1. Field of the Invention
The subject invention relates to a composite article and more specifically to a composite article including seed for planting.
2. Description of the Related Art
Supplying plantable seeds with products is generally known in the art. Many of these products include different types of seeds embedded therein. For example, various articles formed from paper and/or fibers, such as greeting and transactional cards, have seeds integrated within the paper/fibers themselves. Alternatively, removable portions or decorative elements that include seeds embedded therein may be used to adorn the cards. Still other examples of similar products include dishes and cutlery having seeds embedded therein.
Typically, to plant the seeds, the entire card or product may be planted. However, planting an entire card or product is generally not desirable because the message or information disposed on the card will be lost. Moreover, even if only a portion of the card or product contains the seeds to be planted, the material surrounding the seeds must break down before the seeds are able to germinate. Thus, planting an entire card or product is not desirable. Additionally, waiting for the material surrounding the seed to break down may delay or even prevent the seeds from ever germinating. Accordingly, there remains an opportunity to develop an improved article including seeds.
A composite article comprises a substrate element with a first cover element spaced from the substrate element. A second cover element is disposed between the first cover element and the substrate element. A first adhesive layer is disposed between the first and second cover elements, where the first adhesive layer is configured to adhere the first cover element to the second cover element. A second adhesive layer is disposed between the second cover element and the substrate element, where the second adhesive layer is configured to adhere the second cover element to the substrate element. At least one seed abuts the first adhesive layer. The first cover layer is configured to be separated from the first adhesive layer thereby exposing at least a portion of the seed(s).
A method of forming the composite article comprises the steps of applying an adhesive to a first cover element to form a first adhesive layer, applying at least one seed to the first adhesive layer, applying a second cover element to the first adhesive layer with the at least one seed disposed between the first adhesive layer and the second cover element, applying a second adhesive layer to the second cover element, and applying the second cover element to the substrate element.
A method of planting the seed with the composite article coupled to a secondary structure is also disclosed herein. The method comprises the steps of removing the composite article from the secondary structure, removing the first cover element from the composite article to expose the seed, and disposing a remaining portion of the composite article in or on a growing medium to plant the seed.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views an article comprising one or more seeds is generally shown at 20. The article 20 is further defined as a seed panel 20 and will hence forth be described as the seed panel 20.
With reference to
For clarity purposes, as used herein, the term “seed” refers to one seed or a plurality of seeds. The seed layer 24 typically includes a plurality of seeds; however use of a single seed will not deviate from the scope of this disclosure. It should be noted that the seed is not limited to any particular type of seed. The seed panel 20 may comprise one or a plurality of the same type of seed. Alternatively, the seed panel 20 may include a variety of different types of seed. The seed may include, but is not limited to, flower seed, herb seed, grass seed, fruit seed, vegetable seed, and combinations thereof. The type of seed utilized may depend upon the size, shape, or function of the seed panel 20. The seed is typically spaced from one another in a random, non-contiguous manner within the seed panel 20. Alternatively, the seed may be arranged in a contiguous layer such that the seed abut one another on the seed panel 20.
The seed panel 20 may define any configuration or size related to a desired application. The seed panel 20 of the present disclosure may be utilized in a variety of applications. The seed panel 20 may be affixed to or otherwise coupled to a secondary article. Examples of the secondary article includes, but is not limited to, cup bottoms, book marks, business cards, cartons, boxes, envelopes, compact disc (CD) sleeves, packaging, bottle hang tags, price tags, other die cut components, or any other application. Alternatively, the seed panel 20 may itself be one of the aforementioned articles. In other words, the seed panel 20 may be integrated into the article itself. Both alternatives will be explained in greater detail below.
The substrate element 26 is typically a semi-rigid material and tends to be environmentally friendly, i.e., biodegradable, meaning that the substrate element 26 will tend to biodegrade. Examples of suitable materials for the substrate element 26 include, but are not limited to, fiberboard, cardboard, cardstock, paper, fibers, recycled newsprint, and combinations thereof, or the like. However, the substrate element 26 may comprise a plastic, a metal, a paper, a polymer, and the like. Additionally, the substrate element 26 may comprise a flexible or pliable material without deviating from the scope of the present disclosure.
The adhesive layer 30 is typically disposed on the substrate element 26. As used herein, the terminology “disposed on” describes the adhesive layer 30 being in direct contact with the substrate element 26, or spaced from the substrate element 26. Preferably, the adhesive layer 30 is a pressure-sensitive adhesive. However, any other suitable adhesive may also be employed. The adhesive layer 30 is not particularly limited and may include a solid, a gel, or a liquid adhesive. Further the adhesive layer 30 may be a sheet, a film, a gum, or any other structure. Additionally, the adhesive layer 30 may be defined as glue, paste, cement, plaster or the like. The adhesive layer 30 also tends to be environmentally friendly, i.e., biodegradable, meaning that the adhesive will tend to biodegrade. The adhesive layer 30 is typically organic. However it is to be appreciated that the adhesive layer 30 may include one or more silicones without deviating from the scope of this disclosure.
The adhesive layer 30 typically couples the seed layer 24 to the substrate element 26. The seed layer 24 is not necessarily in direct contact with the substrate element 26. The seed layer 24 may be spaced from the substrate layer. The seed layer 24 typically extends from the adhesive layer 30 and away from the substrate layer. Alternatively, the seed layer 24 may be applied to the substrate element 26 prior to the adhesive layer 30 such that the seed layer 24 is in contact with the substrate element 26 and the adhesive layer 30 is applied over the seed layer 24 for coupling the seed layer 24 to the substrate element 26. In other words, the seed layer 24 may extend from the adhesive layer 30 and toward the substrate layer. At least a portion of each seed of the seed layer 24 remains free of the adhesive layer 30. A portion of each seed within the seed layer 24 is exposed when the substrate element 26 and/or the cover element 28 is removed.
The cover element 28 is disposed on the substrate element 26 and over the seed layer 24 and the adhesive layer 30 for protecting the seed layer 24 from damage and to help the seed layer 24 remain secured to the substrate element 26. The cover element 28 is typically coupled to the substrate element 26 through the adhesive layer 30 in areas not occupied by the seed layer 24. It is to be appreciated that the cover element 28 need not be the outer most layer of the seed panel 20 such that additional layers 22 may be disposed on or over the cover element 28. The cover element 28 may be further defined as a release layer, a release coating, a release paper, wax paper, fiberboard, or any suitable material that will allow the cover element 28 to be separated from the substrate element 26 for exposing the seed layer 24. The term “separated” includes peeling, prying, tearing, or otherwise detaching the cover element 28 and the substrate element 26. In various embodiments, the cover element 28 includes one or more silicones including, but not limited to, polydimethylsiloxanes, organopolysiloxanes, and the like. Alternatively, the cover element 28 may include organic and/or inorganic materials. The cover element 28 may also comprise a biodegradable material.
As discussed above, the seed panel 20 may define any shape and is not particularly limited in size. Typically, size and shape are related to the desired application of the seed panel 20. The cover element 28 may be peeled away (or may be peelable) from the substrate element 26 for exposing the seed layer 24 adhered thereto. With the seed layer 24 exposed, the seed panel 20 may be planted for germinating the seed of the seed layer 24, as shown in
The cavity 52 typically defines a plurality of diameters between the outer surface 38 of the bottom wall 34 and the lower end 46, as best shown in
When the seed panel 20 is adapted to be coupled to the cup 32, the seed panel 20 typically defines a configuration that is approximately complementary in shape to the cavity 52. The configuration has a perimeter 54, and the perimeter 54 defines a third diameter D3. The third diameter D3 tends to be less than the second diameter D2, but slightly larger than the first diameter D1 defined by the peripheral wall 40. An interference fit is created between the peripheral wall 40 and the seed panel 20 for securing the seed panel 20 within the cavity 52. In other words, the seed panel 20 is forced past the first diameter D1 and into the cavity 52 thereby securing the seed panel 20 therein. Alternatively, the seed panel 20 may be glued, fastened, or otherwise held in place. It is to be appreciated that the type of attachment of the seed panel 20 to the cup 32 is not particularly limited.
Additionally, the seed panel 20 may define a recess 56 along the perimeter 54 with the recess 56 typically defining a substantially semi-circular configuration. However, it is to be appreciated that the recess 56 is not particularly limited to a specific shape. As shown in
With reference to
In yet another embodiment, shown in
In still another embodiment, additional layers 22 may be added to the seed panel 20. With reference to
Referring specifically to
With reference to
The present disclosure also contemplates a method of forming the seed panel 20. The method may include the step of providing a substrate element 26. The method may also include the step of providing an adhesive. The adhesive may be applied, for example, by spraying, rolling, sheeting, filming, etc. The method may also include the step of applying the adhesive to the substrate to form an adhesive layer 30. The method may also include the step of providing at least one seed. The method may also include the step of applying the seed to the adhesive layer 30. The method may also include the step of providing a cover element 28. The method may also include the step of applying the cover element 28 over the seed and substrate element 26. The method may also include the step of applying pressure to adhere the substrate element 26 to the cover element 28 for securing the seed therebetween. The method may also include the step of applying heat for promoting adhesion of the substrate element 26 and the cover element 28. The method may also include the step of cutting the composite of the packaging 58 to form the seed panel 20.
The present disclosure further contemplates a method of planting seed with the seed panel 20. As described above, the seed panel comprises the substrate element 26 and the cover element 28 spaced from the substrate element 26. The adhesive layer 30 is disposed between and couples the cover element 28 and the substrate element 26 to one another. At least one seed is disposed between the elements 26, 28 and abuts the adhesive layer 30. The seed panel 20 may be removably coupled to a secondary structure. The method may include the step of removing the seed panel 20 from the secondary structure. The method may further include the step of separating the elements 26, 28 apart to expose the seed of the seed layer 24. The method may further include the step of soaking the seed panel 20 in a solution to facilitate separation of the elements 26, 28. The method may further include the step of disposing at least one of the elements 26, 28 having at least one seed disposed thereon in or on a growing medium to plant the seed. The method may further include the step of applying water to the seed and growing medium to facilitate germination of the seed. The terms “disposing the elements” may be further define as placing at least one of the elements 26, 28 with the seed disposed thereon atop the growing medium. Alternatively, the terms “disposing the elements” may be further define as placing at least one of the elements 26, 28 with the seed disposed thereon within the growing medium. It is to be appreciated that the growing medium is not particularly limited, and may include, but is not limited to, soil, dirt, gel, peat, sand, wood residues, hydroponic media, or any other suitable material.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that reference numerals are merely for convenience and are not to be in any way limiting, the invention may be practiced otherwise than as specifically described.
This application is a divisional application of U.S. patent application Ser. No. 13/796,016, filed on Mar. 12, 2013, which is a divisional application of U.S. patent application Ser. No. 13/206,857, filed on Aug. 10, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/372,696, filed on Aug. 11, 2010. The contents of U.S. patent application Ser. Nos. 13/796,016, 13/206,857, and 61/372,696 are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2281927 | Fisher | May 1942 | A |
3098320 | Estowski et al. | Jul 1963 | A |
3098321 | Estowski | Jul 1963 | A |
3659396 | Baker | May 1972 | A |
3908308 | Meyers | Sep 1975 | A |
4080755 | Crosby | Mar 1978 | A |
4173844 | Knolle et al. | Nov 1979 | A |
4272919 | Schmidt | Jun 1981 | A |
4318248 | Muldner | Mar 1982 | A |
4353183 | Estkowski | Oct 1982 | A |
4418497 | Mastriano | Dec 1983 | A |
4442627 | Adams et al. | Apr 1984 | A |
5210975 | Beckerman | May 1993 | A |
5239774 | Rickabaugh | Aug 1993 | A |
5417010 | Ecer | May 1995 | A |
5720129 | Lantinberg | Feb 1998 | A |
5771614 | Dawson | Jun 1998 | A |
6240674 | Otake et al. | Jun 2001 | B1 |
6389745 | Huh | May 2002 | B1 |
6684561 | Poret et al. | Feb 2004 | B2 |
6701664 | Ahm | Mar 2004 | B2 |
6792714 | Lyons | Sep 2004 | B1 |
6945785 | Sohl et al. | Sep 2005 | B2 |
7438224 | Jensen et al. | Oct 2008 | B1 |
7641112 | Jensen et al. | Jan 2010 | B2 |
7735250 | Menzie et al. | Jun 2010 | B2 |
20020000064 | D'Agnone et al. | Jan 2002 | A1 |
20020040670 | Hornak | Apr 2002 | A1 |
20030173244 | Eichman | Sep 2003 | A1 |
20060107561 | Menzie et al. | May 2006 | A1 |
20060162248 | Ahm | Jul 2006 | A1 |
20080046277 | Stamets | Feb 2008 | A1 |
20100006461 | Shaffer et al. | Jan 2010 | A1 |
20110302835 | Ray et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
298 15 809 | Dec 1998 | DE |
202 14 508 | Feb 2004 | DE |
2 584 983 | Jan 1987 | FR |
2 707 832 | Jan 1995 | FR |
2 281 713 | Mar 1995 | GB |
2 304 624 | Mar 1997 | GB |
2 460 413 | Dec 2009 | GB |
1990227296 | Sep 1990 | JP |
WO 94 16907 | Aug 1994 | WO |
WO 2007 050282 | May 2007 | WO |
WO 2009 156855 | Dec 2009 | WO |
Entry |
---|
7-11 Slurpee Coins on Apr. 7, 2010 using Internet <URL:http://www.ericscards.com/coins>, 1 page. |
Bloomin' Promotions on Apr. 7, 2010 using Internet <URL:http://www.bloominpromotions.com/cupcooler.html>, 1 page. |
Botancial Paperworks on Apr. 7, 2010 using Internet <URL:http://www.botanicalpaperworks.com>, 1page. |
Flower Seed Paper on Apr. 7, 2010 using Internet <URL:http://www.flowerseedpaper.com>, 2 pages. |
Green Field Paper Company on Apr. 7, 2010 using Internet <URL:http://www.greenfieldpaper.com>, 5 pages. |
English Language Abstract for DE 298 15 809 U1 extracted from the espacenet.com database on Oct. 6, 2011, 8 pages. |
English language abstract and machine-assisted translation for German Patent No. DE 202 14 508 U1 extracted from the espacenet.com database on Jun. 12, 2013, 12 pages. |
English language abstract and machine-assisted translation for French Patent No. FR 2 584 983 A1 extracted from the espacenet.com database on Jun. 12, 2013, 10 pages. |
English language abstract and machine-assisted translation for French Patent No. FR 2 707 832 A1 extracted from the espacenet.com database on Jun. 12, 2013, 15 pages. |
English Language Abstract for JP 2-227296 A extracted from the espacenet.com database on Oct. 6, 2011, 8 pages. |
Offer for Sale of a fold up CD sleeve with laminated low-grow wild flower mix seed panel, Aug. 6, 2009, 1 page. |
Number | Date | Country | |
---|---|---|---|
20140298720 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61372696 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13796016 | Mar 2013 | US |
Child | 14311961 | US | |
Parent | 13206857 | Aug 2011 | US |
Child | 13796016 | US |