Embodiments of the present invention are in the field of renewable energy and, in particular, seed layers for solar cell conductive contacts and methods of forming seed layers for solar cell conductive contacts.
Photovoltaic cells, commonly known as solar cells, are well known devices for direct conversion of solar radiation into electrical energy. Generally, solar cells are fabricated on a semiconductor wafer or substrate using semiconductor processing techniques to form a p-n junction near a surface of the substrate. Solar radiation impinging on the surface of, and entering into, the substrate creates electron and hole pairs in the bulk of the substrate. The electron and hole pairs migrate to p-doped and n-doped regions in the substrate, thereby generating a voltage differential between the doped regions. The doped regions are connected to conductive regions on the solar cell to direct an electrical current from the cell to an external circuit coupled thereto.
Efficiency is an important characteristic of a solar cell as it is directly related to the capability of the solar cell to generate power. Likewise, efficiency in producing solar cells is directly related to the cost effectiveness of such solar cells. Accordingly, techniques for increasing the efficiency of solar cells, or techniques for increasing the efficiency in the manufacture of solar cells, are generally desirable. Some embodiments of the present invention allow for increased solar cell manufacture efficiency by providing novel processes for fabricating solar cell structures. Some embodiments of the present invention allow for increased solar cell efficiency by providing novel solar cell structures.
Seed layers for solar cell conductive contacts and methods of forming seed layers for solar cell conductive contacts are described herein. In the following description, numerous specific details are set forth, such as specific process flow operations, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known fabrication techniques, such as lithography and patterning techniques, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the figures are illustrative representations and are not necessarily drawn to scale.
Disclosed herein are solar cells having conductive contacts. In an embodiment, a solar cell includes a substrate. An emitter region is disposed above the substrate. A conductive contact is disposed on the emitter region and includes a conductive layer in contact with the emitter region. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In another embodiment, a solar cell includes a substrate having a diffusion region at or near a surface of the substrate. A conductive contact is disposed above the diffusion region and includes a conductive layer in contact with the substrate. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In yet another embodiment, a partially fabricated solar cell includes a substrate. An emitter region is disposed in or above the substrate. A conductive contact is disposed on a silicon region of the emitter region and includes a conductive layer in contact with the silicon region. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition with a sufficient amount of Si such that the conductive layer does not consume a significant portion of the silicon region during an anneal of the conductive layer. The balance of the composition is Al.
One or more embodiments described herein are directed to controlling photoluminescence (PL) degradation in silicon based emitter regions by including silicon in printed conductive seed particles. More specifically, when forming conductive contacts from a first formed conductive printed seed layer, a paste composed of aluminum-silicon alloy particles can be printed. The paste is the fired or annealed to form an electrical contact to a device (and, e.g., to burn off solvent from the paste). Silicon from a device substrate or other silicon layer may rapidly dissolve into aluminum during a firing. When silicon is dissolved from the substrate it can create pits in the substrate. These pits can in turn cause high recombination at the surface of the device, causing a decrease in PL signal and reducing the device efficiency. In one ore more embodiments, the aluminum is deposited to also include sufficient silicon in the paste itself to hinder such dissolution of silicon from the substrate.
The formation of pits on silicon can be mitigated or eliminated by including some silicon in a deposited aluminum film, e.g., about 1% silicon can be effective. The added silicon dissolves in the aluminum at elevated temperatures such that little to no silicon is dissolved from the substrate. In an example, our own testing has shown that for a sputtered aluminum film fired at approximately 550 degrees Celsius, only approximately 2% silicon is required to prevent pitting. Furthermore, for firing temperatures above the aluminum-silicon eutectic of 577 degrees Celsius, the amount of silicon required is expected to follow the phase diagram. However, our testing of an aluminum film made from particles of aluminum approximately 5 microns in diameter and fired at approximately 580 degrees Celsius showed pitting when 12% silicon was included. Based on the phase diagram for Al/Si eutectics, the 12% included silicon should have been sufficient to reduce pitting and improve PL. In fact, we found that using less than 15% silicon in the particles was not sufficient to prevent PL degradation. Accordingly, for firing an aluminum paste at a temperature at or above the aluminum/silicon eutectic point, in an embodiment, more silicon is included in the paste than would otherwise be indicated by the phase diagram. However, in an embodiment, only so much silicon can be included before the paste is no longer an effective conducting paste. As an example,
In an embodiment, greater than 15% silicon is included relative to aluminum in an aluminum-based conductive seed paste. In one such embodiment, as much as 25% silicon is used. The use of closer to 25% can decrease pitting in a silicon region having the paste deposited there on. For example,
In a first aspect, a seed layer having Al/Si particles can be used to fabricate contacts, such as back-side contacts, for a solar cell having emitter regions formed above a substrate of the solar cell. For example,
Referring to
In an embodiment, referring again to
In an embodiment, the conductive layer 330 has a total composition including approximately 10-30% binders and frit, with the remainder the Al/Si particles. In one such embodiment, the binders are composed of zinc oxide (ZnO), tin oxide (SnO), or both, and the frit is composed of glass particles. It is to be understood that, when initially applied, a seed layer (e.g., an as-applied layer 330) further includes a solvent. However, the solvent is removed upon annealing the seed layer, leaving essentially the binders, frit and Al/Si particles in the final structure, as described above.
In an embodiment, the conductive layer 330 has a thickness greater than approximately 100 microns, and the conductive contact 428 fabricated there from is a back contact of the solar cell composed essentially of only the conductive layer 330. However, in another embodiment, the conductive layer 330 has a thickness of approximately 2-10 microns. In that embodiment, the conductive contact 428 is a back contact of the solar cell and is composed of the conductive layer 330, an electroless plated nickel (Ni) layer 332 disposed on the conductive layer 330, and an electroplated copper (Cu) layer 334 disposed on the Ni layer, as depicted in
In a second aspect, a seed layer having Al/Si particles can be used to fabricate contacts, such as back-side contacts, for a solar cell having emitter regions formed in a substrate of the solar cell. For example,
Referring to
In an embodiment, referring again to
In an embodiment, the conductive layer 330 has a total composition including approximately 10-30% binders and frit, with the remainder the Al/Si particles. In one such embodiment, the binders are composed of zinc oxide (ZnO), tin oxide (SnO), or both, and the frit is composed of glass particles. It is to be understood that, when initially applied, a seed layer (e.g., an as-applied layer 330) further includes a solvent. However, the solvent is removed upon annealing the seed layer, leaving essentially the binders, frit and Al/Si particles in the final structure, as described above.
In an embodiment, the conductive layer 330 has a thickness greater than approximately 100 microns, and the conductive contact 328 fabricated there from is a back contact of the solar cell composed essentially of only the conductive layer 330. However, in another embodiment, the conductive layer 330 has a thickness of approximately 2-10 microns. In that embodiment, the conductive contact 328 is a back contact of the solar cell and is composed of the conductive layer 330, an electroless plated nickel (Ni) layer 332 disposed on the conductive layer 330, and an electroplated copper (Cu) layer 334 disposed on the Ni layer, as depicted in
Referring again to
The use of a conductive layer composed of aluminum/silicon (Al/Si) particles having a composition with a sufficient amount of Si such that the conductive layer does not consume a significant portion of a silicon region during an anneal can be used for structures having emitter regions formed from a silicon substrate or from a polysilicon layer formed above a substrate. For example, in a first embodiment, referring to
Although certain materials are described specifically above, some materials may be readily substituted with others with other such embodiments remaining within the spirit and scope of embodiments of the present invention. For example, in an embodiment, a different material substrate, such as a group III-V material substrate, can be used instead of a silicon substrate. In another embodiment, silver (Ag) particles or the like can be used in a seed paste instead of, or in addition to, Al particles. In another embodiment, plated or like-deposited cobalt (Co) or tungsten (W) can be used instead of or in addition to the plated Ni described above.
Furthermore, the formed contacts need not be formed directly on a bulk substrate, as was described in
Referring to
In an embodiment, the thin dielectric layer 402 is composed of silicon dioxide and has a thickness approximately in the range of 5-50 Angstroms. In one embodiment, the thin dielectric layer 402 performs as a tunneling oxide layer. In an embodiment, substrate 400 is a bulk single-crystal substrate, such as an n-type doped single crystalline silicon substrate. However, in an alternative embodiment, substrate 400 includes a polycrystalline silicon layer disposed on a global solar cell substrate.
Referring again to
Referring again to
Referring to
Referring to
Thus, in an embodiment, conductive contacts 428 are formed on or above a surface of a bulk N-type silicon substrate 400 opposing a light receiving surface 401 of the bulk N-type silicon substrate 400. In a specific embodiment, the conductive contacts are formed on regions (422/420) above the surface of the substrate 400, as depicted in
In an embodiment, forming the conductive layer includes printing a paste on a bulk N-type silicon substrate or on a polysilicon layer formed above such as substrate. The paste can be composed of a solvent and the aluminum/silicon (Al/Si) alloy particles. The printing includes using a technique such as, but not limited to, screen printing or ink-jet printing. Additionally, one or more embodiments described herein are directed to approaches to, and structures resulting from, reducing the contact resistance of printed Al seed formed on a silicon substrate by incorporating the electroless-plated Ni therein. More specifically, one or more embodiments are directed to contact formation starting with an Al paste seed layer. Annealing is performed after seed printing to form contact between Al from the past and an underlying silicon substrate. Then Ni is deposited by electroless plating on top of Al paste. Since the paste has a porous structure, the Ni forms not only above, but also on the outside of the Al particles, and fills up at least a portion of the empty space. The Ni may be graded in that more Ni may form on upper portions of the Al (away from the Si). Nonetheless, the Ni on the outside of the Al particles can be utilized to reduce the contact resistance of a contact ultimately formed there from. In particular, if the thickness of the Al paste is generally reduced, more Ni can accumulate at the Al to silicon interface. When annealing is performed after Ni electroless plating, instead of after seed printing, a NiSi contact can form at the Ni-Si interface. Furthermore, an Al-Si contact can form at the Al-Si interface by having the Ni present in voids or pores of the Al particles. Compared to conventional approaches, the contacts formed can have a greater surface area of actual metal to silicon contact within a given region of the contact structure formation. As a result, the contact resistance can be lowered relative to conventional contacts.
Thus, seed layers for solar cell conductive contacts and methods of forming seed layers for solar cell conductive contacts have been disclosed. In accordance with an embodiment of the present invention, a solar cell includes a substrate. An emitter region is disposed above the substrate. A conductive contact is disposed on the emitter region and includes a conductive layer in contact with the emitter region. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In one embodiment, the Al/Si particles have a composition of less than approximately 25% Si with the remainder Al. In accordance with another embodiment of the present invention, a solar cell includes a substrate having a diffusion region at or near a surface of the substrate. A conductive contact is disposed above the diffusion region and includes a conductive layer in contact with the substrate. The conductive layer is composed of aluminum/silicon (Al/Si) particles having a composition of greater than approximately 15% Si with the remainder Al. In one embodiment, the Al/Si particles have a composition of less than approximately 25% Si with the remainder Al.