of the firming wheel and the closing wheel. The firming device can be a firming wheel.


The row unit can include a pair of closing wheels that are pressed into opposite sides of the furrow to close the furrow over the seeds. The closing wheel and the firming device are carried on two different arms that are mounted to pivot about a common axis for changing the elevations of the closing wheel and the firming device. A sensing device can be provided that produces an electrical output signal that changes according to changes in the angle between the arms.


The row unit can include an electrical controller that receives the electrical output signal and can produce an electrical control signal for adjusting the down pressure on the closing wheel according to the magnitude of a change in the angle between the arms. The controller can produce an electrical control signal for adjusting the down pressure on the closing wheel only when the magnitude of a change in the angle between the arms exceeds a preselected dead band.


The firming device can include a blade including a finger portion having a width dimensioned to fit in the furrow. The finger portion can be configured to engage the furrow to firm soil of the furrow over the seeds after the seeds are deposited in the furrow by the agricultural row unit.


The depth of the closing wheel in the furrow relative to the location of the bottom of the furrow can be sensed by a laser sensor or an optical sensor.


The method can further include adjusting a height of the firming device relative to the furrow independently of the downward pressure applied on the closing wheel as the agricultural row unit traverses the furrow.


According to yet further aspects of the present disclosure, an agricultural row unit for planting seeds in a furrow is disclosed. The row unit includes a frame having a gauge wheel that engages the soil to control the elevation of the frame, at least one closing wheel coupled to the frame to permit vertical movement of the closing wheel relative to the frame, a hydraulic cylinder containing a pressurized hydraulic fluid for applying a down force to the closing wheel to urge the closing wheel into the soil, a source of pressurized hydraulic fluid coupled to the hydraulic cylinder via a control valve, a position sensor sensing the distance between the bottom of the furrow and the elevation of the closing wheel, and producing a signal representing the distance, and a controller receiving the signal from the position sensor, and producing a control signal to control the pressure of the hydraulic fluid in the hydraulic cylinder.


The controller can determine the relative distance between the bottom of the furrow and the elevation of the closing wheel. The controller can compare the relative distance with a target value, and produce a control signal based the results of the comparison. A seed depth control system can be linked to the controller.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevation of an agricultural planter row unit that includes a gauge wheel and an opener device.



FIG. 2 is a top plan view of the planter row unit shown in FIG. 1.



FIG. 3 is a vertical longitudinal section taken along line A-A in FIG. 2.



FIG. 4 is an enlargement of the left end portion of FIG. 2.



FIG. 5 is an enlargement of the left end portion of FIG. 1.



FIG. 6 is a side elevation of the structure shown in FIG. 5 with an opposite direction of motion and with one of the closing wheels removed to show the structure between the two closing wheels.



FIG. 7 is a top perspective view of the structure shown in FIG. 5 with an opposite direction of motion.



FIG. 8 is an exploded perspective view of the structure shown in FIG. 7.



FIG. 9 is an enlarged side elevation of a portion of the structure shown in FIG. 7.



FIG. 10 is the same view shown in FIG. 9 but with the support arm for the closing wheels set in a lower position.



FIG. 11 is a flow chart of an algorithm that can be used by an electrical controller in the row unit of FIGS. 1-10 to control the down pressure applied to the closing wheels to control their depth.



FIG. 12 is a vertical longitudinal section taken through a modified closing wheel portion of a planter row unit.



FIG. 13 is a vertical longitudinal section taken through the same apparatus shown in FIG. 12 but taken along a plane passing through the seed firming device in front of the closing wheels.



FIG. 14 is a perspective view of the apparatus shown in FIG. 13, and a schematic diagram of a fluid control system associated with that apparatus.



FIG. 15 is an enlarged longitudinal section taken through the leading end portion of the closing wheel portion of a planter row unit shown in FIG. 12.



FIG. 16 is a top plan view of the apparatus shown in FIGS. 12-15, in two different angular positions around a vertical axis (207).



FIG. 17 is a side elevation of the row unit shown in FIGS. 1-5 with a superimposed schematic diagram of a fluid control system.



FIG. 18 is a schematic diagram of the fluid control system in the apparatus shown in FIGS. 12-17.



FIG. 19 is a flow chart of an algorithm used in the microprocessor in the control system illustrated in FIG. 18.



FIG. 20 is a perspective view of a planter row unit showing two different types of firming devices (a wheel and a blade form factors), one of which can be installed ahead of the closing wheels to firm the soil in the furrow after seeds have been planted therein.



FIG. 21 is a cross-sectional view of a blade-type firming device having an enlarged section to show the fluid exit ports on a soil-engaging portion of the firming device.



FIG. 22 is a perspective view of a bottom of the firming device shown in FIG. 21, showing the fluid exit ports in finer detail.



FIG. 23 is a perspective cut-away view of a portion of a wheel-type firming device having exit fluid ports about a periphery of the wheel with internal cavities to distribute fluids from a centrally installed port throughout the internal channels or cavities internal to the wheel.



FIGS. 24, 25, 26, and 27 illustrate various cutaway views of internal channels or cavities inside the wheel-type firming device shown in FIG. 23 and ports that allow fluid connection pathways to be distributed to exit ports positioned about the periphery of the wheel.





DETAILED DESCRIPTION

An agricultural planter typically includes a number of individual row units, each of which includes its own row cleaner device, row-opening device and row-closing device. The down pressure is controlled separately for each row unit or each of several groups of row units, and is preferably controlled separately for one or more of the individual devices in each row unit, as described in more detail in pending U.S. patent application Ser. No. 14/146,822 filed Jan. 3, 2014, the content of which is hereby incorporated by reference herein in its entirety.



FIG. 1 illustrates a planting row unit 10 that includes a furrow-opening device 11 for the purpose of planting seed or injecting fertilizer into the soil. A conventional elongated hollow towing frame (typically hitched to a tractor by a draw bar) is rigidly attached to the front frame 12 of a conventional four-bar linkage assembly 13 that is part of the row unit 10. The four-bar (sometimes referred to as “parallel-bar”) linkage assembly 13 is a conventional and well known linkage used in agricultural implements to permit the raising and lowering of tools attached thereto.


As the planting row unit 10 is advanced by a tractor, the opening device 11 penetrates the soil to form a furrow or seed slot 20 having a depth, D. A gauge wheel 15 determines the planting depth for the seed and the height of introduction of fertilizer, etc. The planting row unit 10 is urged downwardly against the soil by its own weight, and, in addition, a hydraulic cylinder 14 is coupled between the front frame 12 and the linkage assembly 13 to urge the row unit 10 downwardly with a controllable force that can be adjusted for different soil conditions. The hydraulic cylinder 14 may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple row units.


A system for controlling the down pressure applied to the row unit by the hydraulic cylinder 14 is described in U.S. Pat. No. 9,232,687, the content of which is hereby incorporated by reference herein in its entirety.


Bins on the row unit carry the chemicals and seed which are directed into the soil. Other portions of the row unit 10 then deposit seed in the seed slot and fertilizer adjacent to the seed slot, and the seeds are pressed (or firmed) into the soil at the bottom of the furrow by a firming device 20, which can take the form of a blade or a wheel, for example. The term “firming” herein refers to seed firming as understood by those skilled in the agricultural farming arts. The furrow created by the furrow-opening device 11 and firmed by the optional firming device 20 is finally closed by a pair of closing wheels 21 and 22 that are pressed into opposite side walls of the furrow to distribute loosened soil into the furrow, over the seeds in the bottom of the furrow.


The firming device 20 is carried on the end of an arm 23, and the closing wheels 21 and 22 are carried by arms 24a and 24b, respectively. The arms 24a, 24b and 25 are mounted for pivoting movement about a common horizontal axis 25, and a hydraulic cylinder 25a presses the closing wheels 21, 22 downwardly with a controlled pressure. In this illustration, the firming device 20 is pressed downwardly by a spring 26 that is coupled to the firming wheel support arm 23 via links 33 and 34. The pressure applied by the spring 26 to the firming device 20 can be manually adjusted by using a handle 27 on the end of a pair of arms 28a and 28b or automatically adjusted as described in more detail below. The pin 29 fits into any of three notches 30a-30c in the top edges of the closing wheel support arms 24a and 24b.


The spring 26 is coiled around a rod 29 that is connected to one end of the link 33 and at its other end to the arms 28a, 28b by a pin 29a that extends though mating holes in the arms 28a, 28b. The rod 29 is pivoted about an axis 31 so that the arms 28a, 28b can be manipulated to move the pin 29a in and out of the notches 31a-31c (seen in FIG. 10). The lower portions of the arms 28a, 28b form slots 34 that fit over pins on the arms 28a, 28b to permit the arms to be moved longitudinally to align the pin 29a with any one of the notches 31a-31c. The spring force applied to the firming device 20 by the spring 26 increases as the pin 29a is advanced from notch 31a to 31c because the spring 26 becomes progressively more compressed.


The depth of the firming device 20 is substantially constant because it slides on the bottom of the furrow, in front of the closing wheels 21, 22, and the furrow formed in the soil of the earth has a substantially constant depth because the cutting tool that forms the furrow has its own down pressure control system. Consequently, the depth of the closing wheels 21, 22 can be controlled by sensing the distance between the elevation of the firming device 20 and the elevation of the closing wheels 21, 22. In the illustrative example shown in the drawings, that distance is monitored by a proximity sensor 28 mounted on the arm 24. This pivoting movement of the arm 24 with changes in the elevation of the closing wheels 21, 22 changes the distance between the proximity sensor and the firming wheel arm 23. This causes the proximity sensor 28 to produce an electrical output signal that represents the depth of the closing wheels relative to that of the firming wheel. Changes in that output signal are used to change the down pressure applied to the closing wheels, as described in more detail below.


Another way to monitor the changes in the elevation of the closing wheels relative to that of the firming device 20 is to use a sensor that detects change in the angle between the arms that carry those wheels. The support arms 23 and 24 are mounted to pivot around a common axis, so that a sensor, such as a linear inductive distance sensor, can detect changes in that angle when the arm 24 rotates relative to the arm 23. The output of the sensor used to detect changes in the elevation is sent to a controller for executing an algorithm to determine whether the down pressure applied to the closing wheels should be adjusted and, if so, in which direction (e.g., up or down relative to earth).



FIG. 11 is a flow chart of an exemplary software or firmware algorithm that can be executed by a controller or computer to determine whether the down pressure applied to the closing wheels should be adjusted and, if so, in which direction (e.g., up or down, relative to earth). Step 51 of the algorithm sets a target value for the distance D between the elevation of the firming wheel and the elevation of the closing wheels, and step 52 sets a deadband on both sides of the target value in which deviations from the target value are not large enough to warrant a change in the down pressure applied to the closing wheels. Step 53 measures the signal from the sensor 40, which is proportional to the actual distance D between the current depth of the closing wheels and the constant depth of the firming wheel. This signal represents the actual “relative depth” of the closing wheels. Step 54 determines whether any change from the previous measurement is within the deadband set at step 52. If the answer at step 54 is “yes,” the algorithm loops back to repeat step 53 for the next value of the signal from the sensor 40. If the answer at step 554 is “no,” then step 55 determines whether the actual value is above the deadband. If the answer is “yes,” the down pressure applied to the closing wheels is increased at step 57 before looping back to repeat step 53. If the answer at step 55 is “no,” the down pressure applied to the closing wheels is decreased at step 57 before looping back to repeat step 53.


The adjustments made in the pressure applied to the closing wheels maintain the distance D between the depth of the firming wheel and the depth of the closing wheels within a narrow range regardless of perturbations in the earth in which the furrow is formed. If the actual distance D falls outside the deadband, the down pressure on the closing wheels is increased to lower the closing wheels if the distance D is above the deadband, or decreased to raise the closing wheels if the distance D is below the deadband. The deadband avoids oscillation of the closing wheels due to repetitive small changes in the distance between the elevation of the firming wheel and the elevation of the closing wheels.



FIG. 12 is a vertical longitudinal section taken through a modified closing wheel portion of a planter row unit. A main assembly 400 includes closing wheels 120, 121 and a firming device 236, which in this illustration has the form of a blade. Note that the closing wheels 120, 121 can correspond to the closing wheels 21, 22 disclosed above, and vice versa.


The main assembly 400 includes a base 126 and a mounting surface 302, which holds a main pivot pin 125, a pressure sensor 254 (FIG. 14), a fluid connector 252 (FIG. 14), a pressure regulator 250, and main downward force cylinder 350 (FIG. 13).


The wishbone arm assembly 124 has two pivot ends 303 and two middle arm sections 124a-124b and a rear base 304. The wishbone arm assembly 124 further includes a downward force pin 217 mount to the both item 303 ends of 217. The wishbone assembly 124 moves the closing wheels 120, 121 up or down relative to earth by adjusting the hydraulic pressure applied to the downward force pin 217 to cause the arm assembly 124 to rotate about the main pivot pin 125, thereby causing the closing wheels 120, 121 to ride up and down (see FIG. 15).


A secondary bladder 199 has a connector 221, and the secondary bladder 199 mounts on rear base housing 304 and to a firming device mounting end 133 of a connecting portion 305 (FIG. 13). A hose (not shown) is attached to the connector 221, to allow independent movement of the firming device mounting end 133 relative to movement of the wishbone arm assembly 124 by a controller, such as the controller 60 (FIG. 17). The linkages including a pivot arm 134 and a secondary pivot pin 261, allow for linear height adjustments of the firming device 236 up or down relative to earth, independent of up or down movements of the closing wheels 120, 121. A fluid, such as air, can be pressure-controlled through the hose (not shown) via the connector 121 into the secondary bladder 199, to fill or empty the bladder 199, thereby adjusting a height of the mounting end 133 relative to a shaft 242 (FIG. 13) of the closing wheels 120, 121. Those up and down movements on the closing wheels cause the mounting end 133 to move up and down, and that rotational motion is translated by the linkage 134 into a corresponding linear movement, to cause the firming device 236 to move up and down linearly and independently of the up and down movement of the closing wheels 120, 121.


The wishbone arm assembly 124 has three ends, the mounting end 218 (FIG. 12) which mounts to the secondary bladder 199, and another force end 306 and the pivot arm 134 which mounts to secondary pivot pin 261. The secondary pivot pin 261 is connected to the wishbone arm assembly 124 and the mounting end 133.


The linkage bar 134 (FIGS. 13 and 14) has pins 307, 308 on both ends, a first pivot pin 307 connects to the mounting end 133, and a second pivot pin 308 that connects to the front lower pivot base item 123. The front lower pivot base 133 mounts on the main pivot pin 125, which connects it to the blade 236 (FIG. 15).


A first force is applied as a downward force by the cylinder 350 (FIG. 13), which applies a downward (relative to earth) force to a downward force pin 217 (FIG. 15). This downward force rotates the wishbone arm 124 downwards via the main pivot pin 125, which causes the closing wheels 120, 121 to make contact with the ground.


The secondary force applied by the cylinder 350 (FIG. 13) is added to the secondary bladder 199 upwards, which causes the mounting arm 133 to rotate around a secondary pin 261 (FIG. 12) and provides a downward force to the linkage bar 134, which provides a corresponding downward force to the front lower pivot base 123, which is attached to the blade 236 causing the blade 236 to be forced downward relative to a height of the main closing wheels 120, 121.


To keep the blade 236 parallel to the ground, the blade 236 has an angle linkage 233 (FIG. 13) mounted to a grounded pin 237 on the base 126. These linkages 233, 134 allow the blade 236 to remain parallel to the ground while undergoing linear up and down movements relative to earth. Whereas the closing wheels 120, 121 experience a slight rotational movement, which is not significant given the length of the wishbone assembly 124, the blade 236 is configured to move linearly and remain parallel to the ground over which it is traversing.


As the closing wheel 120, 121 rides up and down relative to the ground with an applied and controller-adjusted downward force, the blade 236 is forced downward into the ground relative to a height of the shaft 242 of the closing wheel 121, thereby keeping the blade at the same depth to the closing wheels 120, 121 as the closing wheels 120, 121 move up and down over the ground contour.


The arms 124a, 124b have a lateral support shaft 217 that is pushed down via the hydraulic cylinder 350 (FIG. 13), which moves the closing wheels 122, 121 down toward the ground. The air bladder 199 is inflated via the port 221 with an air pressure, which forces the mounting arm 133 down around the pivot pin 261. This action causes the mounting arm 133 to move the linkage bar 134, which in turn moves the front lower pivot base 123 and thereby the blade 236 downwards into the furrow.


This blade 236 can optionally include a furrow strain sensor 310 (FIG. 12) towards the discharge end 239 (labeled in FIG. 13). This strain sensor 310 includes a wiring harness 311 housed within the blade 236 through channels formed in the blade 236 by an additive manufacturing process such as 3D printing as discussed herein.


Also within the blade 236 are two liquid or fluid dispensers 320 and 321, each leading to one or more internal cavities or channels 322, 323 formed internal to the blade 236, which allows fluid to pass inside of the blade from the top input ports 243 (FIG. 21) without having to run any hoses or tubes externally to the blade 236, which would carry the attendant risk of getting caught or broken off. The fluid that passes through the channels 322, 323 can be air or can include a fertilizer or a weed killer, for example. The channels 322, 232 can follow a circuitous or non-straight path inside the blade 236 as shown in FIG. 12.


The blade 236 can include another internal passage or channel 300 inside of the blade 236, which discharges a fluid (such as air) out of a port 301. The channel 300 has a constant air pressure when the ports 301 are not blocked, but a rise in air pressure means that dirt (soil) or mud is building up in a front area 318 of the blade 236. Eventually, the buildup triggers a valve (such as the valve 364 shown in FIG. 21) to open up to allow a brief burst or bursts of high pressure air to flow down the passage 300 out the port 301 to dislodge the buildup of dirt or mud away from the blade 236 to relieve pressure and resistance on the blade 236 as it move across the ground furrow.


A controller 60 (shown in FIG. 17) controls movement of the closing wheels 120, 121 and firming devices 400, 430 disclosed herein as well as the dispensation of fluids through any of the firming devices disclosed herein. A hydraulic pump 361 draws from a hydraulic reserve 362. The controller 360 the pressure from the pressure sensor 254 and can increase or decrease pressure via pump the 361. An air port 301 (FIG. 12) connects a hose or line 402 to an air pressure sensor 364 and an air pump 363 shown in FIG. 21.


A fluid discharge 320 (FIG. 12) is fluidly connected to a channel 322 that connects to a pressure sensor 366 and to a fluid pump 365 and a fluid reserve 367. A second fluid discharge 321 has a cavity 323 that connects to pressure sensor 339 and to a fluid pump 338 and fluid reserve 370.


The secondary bladder 199 (FIG. 14) controls the height of 236 from the reference point of the wheels 120, 121. The secondary bladder 199 has an input port 221 that is connected to an air pressure sensor 372 and an air pump 371. The CPU or controller 60 (FIG. 17) receives respective output signals from the pressure sensors 254, 364, 366, 369, 372 and the rotation sensor 375.


Referring to FIG. 15, the rotational sensor 375 mounts to an arm 124a via mount area 376 and has a measuring end 377, which measures the distance from elements 378 and 377 shown in FIG. 15. As the wishbone arm 124 rotates around a main pivot pin 125, the distance changes between elements 377 and 378. Element 378 is fixed or grounded to the base 126 and does not rotate.


The base 126 has a mounting plate 206 with a pivot mounting bolt 207 and a mounting bolt 208, which allows the complete unit to pivot on a vertical axis on the bolt 207.


The main base 126 has a hydraulic passage for a hydraulic fluid to pass through it to the downward force cylinder 350 (FIG. 13). Within the hydraulic passage, there is a fluid input connection 252, a fluid pressure sensor 254, and a pressure regulator 250. An access hole can be used for mounting added an equipment port 255.


The bottom mount 123 can have a blade 236 as shown or alternatively a wheel 430 (FIG. 23), either of which applies a downward pressure to the furrow and to the seeds in the furrow to “firm” them into the ground before the soil is closed over them by the closing wheels 120, 121.


The air blade 400 has a fluid/air input end 243, where there is an air pump 363 connected to a pressure valve 364, which in turn is connected to a tube or piping 402 to the air input port 404 (FIG. 21). The input port 404 is connected to a passage 406, which travels down the inside of the blade 236 down to the bottom part of the blade port 420, which is internal to the air-controlled firming blade 400 (shown in FIG. 21).


The blade port 420 (FIG. 21) includes smaller passages 412 and 426 (FIG. 22), which connect the blade port 420 to a conical concave relief on the side of the blade 415 or 417 (FIG. 22). These side surfaces 412 and 414 have a matting bottom/center surface 413.


There are conical concave reliefs 408 (FIG. 21) formed in the side 415 of the air blade 400 with supply passages 412, which connect to the bottom part of the blade port 420.


There are also conical concave reliefs 414 (FIG. 22) formed in the side 417 with supply passages 418 which connect to bottom part of the blade port 420.


There are also conical concave reliefs 422 (FIG. 22) formed in the bottom/center surface 413 with a supply passage 426 which connects to the bottom part of the blade port 420.


When dirt (soil) or mud starts to build or clump up inside of or around these reliefs 408, 414, 422, the accumulations start to cover up or block the air ports 410, which initially has a low pressure when the air ports are unblocked. As these reliefs 410 become plugged up, the pressure valve 364 senses an increase in pressure, and informs a controller 60 (FIG. 17) to open the pressure valve for a small amount of time to produce a blast of fluid (e.g., air) out of the ports 410, which will cause the high pressure to dislodge the dirt/mud buildup away from the side 415, 417 of the blade 400 as well as the front/bottom 413 of the blade 400, where dirt or mud is likely to accumulate and affect the soil-firming performance of the air blade 400. The terms soil and dirt are used interchangeably herein. The front or bottom 413 part of the blade 400 as presented in the illustrations can be referred to herein as a finger portion, which engages the soil of the furrow as the blade 400 is moved through the furrow by the agricultural row unit.


Instead of the blade 400 form factor to perform soil firming, a rotating wheel 430 (FIG. 23) can be used with internal cavities or channels through which pressurized fluid can pass to exit openings formed proximate or at an outer periphery of the wheel 430. The wheel 430 includes support/mounting arms 434 that attach the wheel 430 to a main body and an axle 436, which is connected with nuts 438 on either side.


The axle 436 includes at least two ports on either side 450, 458 of the wheel 430 (FIG. 25). A port 450 (FIG. 27) has a radial passage 456 (FIG. 26) connecting to a cavity 454, which has sealing rings 437 on either side of the cavity 454. The cavity 454 feeds air to the passage 450 to conical concave reliefs on an outer edge 446 of the wheel 430 (FIG. 23) and to the side conical concave reliefs 444 via the passage 452 (FIG. 24, 27) on both sides 448 of the wheel 432. As the firming wheel 430 rotates, any dirt or mud that accumulates on the outer surface of the wheel 432 will begin to block the front and side reliefs 442, 444, raising the fluid pressure in the lines 440. The increase in fluid pressure is detected using a controller, which opens a pressure valve like the valve 364 described above to produce bursts of fluid blasted out of the reliefs 424, 444 to dislodge any dirt or mud accumulated there. As a result, dirt or mud buildup on the sides 448 and/or the bottom 446 (FIG. 24) of the wheel 432 is avoided and can be dislodged without interrupting operation of the firming wheel 430 during seed planting. The position of the relief 424 and the corresponding passage 426 at the trailing end of the blade 400 (in the direction of travel of the blade 400 as it traverses a furrow) as shown in FIG. 21 is selected to optimize the removal of dirt or mud buildup on that trailing surface. As the blade glides through the furrow, it has been found that dirt or mud can tend to accumulate in the area shown in FIG. 21 where the relief 424 is positioned, thus optimizing the removal of these contaminants from the surface of the blade 400. Likewise, the side reliefs 408 are positioned a distance above the bottom of the blade 400 at a height just below the peak of the furrow, because this is also determined to be locations of maximum buildup. Of course, the present disclosure is not limited to locating the reliefs in the precise locations shown. Depending on the form factor of the firming device, the nature of the soil, the depth of the furrow, and other or alternative considerations, more or different reliefs can be provided at different locations without departing from the scope of the present disclosure. Due to the level of air pressure required to dislodge dirt or mud, the internal passages inside the blade 400 need to be robust enough to withstand these pressures, and additive manufacturing allows these passages or channels to be formed completely internal to the blade as the blade is being manufactured or constructed. Additive manufacturing also allows the channel to take on virtually any geometry or path inside the blade, to optimize routing of the channels (e.g., in conjunction with channels for injecting fertilizer and/or weed killer or other fluids into the furrow) inside the blade without jeopardizing its structural integrity required to withstand the forces acting upon the blade as it is moved through the furrow and imparted with a downward pressure.



FIG. 19 illustrates a flow chart algorithm 1900 for making adjustments to a planter and/or a closing wheel, such as any of the closing wheels 21, 22, 120, 121 disclosed herein. The algorithm 1900 can be executed by, for example, any controller disclosed herein, including the controller 60. The algorithm 1900 begins by measuring all sensors (1902), such as the pressure sensors 254, 364, 366, 369, 372 and the rotation sensor 375 disclosed herein. The algorithm 1900 checks whether an adjustment is needed to the planter or a closing wheel (1904). If an adjustment is needed to a closing wheel, such as the closing wheel 21, 22, 120, 121, an adjustment to the closing wheel is made (1906), such as by causing the wheel to be moved up or down by adjusting a downward force applied to it. In case an adjustment to the planter is also called for (1908), the algorithm 1900 checks whether an adjustment is needed to the planter, and if so, the adjustment is made (1910). If the algorithm determines at step 1904 that an adjustment is needed to the planter, an adjustment is made to the planter (1912), and the algorithm 1900 checks whether an adjustment is needed to a closing wheel (1914), and if so, the adjustment is made (1916).


According to aspects of the present disclosure, a sensor measures the compaction or density of the soil, whose output can be provided to a machine learning system to detect the soil type that the planter is in and automatically then change the planter row unit setpoint parameters (e.g., seed depth, row cleaner depth or force, down pressure gauge wheel load target, and closing wheel pressure or depth) based on the changing soil type. The algorithm increases the gauge wheel load target when the furrow hardness sensor is low and decreases it when it is high. There are preset upper and lower limits that the system will not pass out of so it has a built-in failsafe. The closing wheel depth or pressure setpoint can be changed at the same time (simultaneously). When the sensor value is high, the target closing wheel setting should move the closing wheel closer to the bottom of the furrow, and when the sensor value is low the target closing wheel setting should move the closing wheel just slightly higher. The machine learning system acquires data over some time period to establish or adjust the maximum and minimum in the data value of that time, compare it to other data from known samples, and make an inference about the soil type.


The furrow hardness is typically measured higher in clay and lower in sand. The soil type can be detected or inferred using a soil type using furrow hardness.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A method of passing a pressurized fluid through at least one internal channel formed inside a firming device as the firming device is moved along a furrow by an agricultural row unit, the method comprising: causing the pressurized fluid to be passed through the at least one internal channel of the firming device as the firming device is moved along the furrow until the pressurized fluid exits an opening in a soil-engaging portion of the firming device to dislodge an accumulation of mud or dirt thereon.
  • 2. The method of claim 1, further comprising causing a second pressurized fluid to be passed through a separate internal channel of the firming device until it exits a separate opening in the firming device.
  • 3. The method of claim 2, wherein the second pressurized fluid is a fertilizer or a weed killer.
  • 4. The method of claim 2, wherein the separate opening is positioned in soil of or surrounding the furrow to inject the second pressurized fluid into the soil during movement of the agricultural row unit relative to the furrow.
  • 5. The method of claim 1, wherein the pressurized fluid is air.
  • 6. The method of claim 5, further comprising sensing a pressure in the at least one internal channel to determine an increase in the pressure, and, responsive thereto, instructing a controller to cause a burst or blast of the pressurized air to exit the opening and thereby dislodge mud or dirt accumulated in a front area of the firming device as the agricultural row unit is moved along the furrow.
  • 7. The method of claim 6, wherein the opening is arranged on a side of the firming device to dislodge mud or dirt that has accumulated on the side thereof.
  • 8. The method of claim 6, further comprising causing a second pressurized fluid to be passed through a separate internal channel of the firming device until it exits a separate opening in the firming device, wherein the second pressurized fluid is a fertilizer or a weed killer.
  • 9. The method of claim 6, wherein the opening is arranged on a front of the firming device to dislodge mud or dirt that has accumulated on the front thereof.
  • 10. The method of claim 1, wherein the firming device is a wheel or includes a blade having a finger portion that engages soil of the furrow.
  • 11. The method of claim 1, further comprising manufacturing the firming device according to an additive manufacturing process that forms the at least one internal channel in the firming device as it is being constructed.
  • 12. The method of claim 11, wherein the additive manufacturing process includes a 3D printing process.
  • 13. The method of claim 1, further comprising causing the firming device to move up or down relative to the furrow independent of an up or down movement of one or more closing wheels coupled to the same agricultural row unit as the firming device.
  • 14. The method of claim 1, wherein the at least one channel follows a circuitous or non-straight path inside the firming device.
  • 15. The method of claim 14, further comprising causing a second pressurized fluid to be passed through a second internal channel that is separate from the at least one internal channel of the firming device until it exits a separate opening of the firming device.
  • 16. The method of claim 15, wherein the causing the pressurized fluid and the causing the second pressurized fluid are controlled by a controller that causes a first valve to open to cause the pressurized fluid to pass through the at least one internal channel of the firming device and/or a second valve to open to cause the second pressurized fluid to pass through the second internal channel of the firming device, the first and second pressurized fluids originating from a common source until separated by the at least one internal channel and the second internal channel.
  • 17. The method of claim 16, wherein the pressurized fluid is air.
  • 18. The method of claim 17, further comprising sensing a pressure in the at least one internal channel to determine an increase in the pressure, and, responsive thereto, instructing the controller or another controller to cause a burst or blast of the pressurized air to exit the opening and thereby dislodge mud or dirt accumulated in a front area of the firming device as the agricultural row unit is moved along the furrow.
  • 19. The method of claim 1, wherein the causing is controlled by a controller that causes a valve to open to cause the pressurized fluid to pass through the at least one internal channel of the firming device.
  • 20. The method of claim 1, further comprising, responsive to the causing, measuring a compaction or density of soil in the furrow by an algorithm executed by a controller and whose output is provided to a machine learning system to automatically change setpoint parameters of the agricultural row unit.
  • 21. An agricultural planter having the firming device and configured to carry out the method of claim 1.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. patent application Ser. No. 16/159,254, filed Oct. 12, 2018, now U.S. Pat. No. 11,006,563, which claims the benefit of U.S. Provisional Application No. 62/648,183, filed Mar. 26, 2018, and this application is also a continuation-in-part of U.S. patent application Ser. No. 15/586,799, filed May 4, 2017, now U.S. Pat. No. 10,645,865, all of which are hereby incorporated by reference herein in their respective entireties.

US Referenced Citations (521)
Number Name Date Kind
114002 Godfrey Apr 1871 A
123966 Wing Feb 1872 A
321906 Mcormick Jul 1885 A
353491 Hepworth Nov 1886 A
523508 Bauer Jul 1894 A
736369 Dynes Aug 1903 A
803088 Barker Oct 1905 A
1069264 Keller Aug 1913 A
1134462 Kendrick Apr 1915 A
1158023 Beaver Oct 1915 A
1247744 Trimble Nov 1917 A
1260752 Casady Mar 1918 A
1321040 Hoffman Nov 1919 A
1391593 Claude Sep 1921 A
1398668 Evandor Nov 1921 A
1442032 Luce Jan 1923 A
1481981 Boye Jan 1924 A
1791462 Bermel Feb 1931 A
1844255 Kaupke Feb 1932 A
1901299 Johnson Mar 1933 A
1901778 Schlag Mar 1933 A
1938132 Broemmelsick Dec 1933 A
2014334 Johnson Sep 1935 A
2044304 James Jun 1936 A
2058539 Welty Oct 1936 A
2249637 Rietz Jul 1941 A
2269051 Cahoy Jan 1942 A
2285932 Leavitt Jun 1942 A
2298539 Mott Oct 1942 A
2341143 Herr Feb 1944 A
2505276 Adam Apr 1950 A
2561763 Waters Jul 1951 A
2593176 Patterson Apr 1952 A
2596527 Tolbert May 1952 A
2611306 Strehlow Sep 1952 A
2612827 Baggette Oct 1952 A
2664040 Beard Dec 1953 A
2691353 Secondo Oct 1954 A
2692544 Jessup Oct 1954 A
2715286 Saveson Aug 1955 A
2754622 Rohnert Jul 1956 A
2771044 Putifer Nov 1956 A
2773343 Oppel Dec 1956 A
2777373 Pursche Jan 1957 A
2799234 Chancey Jul 1957 A
2805574 Jackson, Jr. Sep 1957 A
2860716 Flock Nov 1958 A
2878633 Mullin Mar 1959 A
2925872 Darnell Feb 1960 A
2960358 Christison Nov 1960 A
3010744 Hollis Nov 1961 A
3014547 Van Dec 1961 A
3038424 Johnson Jun 1962 A
3042121 Broetzman Jul 1962 A
3057092 Curlett Oct 1962 A
3058243 McGee Oct 1962 A
3065879 Jennings Nov 1962 A
3080004 McNair Mar 1963 A
3082829 Buddingh Mar 1963 A
3103993 Gies Sep 1963 A
3110973 Reynolds Nov 1963 A
3115739 Thoen Dec 1963 A
3122901 Thompson Mar 1964 A
3123152 Biskis Mar 1964 A
3188989 Johnston Jun 1965 A
3213514 Evans Oct 1965 A
3250109 Spyridakis May 1966 A
3256942 Sickle Jun 1966 A
3261150 Fitzgerald, Sr. Jul 1966 A
3314278 Bergman Apr 1967 A
3319589 Moran May 1967 A
3351139 Schmitz Nov 1967 A
3355930 Fedorov Dec 1967 A
3368788 Padula Feb 1968 A
3368789 Helmut Feb 1968 A
3370450 Scheucher Feb 1968 A
3397933 Hatcher Aug 1968 A
3420273 Greer Jan 1969 A
3433474 Jean Mar 1969 A
3447495 Miller Jun 1969 A
3498036 Cowling Mar 1970 A
3500937 Erickson Mar 1970 A
3507233 Greig Apr 1970 A
3539020 Torsten Nov 1970 A
3543603 Gley Dec 1970 A
3561541 Woelfel Feb 1971 A
3576098 Brewer Apr 1971 A
3581685 Taylor Jun 1971 A
3593720 Botterill Jul 1971 A
D221461 Hagenstad Aug 1971 S
3599403 Gantz Aug 1971 A
3606745 Girodat Sep 1971 A
3635495 Orendorff Jan 1972 A
3650334 Hagenstad Mar 1972 A
3653446 Kalmon Apr 1972 A
3701327 Krumholz Oct 1972 A
3708019 Ryan Jan 1973 A
3711974 Webb Jan 1973 A
3718191 Williams Feb 1973 A
3749035 Cayton Jul 1973 A
3753341 Berg, Jr. Aug 1973 A
3766988 Whitesides Oct 1973 A
3774446 Diehl Nov 1973 A
3795291 Naito Mar 1974 A
3906814 Magnussen Sep 1975 A
3939846 Drozhzhin Feb 1976 A
3945532 Marks Mar 1976 A
3970012 Jones, Sr. Jul 1976 A
3975890 Rodger Aug 1976 A
3986464 Uppiano Oct 1976 A
4009668 Brass Mar 1977 A
4018101 Mihalic Apr 1977 A
4044697 Swanson Aug 1977 A
4055126 Brown Oct 1977 A
4058171 Van Der Lely Nov 1977 A
4063597 Day Dec 1977 A
4069029 Hudson Jan 1978 A
4096730 Martin Jun 1978 A
4099576 Jilani Jul 1978 A
4104851 Perry Aug 1978 A
4122715 Yokoyama Oct 1978 A
4129082 Betulius Dec 1978 A
4135349 Schwertner Jan 1979 A
4141200 Johnson Feb 1979 A
4141302 Morrison, Jr. Feb 1979 A
4141676 Jannen Feb 1979 A
4142589 Schlagenhauf Mar 1979 A
4147305 Hunt Apr 1979 A
4149475 Bailey Apr 1979 A
4157661 Schindel Jun 1979 A
4161090 Watts, Jr. Jul 1979 A
4173259 Heckenkamp Nov 1979 A
4182099 Davis Jan 1980 A
4187916 Harden Feb 1980 A
4191262 Sylvester Mar 1980 A
4194575 Whalen Mar 1980 A
4196567 Davis Apr 1980 A
4196917 Oakes Apr 1980 A
4206817 Bowerman Jun 1980 A
4208974 Dreyer Jun 1980 A
4213408 West Jul 1980 A
4225191 Knoski Sep 1980 A
4233803 Davis Nov 1980 A
4233915 Kordon Nov 1980 A
4241674 Mellinger Dec 1980 A
4249613 Scribner Feb 1981 A
4280419 Fischer Jul 1981 A
4294181 Smith Oct 1981 A
4295532 Williams Oct 1981 A
4301870 Carre Nov 1981 A
4307674 Jennings Dec 1981 A
4311104 Steilen Jan 1982 A
4317355 Hatsuno Mar 1982 A
4359101 Gagnon Nov 1982 A
4375837 Van Der Lely Mar 1983 A
4377979 Peterson Mar 1983 A
4384444 Rossler, Jr. May 1983 A
4391335 Birkenbach Jul 1983 A
4398608 Boetto Aug 1983 A
4407371 Hohl Oct 1983 A
4407660 Nevens Oct 1983 A
4413685 Gremelspacher Nov 1983 A
4430952 Murray Feb 1984 A
4433568 Kondo Feb 1984 A
4438710 Paladino Mar 1984 A
4445445 Sterrett May 1984 A
4461355 Peterson Jul 1984 A
4481830 Smith Nov 1984 A
4499775 Lasoen Feb 1985 A
4506610 Neal Mar 1985 A
4508178 Cowell Apr 1985 A
4528920 Neumeyer Jul 1985 A
4530405 White Jul 1985 A
4537262 Van Der Lely Aug 1985 A
4538688 Szucs Sep 1985 A
4550122 David Oct 1985 A
4553607 Behn Nov 1985 A
4580506 Fleischer Apr 1986 A
4596200 Gafford Jun 1986 A
4598654 Robertson Jul 1986 A
4603746 Swales Aug 1986 A
4604906 Scarpa Aug 1986 A
4619329 Gorbett Oct 1986 A
4630773 Ortlip Dec 1986 A
4643043 Furuta Feb 1987 A
4646620 Buchl Mar 1987 A
4646850 Brown Mar 1987 A
4648466 Baker Mar 1987 A
4650005 Tebben Mar 1987 A
4669550 Sittre Jun 1987 A
4671193 States Jun 1987 A
4674578 Bexten Jun 1987 A
4682550 Joy Jul 1987 A
4703809 Van Den Ende Nov 1987 A
4726304 Dreyer Feb 1988 A
RE32644 Brundage Apr 1988 E
4738461 Stephenson Apr 1988 A
4744316 Lienemann May 1988 A
4762075 Halford Aug 1988 A
4765190 Strubbe Aug 1988 A
4768387 Kemp Sep 1988 A
4776404 Rogers Oct 1988 A
4779684 Schultz Oct 1988 A
4785890 Martin Nov 1988 A
4819738 Fountain Apr 1989 A
4825957 White May 1989 A
4825959 Wilhelm May 1989 A
4919211 Cope Apr 1990 A
4920901 Pounds May 1990 A
4926622 McKee May 1990 A
4926767 Thomas May 1990 A
4930431 Alexander Jun 1990 A
4986367 Kinzenbaw Jan 1991 A
4987841 Rawson Jan 1991 A
4998488 Hansson Mar 1991 A
5015997 Strubbe May 1991 A
5022333 McClure Jun 1991 A
5027525 Haukaas Jul 1991 A
5033397 Colburn, Jr. Jul 1991 A
5065632 Reuter Nov 1991 A
5074227 Schwitters Dec 1991 A
5076180 Schneider Dec 1991 A
5092255 Long Mar 1992 A
5113957 Tamai May 1992 A
5129282 Bassett Jul 1992 A
5136934 Darby, Jr. Aug 1992 A
5190112 Johnston Mar 1993 A
5224553 Heintzman Jul 1993 A
5234060 Carter Aug 1993 A
5240080 Bassett Aug 1993 A
5255617 Williams Oct 1993 A
5269237 Baker Dec 1993 A
5282389 Faivre Feb 1994 A
5285854 Thacker Feb 1994 A
5333694 Roggenbuck Aug 1994 A
5337832 Bassett Aug 1994 A
5341754 Winterton Aug 1994 A
5346019 Kinzenbaw Sep 1994 A
5346020 Bassett Sep 1994 A
5349911 Holst Sep 1994 A
5351635 Hulicsko Oct 1994 A
5379847 Snyder Jan 1995 A
5394946 Clifton Mar 1995 A
5398771 Hornung Mar 1995 A
5419402 Heintzman May 1995 A
5427192 Stephenson Jun 1995 A
5443023 Carroll Aug 1995 A
5443125 Clark Aug 1995 A
5461995 Winterton Oct 1995 A
5462124 Rawson Oct 1995 A
5473999 Rawson Dec 1995 A
5474135 Schlagel Dec 1995 A
5477682 Tobiasz Dec 1995 A
5477792 Bassett Dec 1995 A
5479868 Bassett Jan 1996 A
5479992 Bassett Jan 1996 A
5485796 Bassett Jan 1996 A
5485886 Bassett Jan 1996 A
5497717 Martin Mar 1996 A
5497837 Kehrney Mar 1996 A
5499042 Yanagawa Mar 1996 A
5499683 Bassett Mar 1996 A
5499685 Downing, Jr. Mar 1996 A
5517932 Ott May 1996 A
5524525 Nikkel Jun 1996 A
5531171 Whitesel Jul 1996 A
5542362 Bassett Aug 1996 A
5544709 Lowe Aug 1996 A
5562165 Janelle Oct 1996 A
5590611 Smith Jan 1997 A
5603269 Bassett Feb 1997 A
5623997 Rawson Apr 1997 A
5640914 Rawson Jun 1997 A
5657707 Dresher Aug 1997 A
5660126 Freed Aug 1997 A
5685245 Bassett Nov 1997 A
5704430 Smith Jan 1998 A
5709271 Bassett Jan 1998 A
5725057 Taylor Mar 1998 A
5727638 Wodrich Mar 1998 A
5730074 Peter Mar 1998 A
5809757 McLean Sep 1998 A
5833011 Boertlein Nov 1998 A
5852982 Peter Dec 1998 A
5868207 Langbakk Feb 1999 A
5878678 Stephens Mar 1999 A
RE36243 Rawson Jul 1999 E
5953895 Hobbs Sep 1999 A
5970891 Schlagel Oct 1999 A
5970892 Wendling Oct 1999 A
5988293 Brueggen Nov 1999 A
6067918 Kirby May 2000 A
6068061 Smith May 2000 A
6079340 Flamme Jun 2000 A
6082274 Peter Jul 2000 A
6085501 Walch Jul 2000 A
6091997 Flamme Jul 2000 A
6145288 Tamian Nov 2000 A
6164385 Buchl Dec 2000 A
6176334 Lorenzen Jan 2001 B1
6223663 Wendling May 2001 B1
6223828 Paulson May 2001 B1
6237696 Mayerle May 2001 B1
6250747 Hauck Jun 2001 B1
6253692 Wendling Jul 2001 B1
6289829 Fish Sep 2001 B1
6295939 Emms Oct 2001 B1
6314897 Hagny Nov 2001 B1
6325156 Barry Dec 2001 B1
6330922 King Dec 2001 B1
6331142 Bischoff Dec 2001 B1
6343661 Thompson Feb 2002 B1
6347594 Wendling Feb 2002 B1
6382326 Goins May 2002 B1
6389999 Duello May 2002 B1
6453832 Schaffert Sep 2002 B1
6454019 Prairie Sep 2002 B1
6460623 Knussman Oct 2002 B1
6497088 Holley Dec 2002 B1
6516595 Rhody Feb 2003 B2
6526735 Meyer Mar 2003 B2
6530334 Hagny Mar 2003 B2
6575104 Brummelhuis Jun 2003 B2
6622468 Lucand Sep 2003 B2
6644224 Bassett Nov 2003 B1
6681868 Kovach Jan 2004 B2
6701856 Zoske Mar 2004 B1
6701857 Jensen Mar 2004 B1
6715433 Friestad Apr 2004 B1
6763773 Schaffert Jul 2004 B2
6786130 Steinlage Sep 2004 B2
6827029 Wendte Dec 2004 B1
6834598 Detlef Dec 2004 B2
6840853 Foth Jan 2005 B2
6843047 Hurtis Jan 2005 B2
6853937 Shibusawa Feb 2005 B2
6886650 Bremner May 2005 B2
6889943 Dinh May 2005 B2
6892656 Schneider May 2005 B2
6907833 Thompson Jun 2005 B2
6908052 Jacobson Jun 2005 B1
6912963 Bassett Jul 2005 B2
6923390 Barker Aug 2005 B1
6968907 Raper Nov 2005 B1
6986313 Halford Jan 2006 B2
6997400 Hanna Feb 2006 B1
7004090 Swanson Feb 2006 B2
7044070 Kaster May 2006 B2
7063167 Staszak Jun 2006 B1
7159523 Bourgault Jan 2007 B2
7163227 Burns Jan 2007 B1
7222575 Bassett May 2007 B2
7249448 Murphy Jul 2007 B2
7290491 Summach Nov 2007 B2
7325756 Giorgis Feb 2008 B1
7347036 Easley, Jr. Mar 2008 B1
7360494 Martin Apr 2008 B2
7360495 Martin Apr 2008 B1
7438006 Mariman Oct 2008 B2
7451712 Bassett Nov 2008 B2
7497174 Sauder Mar 2009 B2
7523709 Kiest Apr 2009 B1
7540245 Spicer Jun 2009 B1
7540333 Bettin Jun 2009 B2
7575066 Bauer Aug 2009 B2
7584707 Sauder Sep 2009 B2
7665539 Bassett Feb 2010 B2
7673570 Bassett Mar 2010 B1
7743718 Bassett Jun 2010 B2
7870827 Bassett Jan 2011 B2
7900429 Labar Mar 2011 B2
7918285 Graham Apr 2011 B1
7938074 Liu May 2011 B2
7944210 Fischer May 2011 B2
7946231 Martin May 2011 B2
7975629 Martin Jul 2011 B1
8146519 Bassett Apr 2012 B2
8151717 Bassett Apr 2012 B2
8171707 Kitchel May 2012 B2
D663326 Allensworth Jul 2012 S
8327780 Bassett Dec 2012 B2
8359988 Bassett Jan 2013 B2
8380356 Zielke Feb 2013 B1
8386137 Sauder Feb 2013 B2
8393407 Freed Mar 2013 B2
8408149 Rylander Apr 2013 B2
8544397 Bassett Oct 2013 B2
8544398 Bassett Oct 2013 B2
8550020 Sauder Oct 2013 B2
8573319 Casper Nov 2013 B1
8634992 Sauder Jan 2014 B2
8636077 Bassett Jan 2014 B2
8649930 Reeve Feb 2014 B2
8746661 Runkel Jun 2014 B2
8763713 Bassett Jul 2014 B2
8770308 Bassett Jul 2014 B2
8776702 Bassett Jul 2014 B2
RE45091 Bassett Aug 2014 E
8863857 Bassett Oct 2014 B2
8910581 Bassett Dec 2014 B2
8939095 Freed Jan 2015 B2
8985232 Bassett Mar 2015 B2
9003982 Elizalde Apr 2015 B1
9003983 Roth Apr 2015 B2
9055712 Bassett Jun 2015 B2
9107337 Bassett Aug 2015 B2
9107338 Bassett Aug 2015 B2
9113589 Bassett Aug 2015 B2
9144187 Bassett Sep 2015 B2
9148989 Van Buskirk Oct 2015 B2
9167740 Bassett Oct 2015 B2
9192088 Bruce Nov 2015 B2
9192089 Bassett Nov 2015 B2
9192091 Bassett Nov 2015 B2
9215838 Bassett Dec 2015 B2
9215839 Bassett Dec 2015 B2
9226440 Bassett Jan 2016 B2
9232687 Bassett Jan 2016 B2
9241438 Bassett Jan 2016 B2
9271437 Martin Mar 2016 B2
9307690 Bassett Apr 2016 B2
9392743 Camacho-Cook Jul 2016 B2
9504198 Martin Nov 2016 B2
9615497 Bassett Apr 2017 B2
9668398 Bassett Jun 2017 B2
9681601 Bassett Jun 2017 B2
9723778 Bassett Aug 2017 B2
9788472 Bassett Oct 2017 B2
9848522 Bassett Dec 2017 B2
9861022 Bassett Jan 2018 B2
9980421 Hammes May 2018 B1
10238024 Bassett Mar 2019 B2
10251324 Martin Apr 2019 B2
10251333 Bassett Apr 2019 B2
10645865 Bassett May 2020 B2
20020073678 Lucand Jun 2002 A1
20020162492 Juptner Nov 2002 A1
20030141086 Kovach Jul 2003 A1
20030141088 Kovach Jul 2003 A1
20040005929 Piasecki Jan 2004 A1
20040148917 Eastwood Aug 2004 A1
20050000202 Scordilis Jan 2005 A1
20050005704 Adamchuk Jan 2005 A1
20050045080 Halford Mar 2005 A1
20050199842 Parsons Sep 2005 A1
20060102058 Swanson May 2006 A1
20060118662 Korus Jun 2006 A1
20060191695 Walker Aug 2006 A1
20060213566 Johnson Sep 2006 A1
20060237203 Miskin Oct 2006 A1
20070044694 Martin Mar 2007 A1
20070272134 Baker Nov 2007 A1
20080093093 Sheppard Apr 2008 A1
20080173220 Wuertz Jul 2008 A1
20080236461 Sauder Oct 2008 A1
20080256916 Vaske Oct 2008 A1
20090133888 Kovach May 2009 A1
20090260902 Holman Oct 2009 A1
20100006309 Ankenman Jan 2010 A1
20100019471 Ruckle Jan 2010 A1
20100108336 Thomson May 2010 A1
20100180695 Sauder Jul 2010 A1
20100198529 Sauder Aug 2010 A1
20100282480 Breker Nov 2010 A1
20110101135 Korus May 2011 A1
20110147148 Ripa Jun 2011 A1
20110239920 Henry Oct 2011 A1
20110247537 Freed Oct 2011 A1
20110313575 Kowalchuk Dec 2011 A1
20120010782 Grabow Jan 2012 A1
20120048159 Adams Mar 2012 A1
20120167809 Bassett Jul 2012 A1
20120186216 Vaske Jul 2012 A1
20120186503 Sauder Jul 2012 A1
20120216731 Schilling Aug 2012 A1
20120232691 Green Sep 2012 A1
20120255475 Mariman Oct 2012 A1
20130032363 Curry Feb 2013 A1
20130112121 Achen May 2013 A1
20130112124 Bergen May 2013 A1
20130213676 Bassett Aug 2013 A1
20130325267 Adams Dec 2013 A1
20130333599 Bassett Dec 2013 A1
20140000448 Franklin, III Jan 2014 A1
20140026748 Stoller Jan 2014 A1
20140034339 Sauder Feb 2014 A1
20140034343 Sauder Feb 2014 A1
20140034344 Bassett Feb 2014 A1
20140165527 Oehler Jun 2014 A1
20140190712 Bassett Jul 2014 A1
20140197249 Roth Jul 2014 A1
20140214284 Sauder Jul 2014 A1
20140224513 Van Buskirk Aug 2014 A1
20140224843 Rollenhagen Aug 2014 A1
20140278696 Anderson Sep 2014 A1
20150199748 Hammock Jul 2015 A1
20150216108 Roth Aug 2015 A1
20150373901 Bassett Dec 2015 A1
20160066498 Bassett Mar 2016 A1
20160100517 Bassett Apr 2016 A1
20160128263 Bassett May 2016 A1
20160270285 Hennes Sep 2016 A1
20160309641 Taunton Oct 2016 A1
20170000006 Raetzman Jan 2017 A1
20170000013 Raetzman Jan 2017 A1
20170034985 Martin Feb 2017 A1
20170094889 Garner Apr 2017 A1
20170094894 Heim Apr 2017 A1
20170127614 Button May 2017 A1
20170164548 Bassett Jun 2017 A1
20170181373 Bassett Jun 2017 A1
20170231145 Bassett Aug 2017 A1
20170300072 Bassett Oct 2017 A1
20170303467 Simmons Oct 2017 A1
20170359940 Bassett Dec 2017 A1
20180000001 Bassett Jan 2018 A1
20180116098 Bassett May 2018 A1
20180139885 Bassett May 2018 A1
20180288939 Bassett Oct 2018 A1
20180317380 Bassett Nov 2018 A1
20190082591 Bassett Mar 2019 A1
Foreign Referenced Citations (31)
Number Date Country
551372 Oct 1956 BE
530673 Sep 1956 CA
335464 Sep 1921 DE
1108971 Jun 1961 DE
2402411 Jul 1975 DE
3830141 Feb 1990 DE
1143784 Oct 2001 EP
2196337 Jun 2010 EP
2497348 Sep 2012 EP
3150045 Apr 2017 EP
1574412 Sep 1980 GB
2056238 Mar 1981 GB
2160401 Dec 1985 GB
S5457726 May 1979 JP
392897 Aug 1973 SU
436778 Jul 1974 SU
611201 Jun 1978 SU
625648 Sep 1978 SU
1410884 Jul 1988 SU
1466674 Mar 1989 SU
2001023241 Apr 2001 WO
2009145381 Dec 2009 WO
WO-2009146780 Dec 2009 WO
2011161140 Dec 2011 WO
2012149367 Nov 2012 WO
2012149415 Nov 2012 WO
2012167244 Dec 2012 WO
2013025898 Feb 2013 WO
2016073964 May 2016 WO
2016073966 May 2016 WO
WO-2016205424 Dec 2016 WO
Non-Patent Literature Citations (27)
Entry
Case Corporation Brochure, Planters 900 Series Units/Modules Product InformationAug. 1986 (4 pages).
Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages).
Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages).
The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page).
Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages).
Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991pp. 12-14 (4 pages).
Borgelt, Steven C., “Sensor Technologies and Control Strategies For Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages).
Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620date estimated as early as Feb. 1992 (4 pages).
Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages).
Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages).
Orthman Manufacturing, Inc., Rowcrop Cultivator Bookletdate estimated as early as Feb. 1992 (4 pages).
Yetter Catalog, date estimated as early as Feb. 1992 (4 pages).
Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, Retrieved Nov. 2, 2012 (4 pages).
Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993pp. 14-15 (2 pages).
Acu-Grain“Combine Yield Monitor 99% Accurate? 'You Bet Your Bushels!” date estimated as early as Feb. 1993 (2 pages).
John Deere, New 4435 Hydro Row-Crop and Small-Grain Combinedate estimated as early as Feb. 1993 (8 pages).
Vansichen, R. et al.“Continuous Wheat Yield Measurement On A Combine,” date estimated as early as Feb. 1993 (5 pages).
Yetter 2010 Product Catalogdate estimated as early as Jan. 2010 (2 pages).
Yetter Cut and Move Manual, Sep. 2010 (28 pages).
John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages).
Martin Industries, LLC Paired 13 7 Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012pp. 18-25 (8 pages).
Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages).
John Deere, New Semi-Active Sea Suspension, http://www.deere.com/en-US/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages).
Partial European Search Report for Application No. 18170828.0, dated Jan. 9, 2019 (15 pages).
Gason, 3 Row Vineyard Mower Brochure, http://www.fatcow.com.au/c/Gason/Three-row-vineyard-mower-a-world-firt-p23696, Jul. 2010 (1 page).
Yetter Screw Adjust Residue Manager Operator's Manual, labeled “2565-729_REV_D” and dated Sep. 2010 on p. 36, retrieved Mar. 10, 2014 from the internet, available online Jul. 13, 2011, at https://web.archive.org/web/20110713162510/http://www.yetterco.com/help/manuals/Screw_Adjust_ Residue_Manager2.pdf.
European Search Report for Application No. 18170828.0, dated May 9, 2019 (18 pages).
Related Publications (1)
Number Date Country
20210315149 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
62648183 Mar 2018 US
Divisions (1)
Number Date Country
Parent 16159254 Oct 2018 US
Child 17238913 US
Continuation in Parts (1)
Number Date Country
Parent 15586799 May 2017 US
Child 16159254 US