Seeded boehmite particulate material and methods for forming same

Information

  • Patent Grant
  • 7582277
  • Patent Number
    7,582,277
  • Date Filed
    Monday, August 6, 2007
    17 years ago
  • Date Issued
    Tuesday, September 1, 2009
    15 years ago
Abstract
A boehmite particulate material is disclosed. The material is formed by a process that includes providing a boehmite precursor and boehmite seeds in a suspension, and heat treating the suspension to convert the boehmite precursor into boehmite particulate material. The boehmite particulate material has an aspect ratio of not less than 3:1.
Description
BACKGROUND

1. Field of the Invention


The present invention generally relates to boehmite particulate material and processes for forming same. More specifically, the present invention relates to seeded boehmite particulate material having morphological features.


2. Description of the Related Art


Boehmite particulate material finds particular application as a desirable raw material for forming aluminous products, for example, alumina abrasive grains having high performance characteristics. In this context, the U.S. Pat. No. 4,797,139, commonly owned by the present Assignee, discloses a particular process for forming boehmite particulate material, which is then used as a feedstock material for later stage processing to form alumina abrasive grains. As described, the boehmite material is formed by a seeded process, and is limited in scope to boehmite particulate material that is adapted to form alumina abrasive grains. As such, the disclosed particulate material has particularly desired spherical morphology, which makes it suitable for abrasive applications.


Beyond abrasive applications, there is a particular desirability for creating boehmite particulate material having varying morphology. Since particulate morphology can have a profound impact upon the applications of the material, a need has arisen in the art for creation of new materials for applications beyond abrasives, including fillers utilized in specialty coating products and various polymer products. Other applications include those in which the boehmite material is utilized in its as-formed state, rather than as a feedstock material. In addition to the interest in creating new materials, processing technology enabling the formation of such materials needs to be developed as well. In this regard, such processing technology is desirably cost effective, is relatively straightforward to control, and provides high yields.


SUMMARY

According to one aspect, boehmite particulate material formed by seeded processing has an aspect ratio of not less than 3:1.


According to another aspect of the present invention, a boehmite particulate material is formed by a process that includes providing a boehmite precursor and boehmite seeds in a suspension, and heat treating the suspension to convert the boehmite precursor into boehmite particulate material. The particulate material may have a certain morphology, such as a relatively high aspect ratio, such as not less than about 2:1, such as not less than about 3:1.


Still further, according to another aspect of the present invention, boehmite particulate material is formed by a process including providing a boehmite precursor and boehmite seeds in a suspension, and heat-treating the suspension to convert the boehmite precursor into boehmite particulate material. Here, the boehmite particulate material is comprised of platelets, and has an aspect of not less than about 2:1.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an SEM micrograph illustrating platelet-shaped boehmite particulate material.



FIG. 2 is an SEM micrograph illustrating needle-shaped boehmite particulate material.



FIG. 3 is an SEM micrograph illustrating ellipsoid-shaped boehmite particulate material.



FIG. 4 is an SEM micrograph illustrating spherical-shaped boehmite particulate material.



FIG. 5 is a TEM of the material shown in FIG. 2.



FIG. 6. is an SEM of a comparative boehmite.





DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

According to an embodiment of the present invention, a boehmite particulate material is formed by a process that includes providing a boehmite precursor and boehmite seeds in a suspension, and heat treating (such as by hydrothermal treatment) the suspension (alternatively sol or slurry) to convert the boehmite precursor into boehmite particulate material formed of particles or crystallites. According to a particular aspect, the boehmite particulate material has a relatively elongated morphology, described generally herein in terms of aspect ratio, described below.


The term “boehmite” is generally used herein to denote alumina hydrates including mineral boehmite, typically being Al2O3.H2O and having a water content on the order of 15%, as well as psuedoboehmite, having a water content higher than 15%, such as 20-38% by weight. It is noted that boehmite (including psuedoboehmite) has a particular and identifiable crystal structure, and accordingly unique X-ray diffraction pattern, and as such, is distinguished from other aluminous materials including other hydrated aluminas such as ATH (aluminum trihydroxide) a common precursor material used herein for the fabrication of boehmite particulate materials.


The aspect ratio, defined as the ratio of the longest dimension to the next longest dimension perpendicular to the longest dimension, is generally not less than 2:1, and preferably not less than 3:1, 4:1, or 6:1. Indeed, certain embodiments have relatively elongated particles, such as not less than 9:1, 10:1, and in some cases, not less than 14:1. With particular reference to needle-shaped particles, the particles may be further characterized with reference to a secondary aspect ratio defined as the ratio of the second longest dimension to the third longest dimension. The secondary aspect ratio is generally not greater than 3:1, typically not greater than 2:1, or even 1.5:1, and oftentimes about 1:1. The secondary aspect ratio generally describes the cross-sectional geometry of the particles in a plane perpendicular to the longest dimension.


Platey or platelet-shaped particles generally have an elongated structure having the aspect ratios described above in connection with the needle-shaped particles. However, platelet-shaped particles generally have opposite major surfaces, the opposite major surfaces being generally planar and generally parallel to each other. In addition, the platelet-shaped particles may be characterized as having a secondary aspect ratio greater than that of needle-shaped particles, generally not less than about 3:1, such as not less than about 6:1, or even not less than 10:1. Typically, the shortest dimension or edge dimension, perpendicular to the opposite major surfaces or faces, is generally less than 50 nanometers.


Morphology of the boehmite particulate material may be further defined in terms of particle size, more particularly, average particle size. Here, the seeded boehmite particulate material, that is, boehmite formed through a seeding process (described in more detail below) has a relatively fine particle or crystallite size. Generally, the average particle size is not greater than about 1000 nanometers, and fall within a range of about 100 to 1000 nanometers. Other embodiments have even finer average particle sizes, such as not greater than about 800 nanometers, 600 nanometers, 500 nanometers, 400 nanometers, and even particles having an average particle size smaller than 300 nanometers, representing a fine particulate material.


As used herein, the “average particle size” is used to denote the average longest or length dimension of the particles. Due to the elongated morphology of the particles, conventional characterization technology is generally inadequate to measure average particle size, since characterization technology is generally based upon an assumption that the particles are spherical or near-spherical. Accordingly, average particle size was determined by taking multiple representative samples and physically measuring the particle sizes found in representative samples. Such samples may be taken by various characterization techniques, such as by scanning electron microscopy (SEM).


The present seeded boehmite particulate material has been found to have a fine average particle size, while oftentimes competing non-seeded based technologies are generally incapable of providing such fine average particle sizes. In this regard, it is noted that oftentimes in the literature, reported particle sizes are not set forth in the context of averages as in the present specification, but rather, in the context of nominal range of particle sizes derived from physical inspection of samples of the particulate material. Accordingly, the average particle size will lie within the reported range in the prior art, generally at about the arithmetic midpoint of the reported range, for the expected Gaussian particle size distribution. Stated alternatively, while non-seeded based technologies may report fine particle size, such fine sizing generally denotes the lower limit of an observed particle size distribution and not average particle size.


Likewise, in a similar manner, the above-reported aspect ratios generally correspond to the average aspect ratio taken from representative sampling, rather than upper or lower limits associated with the aspect ratios of the particulate material. Oftentimes in the literature, reported particle aspect ratios are not set forth in the context of averages as in the present specification, but rather, in the context of nominal range of aspect ratios derived from physical inspection of samples of the particulate material. Accordingly, the average aspect ratio will lie within the reported range in the prior art, generally at about the arithmetic midpoint of the reported range, for the expected Gaussian particle morphology distribution. Stated alternatively, while non-seeded based technologies may report aspect ratio, such data generally denotes the lower limit of an observed aspect ratio distribution and not average aspect ratio.


In addition to aspect ratio and average particle size of the particulate material, morphology of the particulate material may be further characterized in terms of specific surface area. Here, the commonly available BET technique was utilized to measure specific surface area of the particulate material. According to embodiments herein, the boehmite particulate material has a relatively high specific surface area, generally not less than about 10 m2/g, such as not less than about 50 m2/g, 70 m2/g, or not less than about 90 m2/g. Since specific surface area is a function of particle morphology as well as particle size, generally the specific surface area of embodiments was less than about 400 m2/g, such as less than about 350 or 300 m2/g.


Turning to the details of the processes by which the boehmite particulate material may be manufactured, generally ellipsoid, needle, or platelet-shaped boehmite particles are formed from a boehmite precursor, typically an aluminous material including bauxitic minerals, by hydrothermal treatment as generally described in the commonly owned patent described above, U.S. Pat. No. 4,797,139. More specifically, the boehmite particulate material may be formed by combining the boehmite precursor and boehmite seeds in suspension, exposing the suspension (alternatively sol or slurry) to heat treatment to cause conversion of the raw material into boehmite particulate material, further influenced by the boehmite seeds provided in suspension. Heating is generally carried out in an autogenous environment, that is, in an autoclave, such that an elevated pressure is generated during processing. The pH of the suspension is generally selected from a value of less than 7 or greater than 8, and the boehmite seed material has a particle size finer than about 0.5 microns. Generally, the seed particles are present in an amount greater than about 1% by weight of the boehmite precursor (calculated as Al2O3), and heating is carried out at a temperature greater than about 120° C., such as greater than about 125° C., or even greater than about 130° C., and at a pressure greater than about 85 psi, such as greater than about 90 psi, 100 psi, or even greater than about 110 psi.


The particulate material may be fabricated with extended hydrothermal conditions combined with relatively low seeding levels and acidic pH, resulting in preferential growth of boehmite along one axis or two axes. Longer hydrothermal treatment may be used to produce even longer and higher aspect ratio of the boehmite particles and/or larger particles in general.


Following heat treatment, such as by hydrothermal treatment, and boehmite conversion, the liquid content is generally removed, such as through an ultrafiltration process or by heat treatment to evaporate the remaining liquid. Thereafter, the resulting mass is generally crushed, such to 100 mesh. It is noted that the particulate size described herein generally describes the single crystallites formed through processing, rather than the aggregates which may remain in certain embodiments (e.g., for those products that call for and aggregated material).


According to data gathered by the present inventors, several variables may be modified during the processing of the boehmite raw material, to effect the desired morphology. These variables notably include the weight ratio, that is, the ratio of boehmite precursor to boehmite seed, the particular type or species of acid or base used during processing (as well as the relative pH level), and the temperature (which is directly proportional to pressure in an autogenous hydrothermal environment) of the system.


In particular, when the weight ratio is modified while holding the other variables constant, the shape and size of the particles forming the boehmite particulate material are modified. For example, when processing is carried at 180° C. for two hours in a 2 weight % nitric acid solution, a 90:10 ATH:boehmite seed ratio forms needle-shaped particles (ATH being a species of boehmite precursor). In contrast, when the ATH:boehmite seed ratio is reduced to a value of 80:20, the particles become more elliptically shaped. Still further, when the ratio is further reduced to 60:40, the particles become near-spherical. Accordingly, most typically the ratio of boehmite precursor to boehmite seeds is not less than about 60:40, such as not less than about 70:30 or 80:20. However, to ensure adequate seeding levels to promote the fine particulate morphology that is desired, the weight ratio of boehmite precursor to boehmite seeds is generally not greater than about 98:2. Based on the foregoing, an increase in weight ratio generally increases aspect ratio, while a decrease in weight ratio generally decreased aspect ratio.


Further, when the type of acid or base is modified, holding the other variables constant, the shape (e.g., aspect ratio) and size of the particles are affected. For example, when processing is carried out at 100° C. for two hours with an ATH:boehmite seed ratio of 90:10 in a 2 weight % nitric acid solution, the synthesized particles are generally needle-shaped, in contrast, when the acid is substituted with HCl at a content of 1 weight % or less, the synthesized particles are generally near spherical. When 2 weight % or higher of HCl is utilized, the synthesized particles become generally needle-shaped. At 1 weight % formic acid, the synthesized particles are platelet-shaped. Further, with use of a basic solution, such as 1 weight % KOH, the synthesized particles are platelet-shaped. If a mixture of acids and bases is utilized, such as 1 weight % KOH and 0.7 weight % nitric acid, the morphology of the synthesized particles is platelet-shaped.


Suitable acids and bases include mineral acids such as nitric acid, organic acids such as formic acid, halogen acids such as hydrochloric acid, and acidic salts such as aluminum nitrate and magnesium sulfate. Effective bases include, for example, amines including ammonia, alkali hydroxides such as potassium hydroxide, alkaline hydroxides such as calcium hydroxide, and basic salts.


Still further, when temperature is modified while holding other variables constant, typically changes are manifested in particle size. For example, when processing is carried out at an ATH:boehmite seed ratio of 90:10 in a 2 weight % nitric acid solution at 150° C. for two hours, the crystalline size from XRD (x-ray diffraction characterization) was found to be 115 Angstroms. However, at 160° C. the average particle size was found to be 143 Angstroms. Accordingly, as temperature is increased, particle size is also increased, representing a directly proportional relationship between particle size and temperature.


Example 1
Plate-Shaped Particle Synthesis

An autoclave was charged with 7.42 lb. of Hydral 710 aluminum trihydroxide purchased from Alcoa; 0.82 lb of boehmite obtained from SASOL under the name—Catapal B pseudoboehmite; 66.5 lb of deionized water; 0.037 lb potassium hydroxide; and 0.18 lb of 22 wt % nitric acid. The boehmite was pre-dispersed in 5 lb of the water and 0.18 lb of the acid before adding to the aluminum trihydroxide and the remaining water and potassium hydroxide.


The autoclave was heated to 185° C. over a 45 minute period and maintained at that temperature for 2 hours with stirring at 530 rpm. An autogenously generated pressure of about 163 psi was reached and maintained. Thereafter the boehmite dispersion was removed from the autoclave. After autoclave the pH of the sol was about 10. The liquid content was removed at a temperature of 65° C. The resultant mass was crushed to less than 100 mesh. The SSA of the resultant powder was about 62 m2/g.


Example 2
Needle-Shaped Particle Synthesis

An autoclave was charged with 250 g of Hydral 710 aluminum trihydroxide purchased from Alcoa; 25 g of boehmite obtained from SASOL under the name—Catapal B pseudoboehmite; 1000 g of deionized water; and 34.7 g of 18% nitric acid. The boehmite was pre-dispersed in 100 g of the water and 6.9 g of the acid before adding to the aluminum trihydroxide and the remaining water and acid.


The autoclave was heated to 180° C. over a 45 minute period and maintained at that temperature for 2 hours with stirring at 530 rpm. An autogenously generated pressure of about 150 psi was reached and maintained. Thereafter the boehmite dispersion was removed from the autoclave. After autoclave the pH of the sol was about 3. The liquid content was removed at a temperature of 95° C. The resultant mass was crushed to less than 100 mesh. The SSA of the resultant powder was about 120 m2/g.


Example 3
Ellipsoid Shaped Particle Synthesis

An autoclave was charged with 220 g of Hydral 710 aluminum trihydroxide purchased from Alcoa; 55 g of boehmite obtained from SASOL under the name—Catapal B pseudoboehmite; 1000 g of deionized water; and 21.4 g of 18% nitric acid. The boehmite was pre-dispersed in 100 g of the water and 15.3 g of the acid before adding to the aluminum trihydroxide and the remaining water and acid.


The autoclave was heated to 172° C. over a 45 minute period and maintained at that temperature for 3 hours with stirring at 530 rpm. An autogenously generated pressure of about 120 psi was reached and maintained. Thereafter the boehmite dispersion was removed from the autoclave. After autoclave the pH of the sol was about 4. The liquid content was removed at a temperature of 95° C. The resultant mass was crushed to less than 100 mesh. The SSA of the resultant powder was about 135 m2/g.


Example 4
Near Spherical Particle Synthesis

An autoclave was charged with 165 g of Hydral 710 aluminum trihydroxide purchased from Alcoa; 110 g of boehmite obtained from SASOL under the name—Catapal B pseudoboehmite; 1000 g of deionized water; and 35.2 g of 18% nitric acid. The boehmite was pre-dispersed in 100 g of the water and 30.6 g of the acid before adding to the aluminum trihydroxide and the remaining water and acid.


The autoclave was heated to 160° C. over a 45 minute period and maintained at that temperature for 2.5 hours with stirring at 530 rpm. An autogenously generated pressure of about 100 psi was reached and maintained. Thereafter the boehmite dispersion was removed from the autoclave. After autoclave the pH of the sol was about 3.5. The liquid content was removed at a temperature of 95° C. The resultant mass was crushed to less than 100 mesh. The SSA of the resultant powder was about 196 m2/g.


According to embodiments described herein, a relatively powerful and flexible process methodology may be employed to engineer desired morphologies into the final boehmite product. Of particular significance, embodiments utilize seeded processing resulting in a cost-effective processing route with a high degree of process control which may result in desired fine average particle sizes as well as controlled particle size distributions. The combination of (i) identifying and controlling key variables in the process methodology, such as weight ratio, acid and base species and temperature, and (ii) seeding-based technology is of particular significance, providing repeatable and controllable processing of desired boehmite particulate material morphologies.


Additional characterization studies were carried out to more precisely understand the effect of seeding on particle morphology. FIG. 2 illustrates needle shaped particles as discussed above. FIG. 2 reveals that the seeded particles have a nodular structure, in that the particles are ‘bumpy’ or ‘knotty’ and have a generally rough outer texture. Further characterization was carried out by TEM analysis to discover that what appears by SEM to be generally monolithic particles, the particles are actually formed of tight, dense assemblies of platelet particles as shown in FIG. 5. The particles have a controlled aggregate morphology, in that the aggregates display a level of uniformity beyond conventional aggregate technologies. It is understood that the controlled aggregate structures form the nodular structure, and are unique to the seeded approach discussed above.


It is recognized that non-seeded approaches have been found to form particulate material, including approaches that decompose raw materials through consumption of an aluminum salt, such as aluminum nitrate or aluminum sulfate. However, these metal salt decomposition approaches form morphologically distinct particulates, that are devoid of the seeded morphology, notably lacking the nodular structure. FIG. 6 is representative of such materials, showing non-seeded morphology that has a smooth or hair-like outer surface texture. Examples of such non-seeded approaches include those disclosed in U.S. Pat. No. 3,108,888 and U.S. Pat. No. 2,915,475, and thesis paper Preparation and Characterization of Acicular Particles and Thin Films of Aluminum Oxide, by Raymond M. Brusasco, May 1987. The material shown in FIG. 6 was formed the process disclosed in JP2003-054941.


Aspects of the present invention enable utilization of the boehmite particulate material in a wide variety of applications, such as a filler in specialty coatings as well as in polymer products. Indeed, the particulate material may be individually and uniformly dispersed within solvents (particularly including polar solvents), and/or polymers without forming aggregates by conventional compounding processes. In addition, the boehmite particulate material may be individually and uniformly dispersed with a non-polar solvents, and/or polymers without forming aggregates by utilizing conventional dispersing agents such as silane coupling agents. Notably, the seeded morphology, having the above-disclosed nodular structure, is understood to have particular properties in the context as a filler in a matrix material, such that the particles have improved adhesion within the matrix due to the seeded nature of the particles. Of course, particular applications of the boehmite particulate material are not so limited and may find commercial use in a variety of applications.


While the invention has been illustrated and described in the context of specific embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the scope of the present invention. For example, additional or equivalent substitutes can be provided and additional or equivalent production steps can be employed. As such, further modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the scope of the invention as defined by the following claims.

Claims
  • 1. A method for forming boehmite particulate material, comprising: providing a boehmite precursor and boehmite seeds in a suspension; andheat treating the suspension to convert the boehmite precursor into boehmite particulate material, the boehmite particulate material having an aspect ratio of not less than 3:1, wherein the boehmite seeds provide a nucleation site for the growth of the boehmite particulate material.
  • 2. The method of claim 1, wherein heat treating is carried out at a temperature greater than 120° C.
  • 3. The method of claim 2, wherein heat treating is carried out at a temperature greater than 130° C.
  • 4. The method of claim 1, wherein heat treating is carried out at a pressure greater than 85 psi.
  • 5. The method of claim 1, wherein a weight ratio of boehmite precursor to boehmite seeds is not less 60:40.
  • 6. The method of claim 5, wherein the weight ratio is not less than 80:20.
  • 7. The method of claim 6, wherein a weight ratio of boehmite precursor to boehmite seeds is not greater than 98:2.
  • 8. The method of claim 1, wherein the boehmite particulate material has an average particle size of not greater than 1000 nm.
  • 9. The method of claim 1, further including setting at least one of heat treatment temperature, species of acid or base in the suspension, or weight ratio of boehmite precursor to boehmite seeds such that the boehmite particulate material has an aspect ratio of not less than 3:1 and an average particle size not greater than 1000 nm.
  • 10. The method of claim 9, wherein the acid or base is chosen from the group consisting of mineral acids, organic acids, halogen acids, acidic salts, amines, alkali hydroxides, alkaline hydroxides, and basic salts.
  • 11. The method of claim 9, wherein setting includes modifying at least one of heat treatment temperature, species of acid or base, or ratio of boehmite precursor to boehmite seeds.
  • 12. The method of claim 11, wherein the ratio of boehmite precursor to boehmite seeds is increased to increase aspect ratio, or decreased to decrease aspect ratio.
  • 13. The method of claim 11, wherein the heat treatment temperature is increased to increase particle size, or decreased to reduce particle size.
  • 14. The method of claim 11, wherein the species of acid or base is modified to modify aspect ratio.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation-in-part application of U.S. patent application Ser. No. 10/845,764, filed May 14, 2004, now abandoned which is (i) a continuation-in-part application of U.S. patent application Ser. No. 10/414,590, filed Apr. 16, 2003, now U.S. Pat. No. 7,189,775, which in turn is a non-provisional application of U.S. Provisional Application 60/374,014 filed Apr. 19, 2002, and (ii) a continuation-in-part application of U.S. patent application Ser. No. 10/823,400, filed Apr. 13, 2004. Priority to the foregoing applications is hereby claimed, and the subject matter thereof hereby incorporated by reference.

US Referenced Citations (108)
Number Name Date Kind
2763620 Bugosh Sep 1956 A
2915475 Bugosh Dec 1959 A
3108888 Bugosh Oct 1963 A
3321272 Kerr May 1967 A
3357791 Napier Dec 1967 A
3385663 Hughes May 1968 A
3387447 Trammell et al. Jun 1968 A
3814782 Hayes et al. Jun 1974 A
3842111 Meyer-Simon et al. Oct 1974 A
3853688 D'Ambrosio Dec 1974 A
3865917 Galasso et al. Feb 1975 A
3873489 Thurn et al. Mar 1975 A
3950180 Kato Apr 1976 A
3978103 Meyer-Simon et al. Aug 1976 A
3997581 Pletka et al. Dec 1976 A
4002594 Fetterman Jan 1977 A
4105465 Berger Aug 1978 A
4117105 Hertzengerg et al. Sep 1978 A
4120943 Iwaisako et al. Oct 1978 A
4344928 Dupin et al. Aug 1982 A
4377418 Birchall et al. Mar 1983 A
4386185 Macdonell et al. May 1983 A
4492682 Trebillion Jan 1985 A
4525494 Andy Jun 1985 A
4539365 Rhee Sep 1985 A
4558102 Miyata Dec 1985 A
4623738 Sugerman et al. Nov 1986 A
4632364 Smith Dec 1986 A
4716029 Oguri et al. Dec 1987 A
4769179 Kato et al. Sep 1988 A
4797139 Bauer Jan 1989 A
4891127 Murrel et al. Jan 1990 A
4946666 Brown Aug 1990 A
4992199 Meyer et al. Feb 1991 A
5155085 Hamano et al. Oct 1992 A
5194243 Pearson et al. Mar 1993 A
5286290 Risley Feb 1994 A
5302368 Harato et al. Apr 1994 A
5306680 Fukuda Apr 1994 A
5318628 Matijevic et al. Jun 1994 A
5321055 Slocum Jun 1994 A
5332777 Goetz et al. Jul 1994 A
5344489 Matijevic et al. Sep 1994 A
5401703 Fukuda Mar 1995 A
5413985 Thome et al. May 1995 A
5445807 Pearson Aug 1995 A
5508016 Yamanishi et al. Apr 1996 A
5527851 Barron et al. Jun 1996 A
5550180 Elsik et al. Aug 1996 A
5580914 Falla et al. Dec 1996 A
5580919 Agostini et al. Dec 1996 A
5583245 Parker et al. Dec 1996 A
5663396 Musleve et al. Sep 1997 A
5684171 Wideman et al. Nov 1997 A
5684172 Wideman et al. Nov 1997 A
5696197 Smith et al. Dec 1997 A
5707716 Yoshino et al. Jan 1998 A
5723529 Bernard et al. Mar 1998 A
5849827 Boediger et al. Dec 1998 A
5900449 Custodero et al. May 1999 A
5955142 Yoshino et al. Sep 1999 A
5962124 Yoshino et al. Oct 1999 A
5989515 Watanabe et al. Nov 1999 A
6017632 Pinnavaia et al. Jan 2000 A
6143816 Prescher et al. Nov 2000 A
6156835 Anderson et al. Dec 2000 A
6203695 Harle et al. Mar 2001 B1
6403007 Kido et al. Jun 2002 B1
6413308 Xu et al. Jul 2002 B1
6417286 Agostini et al. Jul 2002 B1
6440187 Kasai et al. Aug 2002 B1
6440552 Kajihara et al. Aug 2002 B1
6485656 Meyer et al. Nov 2002 B1
6486254 Barbee et al. Nov 2002 B1
6534584 Wideman et al. Mar 2003 B2
6576324 Yoshino et al. Jun 2003 B2
6610261 Custodero et al. Aug 2003 B1
6635700 Cruse et al. Oct 2003 B2
6646026 Fan et al. Nov 2003 B2
6648959 Fischer et al. Nov 2003 B1
6653387 Causa et al. Nov 2003 B2
6689432 Kitamura et al. Feb 2004 B2
6706660 Park Mar 2004 B2
6747087 Custodero et al. Jun 2004 B2
6841207 Burch et al. Jan 2005 B2
6858665 Larson Feb 2005 B2
6872444 McDonald et al. Mar 2005 B2
6924011 Van Aert et al. Aug 2005 B2
7056585 Mishima et al. Jun 2006 B2
7189775 Tang et al. Mar 2007 B2
7211612 Kikuchi May 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7531161 Tang et al. May 2009 B2
20020004549 Custodero et al. Jan 2002 A1
20020169243 Nippa Nov 2002 A1
20030197300 Tang et al. Oct 2003 A1
20030202923 Custodero et al. Oct 2003 A1
20040030017 Simonot et al. Feb 2004 A1
20040120904 Lye et al. Jun 2004 A1
20040265219 Bauer et al. Dec 2004 A1
20050124745 Bauer et al. Jun 2005 A1
20050227000 Bauer et al. Oct 2005 A1
20050267238 Mutin Dec 2005 A1
20060104895 Bauer et al. May 2006 A1
20060106129 Gernon et al. May 2006 A1
20060148955 Guiselin et al. Jul 2006 A1
20070104952 Bianchi et al. May 2007 A1
20080031808 Bauer et al. Feb 2008 A1
Foreign Referenced Citations (71)
Number Date Country
1237146 Dec 1999 CN
1266020 Sep 2000 CN
195426 May 1982 CS
956535 Jan 1957 DE
2163678 Jul 1973 DE
2408122 Aug 1974 DE
2952666 Jul 1980 DE
0 038 620 Oct 1981 EP
0 108 968 May 1984 EP
0 304 721 Mar 1989 EP
0 563 653 Oct 1993 EP
0 667 405 Aug 1995 EP
0 501 227 Dec 1995 EP
0 735 001 Oct 1996 EP
0 885 844 Dec 1998 EP
0 896 021 Feb 1999 EP
1 225 200 Jul 2002 EP
1 256 599 Nov 2002 EP
1 323 775 Jul 2003 EP
0 697 432 Oct 2003 EP
1 000 965 Oct 2003 EP
0 807 603 Dec 2003 EP
1 112 961 Sep 2004 EP
0736392 Oct 2006 EP
1189304 Apr 1970 GB
2248841 Apr 1992 GB
26758 Sep 1983 HU
45-032530 Oct 1970 JP
55-116622 Sep 1980 JP
56-009427 Jan 1981 JP
0 015 196 Apr 1982 JP
58-026029 Feb 1983 JP
58-1865434 Oct 1983 JP
59-193949 Nov 1984 JP
61-179264 Aug 1986 JP
62-030133 Feb 1987 JP
63-147820 Jun 1988 JP
63-147821 Jun 1988 JP
05-279019 Oct 1993 JP
63-22243 Nov 1994 JP
7-18174 Jan 1995 JP
09-208809 Aug 1997 JP
9-511258 Nov 1997 JP
200-239014 Sep 2000 JP
2001-058818 Mar 2001 JP
2001-180930 Jul 2001 JP
2001207077 Jul 2001 JP
2001-261976 Sep 2001 JP
2003-002642 Jan 2003 JP
2003-054941 Feb 2003 JP
2003-107206 Apr 2003 JP
2003-238150 Aug 2003 JP
2004-051390 Feb 2004 JP
2004-59643 Feb 2004 JP
264064 Jul 1970 SU
WO 9511270 Apr 1995 WO
WO 9723566 Jul 1997 WO
WO 9814426 Apr 1998 WO
9935089 Jul 1999 WO
WO 01088265 Nov 2001 WO
WO 03089508 Oct 2003 WO
WO 2004016630 Feb 2004 WO
WO 2004056915 Jul 2004 WO
WO 2004090023 Oct 2004 WO
WO 2005100244 Oct 2005 WO
WO 2005100491 Oct 2005 WO
WO 2006002993 Jan 2006 WO
WO 2006049863 May 2006 WO
WO 2006060206 Jun 2006 WO
WO 2006060468 Jun 2006 WO
WO 2007056404 May 2007 WO
Related Publications (1)
Number Date Country
20080031808 A1 Feb 2008 US
Provisional Applications (1)
Number Date Country
60374014 Apr 2002 US
Continuation in Parts (3)
Number Date Country
Parent 10845764 May 2004 US
Child 11834527 US
Parent 10823400 Apr 2004 US
Child 10845764 US
Parent 10414590 Apr 2003 US
Child 10823400 US