Seeding system

Information

  • Patent Grant
  • 11933651
  • Patent Number
    11,933,651
  • Date Filed
    Tuesday, March 9, 2021
    3 years ago
  • Date Issued
    Tuesday, March 19, 2024
    a month ago
Abstract
A seeding system includes a commodity tank configured to store a commodity, the commodity tank having an outlet. A meter has a meter inlet at the outlet of the commodity tank, a meter outlet, and a metering device between the meter inlet and the meter outlet. A manifold has a commodity inlet at the meter outlet, a first shoot having a first air inlet and a first manifold outlet, and a second shoot having a second air inlet and a second manifold outlet. A valve is positioned upstream of the first and second air inlets and configured to selectively direct an airflow to the first air inlet and to selectively direct the airflow to the second air inlet. Each of the first shoot and the second shoot are in selective communication with the commodity inlet to receive the commodity therefrom.
Description
BACKGROUND

The present disclosure relates to a seeding and planting system and more particularly to a metering and distribution system of the seeding and planting system.


SUMMARY

Current seeding practices tend to involve one of two types of seeding systems: planters and air seeders. Planters generally singulate or individually meter seeds prior to planting and are typically used to disperse seeds where precise placement is required for maximum yield and the seeding rate permits use of singulating technologies. Air seeders generally meter seeds volumetrically and are typically used in high rate seeding applications and where precise seed placement is of less importance or not practical due to the high rates.


In one embodiment, a seeding system includes a commodity tank configured to store a commodity. The commodity tank has a first outlet and a second outlet. A volumetric meter has a meter inlet at the first outlet of the commodity tank, a meter outlet, and a metering device between the meter inlet and the meter outlet. A manifold has a commodity inlet at the meter outlet of the volumetric meter, an air inlet, and a manifold outlet. A first dispersion device having a plurality of outlets and an inlet in communication with the manifold outlet. A second dispersion device has a plurality of outlets and an inlet in communication with the second outlet of the commodity tank. The second outlet of the commodity tank bypasses the volumetric meter.


In another embodiment, a seeding system having a commodity tank configured to store a commodity. The commodity tank has an outlet. A meter has a meter inlet at the outlet of the commodity tank, a meter outlet, and a metering device between the meter inlet and the meter outlet. A manifold has a commodity inlet at the meter outlet, a first shoot having a first air inlet and a first manifold outlet, and a second shoot having a second air inlet and a second manifold outlet. A valve is positioned upstream of the first and second air inlets and configured to direct an airflow to one of the first air inlet or the second air inlet. Each of the first shoot and the second shoot are in selective communication with the commodity inlet to receive the commodity therefrom.


In yet another embodiment, an air distribution manifold for dispensing product into an airstream includes a manifold housing defining a commodity inlet, a first shoot having a first air inlet, a first manifold outlet and a first passageway extending therebetween, and a second shoot having a second air inlet, a second manifold outlet and a second passageway extending therebetween. The second passageway includes a container configured to hold the commodity, a first portion extending downward from the second air inlet to the container and a second portion extending upward from the container to the second manifold outlet.


Other features and aspects of the disclosure will become apparent by consideration of the following detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a seeder.



FIG. 2 is a schematic diagram illustrating a metering and distribution system having three shoots.



FIG. 3 is a schematic diagram illustrating a metering and distribution system having a metering system in a commodity tank.



FIG. 4 is a schematic diagram illustrating a metering and distribution system having the metering system in the commodity tank and a pass through in a second commodity tank.



FIG. 5 is a schematic diagram illustrating a metering and distribution system having a manifold with a seed-on-demand system.



FIG. 6 is a cross-sectional side view through the manifold of FIG. 5.



FIG. 7 is a side view of a lower shoot of the manifold of FIG. 6.





Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of supporting other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


DETAILED DESCRIPTION

As shown in FIG. 1, seeding machine 2 comprises a seed cart 13 and a tilling implement 17. The seed cart 13 is typically towed by a tractor through a field to be seeded. The seed cart 13 has a frame supporting a number of storage tanks 18 with wheels 61 rotatably mounted to the frame. The product contained in the storage tanks 18 may include seed, fertilizer, or other agricultural particles. Each storage tank 18 is provided with a volumetric meter 14. Each volumetric meter 14 is positioned below the respective storage tank 18 and receives product therefrom for controlled feeding of the product into a pneumatic distribution system 21.


The tilling implement 17, towed behind the seed cart 13, comprises a frame to which ground openers 29A, 29B are mounted. The tilling implement 17 may also include seed row finishing equipment such as packers 33. Located below each volumetric meter 14 is a primary air distribution manifold 25, part of the pneumatic distribution system 21. The pneumatic distribution system 21 distributes metered product from the storage tanks 18 through shoots and to a rank associated with one of the ground openers 29A, 29B. The pneumatic distribution system 21 comprises a blower or fan 37 driven by a motor which directs a stream of pressurized air through an adjustable damper 41, which thereafter directs the air stream into a top shoot portion directed into an upper shoot of first tubes 45 and a bottom shoot portion directed into a bottom shoot of first tubes 49. FIG. 1 illustrates a double shoot air seeder wherein a first product contained in one of the storage tanks 18 is directed to the top shoot portion 45 of the air stream and the second product contained in the other of the storage tanks 18 is directed to the bottom shoot portion 49 of the air stream. Triple shot applications in which three products are added to three different shoot portions of the air stream are also utilized in certain situations, as shown in FIG. 2.



FIG. 2 schematically illustrates a seed metering system 10 along three shoot portions or main conduits 45, 49, 53 for use in a planting operation, such as seeding a field or dispersing agricultural particles (e.g., fertilizer, etc.). The seed metering system 10 can be used with or as a part of the seeding machine 2.


Each volumetric meter 14A, 14B, 14C (e.g., one volumetric meter 14A, 14B, 14C associated with each of the three commodity or storage tanks 18A, 18B, and 18C, respectively) is configured to receive and meter the commodity (i.e., seeds, fertilizer, or other agricultural particles) from the storage tanks 18A, 18B, and 18C. The storage tanks 18A, 18B, 18C may be in the form of a tank, hopper, air cart, mobile seed storage device, or other bulk container as previously described and illustrated in FIG. 1. Further, while three storage tanks 18A, 18B, 18C are shown, more or less tanks 18 may be located on the seed cart 13. As shown, the three storage tanks 18A, 18B, 18C may be sized differently and may be used for different purposes based on the desired result. For example, a smaller tank (such as tank 18C) may be used for smaller seeds such as canola. On the other hand, larger tanks (such as tank 18B) may be used for larger seeds or seeds that require greater volumetric rates of seeding. Each of the tanks 18A, 18B, 18C is configured to provide the commodity to one of the three conduits or shoots 45, 49, 53 via an air distribution manifold 25 and the respective volumetric meter 14A, 14B, 14C.


The volumetric meters 14A, 14B, 14C control the amount or volume of seeds or other agricultural particles permitted to exit the storage tanks 18A, 18B, 18C over a set period of time and may each include multiple roller segments or rotating members 20, each capable of rotating at a constant rotational velocity along a common shaft. The volumetric meters 14A, 14B, 14C are located upstream of and are operable to provide a known, constant volume of seeds or particles to the conduits 45, 49, 53 via the manifolds 25. Gates 16 associated with each volumetric meter 14A, 14B, 14C or each roller segment 20 are operable to open or close to vary the amount of seeds or agricultural particles which reach the manifold 25 and the conduits 45, 49, 53. Alternatively, each roller segment 20 of the volumetric meters 14A, 14B, 14C may be individually driven, and therefore may be individually halted to vary the amount of seeds or agricultural particles which reach the manifold 25.


The manifold 25 is a structure located at the base of each volumetric meter 14A, 14B, 14C, the structure having a manifold housing 26. The manifold housing 26 defines three passageways (per roller segment 20) extending therethrough, a first passageway 110 associated with the upper shoot 45, a second passageway 112 associated with the middle shoot 49, and a third passageway 114 associated with the lower shoot 53. As each volumetric meter 14A, 14B, 14C may include a plurality of roller segments 20 (i.e., extending into the page of FIG. 2), the manifold housing 26 defines a plurality of first, second, and third passageways 110, 112, 114 extending into the page. For simplicity, reference will be made to the passageways 110, 112, 114 of a single meter roller segment 20.


Each commodity tank 18A, 18B, 18C includes a similar manifold 25, except as described below (e.g., FIGS. 5-7). In some embodiments, the seed metering system 10 may include only two shoot portions 45, 49 (an upper shoot and a lower shoot) and the manifold would only define two passageways 110, 112. It is to be understood that the terms “upper,” “middle,” and “lower” are used as a naming convention to differentiate the placement of the shoots 45, 49, 53 within the figures, and they may be reordered except as otherwise described. The manifold 25 includes a gate having gate elements (similar to gate elements 124, 126, 128 shown in FIG. 6) extending between the various passageways 110, 112, 114. The gate elements 124, 126, 128 may be formed as a single component or multiple components that move with one another or relative to one another to direct the flow of the commodity. When a first gate element 124 is in a first position, it directs the commodity to the first passageway 110. When the first gate element 124 is in a second position, a second gate element 126 is in a first position and the two gate elements 124, 126 collectively direct the commodity around the first passageway 110 and to the second passageway 112. With a third shoot 53, the second gate element 126 is switchable from the first position to a second position and a third gate element 128 is in a first position to direct the commodity past the second passageway 112 to the third passageway 114. Once within the desired passageway 110, 112, 114, an airflow or air current moves the commodity through the conduit 45, 49, 53. An example of such a system is described in U.S. Pat. No. 6,213,690 assigned to Deere and Co., the entire contents of which are herein incorporated by reference.


A fan 37A, 37B, 37C is located at one end of the conduits 45, 49, 53 and is operable to provide the air current to the corresponding conduits 45, 49, 53 and throughout the remainder of the metering system 10. As shown, the first conduit 45 utilizes a first fan 37A, the second conduit utilizes a second fan 37B, and the third conduit 53 utilizes a third fan 37C. Alternatively, a single fan may provide air currents to multiple ones of the conduits 45, 49, 53.


The main conduits 45, 49, 53 terminate at distribution or dispersion devices or units 40A, 40B, 40C which are located between the volumetric meter 14A, 14B, 14C and the ground, where the seeds or particles are deposited. The dispersion units 40A, 40B, 40C as shown each have an inlet 30 coupled to the respective main conduit 45, 49, 53 a collection volume, and a plurality of outlets 32, which lead to secondary conduits 36A, 36B, 36C. Each secondary conduit 36A, 36B, 36C leads to an outlet conduit 46A, 46B. As the seeds or agricultural particles from a single conduit (i.e., the conduit 45, 49, 53) are dispersed among multiple conduits (i.e., the secondary conduits 36A, 36B, 36C), the secondary conduits 36A, 36B, 36C may be of lesser size or area than the associated conduits 45, 49, 53.


While the commodities (i.e., seeds, fertilizer, and other agricultural particles) in the upper and middle shoots 49, 45 are not further metered (i.e., after the volumetric meters 14A, 14B, 14C), any seeds in the lower shoot 53 are further metered by a singulating meter 22. Each secondary conduit 36C extends from the dispersion unit 40C to a mini-hopper 38. The mini-hopper 38 receives seeds from the third dispersion unit 40C via the secondary conduit 36C. The mini-hopper 38 is located directly upstream of the singulating meter 22 and feeds the seeds from the secondary conduit 36C into the meter 22. The mini-hopper 38 is additionally capable of storing excess seeds, not yet metered by the singulating meter 22. Therefore, the seeds may pass through the volumetric meter 14C at a greater rate than the seeds are singulated through the singulating meters 22. This ensures that the singulating meter 22 is consistently stocked with seeds for singulating and subsequently planting. The mini-hopper 38 may be gravity-assisted, with an inlet 34A from the secondary conduit 36C located at a height above the outlet 34B to the singulating meter 22. At the height of the inlet 34A or at a height between the inlet 34A and the outlet 34B, the mini-hopper 38 is provided with one or more openings 70. The openings 70 are sized smaller than the seeds such that seeds are not capable of traversing the openings 70. When not blocked by seeds, the openings 70 serve as an outlet for the air from the fan 37B through the conduit 36C.


The singulating meter 22 is operable to singulate or individually meter seeds and is in communication with the mini-hopper 38 via the mini-hopper outlet 34B. The singulating meter 22 may include a rotating singulating disk (not shown) with multiple orifices, each sized to accept a single seed, and a doubles eliminator (not shown) provided to ensure a one-to-one ratio of seed to each aperture.


At an outlet end, the singulating meter 22 is connected to the conduit 46B. A seed sensor (not shown) may be positioned at the outlet of the singulating meter 22 to measure or calculate the number of seeds or rate of seeding (i.e., number of seeds per time increment) from the singulating meter 22 and the bypass conduit 26 around the singulating meter 22. This information can be stored and relayed from a control unit to an operator for quality assurance. The conduit 46B provides a path for the singulated seeds to reach the ground and may be in the form of a tube, hollow shaft, channel, belt, or similar means of conveyance suitable to transfer seed, fertilizer, or other agricultural particles to the ground. More specifically, the conduit 46B may deposit or plant the seeds in a furrow created by one of the ground openers 29A (FIG. 1), such as a seed shank. In other constructions, the opener may include one or two opener disks 29B.


In operation, the fertilizer in the first tank 18A is volumetrically metered via the roller segments 20 of the meter 14A and to, for example, the first passageway 110 of the manifold. Airflow from the first fan 37A carries the fertilizer through the first shoot 45 and to the dispersion unit 40A where the fertilizer is divided into multiple secondary conduits 36A. From the secondary conduits 36A, the fertilizer is provided to the ground via the outlet conduit 46A.


The seeds in the second tank 18B are volumetrically metered via the roller segments 20 of the meter 14B and may be directed to the second passageway 112 or the third passageway 114. If the seeds are directed to the second passageway 112, airflow from the second fan 37B carries the seeds through the second shoot 49 and to the dispersion unit 40B where the seeds are divided into multiple secondary conduits 36B. From the secondary conduits 36B, the seeds are provided to the ground via the outlet conduit 46B.


If the seeds are directed to the third passageway 114, airflow from the third fan 37C carries the seeds through the third shoot 53 and to the dispersion unit 40C where the seeds are divided into multiple secondary conduits 36C. From the secondary conduits 36C, the seeds are provided to the mini-hopper 38. The singulating meter 22 singulates the seeds to precisely carry single seeds at a predetermined rate from the mini-hopper 38 to the outlet conduit 46B, and from the outlet conduit 46B to the ground.


Fertilizer in the third tank may be directed to the second passageway 112 of the manifold 25, thereby following the path taken by the seeds in the second shoot 49, as described above.



FIG. 3 illustrates a modified seeding system 10. As shown in FIG. 3, the second commodity tank 18B (or another tank containing seeds) may be provided directly with a seed-on-demand distribution system 72. The distribution system 72 is mounted within the commodity tank 18B and extends between an inlet 74 and an outlet 76 of the tank 18B. The inlet 74 and the outlet 76 are formed in the sidewalls of the commodity tank 18B. A fan 37D is positioned upstream of the inlet 74 to provide an airflow through the inlet 74 and into the commodity tank 18B. The distribution system 72 includes a structure between the inlet 74 and the outlet 76 and positioned within the commodity tank 18B. The structure is defined by a downward extending inlet tube 66 (i.e., extending downward from the inlet at the sidewall), an upward extending outlet tube 68 (i.e., extending upward toward the outlet at the sidewall), and a bridge 52 connecting the inlet tube 66 and the outlet tube 68. The inlet tube 66 is mounted at the inlet 72 of the commodity tank 18B and the outlet tube 68 is mounted at the outlet 74 of the commodity tank 18B. The bridge 52 is a structure that spans above the inlet tube 66 and the outlet tube 68 to provide a sheltered region between the inlet and outlet tubes 66, 68 and below the bridge 52. The bridge 52 prevents or limits the weight of the seeds above the bridge 52 from applying a force on the seeds within the sheltered region. The outlet 76 of the distribution system 72 provides the seeds directly or indirectly to the dispersion unit 40C.


Although the manifolds 25 in FIG. 3 are shown with three shoots 45, 49, 53, the manifolds 25 may otherwise be formed of two shoots 45, 49, such that the only path to the third dispersion unit 40C is through the seed-on-demand distribution system 72.


With the inclusion of the seed-on-demand distribution system 72 in the commodity tank 18B, the commodity tank 18B includes two distinct outlets 76, 80 for the seeds. The first outlet 80 directs the seeds through the volumetric meter 14B and to the manifold 25. The second outlet 76 is positioned upstream of the first outlet 80 such that seeds that pass through the second outlet 76 are not volumetrically metered, but are instead selectively picked up by the airflow generated by the fan 37D based on the air pressure in the conduit 53, and more specifically based on the air pressure in the various secondary conduits 36C. In this way, seeds passing through the second outlet 76 exit the commodity tank 18B, bypassing the volumetric meter 14B.


When it is desired to singulate seeds via the singulating meter 22, the volumetric meter 14B at the respective tank 18B is not used such that seeds do not exit the commodity tank 18B through the first outlet 80. Instead, the seeds are provided through the second outlet 76 at the seed-on-demand distribution system 72. An airflow path from the seed outlet 76 of the distribution device 72 extends from the seed outlet 76, through the third shoot 53, and to multiple secondary conduits 36C and mini-hoppers 38 via the distribution device 40C. The airflow path terminates at the opening 70 in the mini-hopper, through which air flows to the environment. When the opening 70 is covered by seeds within the mini-hopper 38, the airflow entering the mini-hopper 38 lacks an outlet, thereby building up pressure within the respective secondary line 36C. This prevents seeds from entering a full mini-hopper 38. When all of the mini-hoppers 38 (the mini-hoppers associated with each of the secondary conduits 36C) are full or at a predetermined fill limit, the pressure built up into the primary conduit or shoot 53 prevents seeds from exiting the commodity tank 36C at the second outlet 76. A pressure sensor (not shown) may be positioned in the primary conduit 53 to measure the air pressure therein. A controller may selectively turn off the fan 37D in response to a high pressure threshold indicating that the mini-hoppers 38 are full or at the predetermined fill limit.


The seed-on-demand distribution system 72 may be otherwise or additionally provided on other tanks such as the first tank 18A and/or the third tank 18C. As shown in FIG. 4, each commodity tank 18A, 18B, 18C, or at least some of the first, second, and third commodity tanks 18A, 18B, 18C may be provided with inlets and outlets that are capable of supporting the seed-on-demand distribution system 72. As shown, the seed-on-demand distribution system 72 of FIG. 3 is likewise shown in FIG. 4, though the outlet (conduit 53 located directly downstream the outlet tube 68) of the distribution system 72 is routed through the third tank 18C, and more specifically through a channel or pass-through 84 in the third tank 18C. With respect to the third tank 18C, the pass-through 84 is a tube that extends from the inlet 86 of the third tank 18C to the outlet 88 of the third tank 18C without any metering occurring therein. The pass-through 72 is a closed tube that prevents the commodity in the respective tank (in this instance tank 18C, though also applying to tank 18A) from entering either the inlet 86 or the outlet 88 of the tank 18C. The commodity in the tank 18C can pass around the pass-through 84 to the volumetric meter 14C positioned below.


The seed-on-demand distribution system 72 and the pass-through 84 shown in FIG. 4 can be removable from the tanks 18A, 18B, 18C and switchable such that, for example, the third tank 18C is provided with the seed-on-demand distribution system 72 and the second tank 18B is provided with the pass-through 84. Therefore, the structure adjacent the tanks (i.e., the conduit from the fan 37D to the inlet of the second tank 18B, the conduit 53 between the outlet 76 of the second tank 18B and the inlet 86 of the third tank 18C, and the conduit 53 from the outlet 88 of the third tank 18C) can remain in place regardless of which tank 18B, 18C utilizes the seed-on-demand distribution system 72. The operation of the seed-on-demand distribution system 72 shown in FIG. 4 is similar to that described with respect to FIG. 3, though the seeds sent through the outlet 76 of the second tank 18B are routed through the pass-through 84 of the third tank 18C before continuing to the distribution system 40C.


All seed-on-demand distribution systems can be replaced by pass-through conduits 84 when there is no desire to singulate the commodity in any tank 18A, 18B, 18C. Alternatively or additionally, the fan 37D can be turned off in this situation.



FIGS. 5-7 illustrate an alternative seed-on-demand distribution system 100. In this embodiment, the manifold 25, and specifically the manifold housing 26 is provided with the seed-on demand distribution system 100. FIG. 5 illustrates an embodiment where only a single manifold 25 is provided with a seed-on-demand distribution system 100. In other embodiments, the system shown in FIGS. 5-7 could be implemented on a seeding system having seed-on-demand distribution systems 100 in each manifold.


With reference to FIG. 6, the manifold housing 26 of the second commodity tank 18B includes an upper shoot channel 110 (associated with the first shoot 45), a middle shoot channel 112 (associated with the second shoot 49), and a lower shoot channel 114 (associated with the third shoot 53). The upper shoot channel 110 includes an air inlet 120 and an air and commodity or manifold outlet 122. The upper shoot channel 110 is defined by the manifold housing 26 and extends between the air inlet 120 and the manifold outlet 122. Though referred to as an air inlet 120, the airflow entering the air inlet may further carry a commodity from an upstream commodity tank, such as the first tank 18A.


The upper shoot channel 110 further includes a commodity inlet 118 that selectively provides a commodity from the respective tank 18B and volumetric meter 14B positioned thereabove. The commodity inlet 118 is distinct from the air inlet 120. A gate 124 is movable between a plurality of positions to selectively provide the commodity from the commodity inlet 118 to the upper shoot channel 110 or to otherwise direct the commodity around and away from the upper shoot channel 110.


The middle shoot channel 112 includes an air inlet 134 and an air and commodity or manifold outlet 136. The middle shoot channel 112 is defined by the manifold housing and extends between the air inlet 134 and the manifold outlet 136. Similar to the air inlet 120 of the upper shoot channel 110, the airflow entering the air inlet 134 may further carry a commodity from an upstream commodity tank. A gate 126 may be integrally formed with the gate 124 of the upper shoot channel 110 and may be moveable with the gate 124. When the gate 124 directs the commodity away from the upper shoot channel 110, the gate 126 either directs the commodity to the middle shoot channel 112 or away from the middle shoot channel 112 and to the lower shoot channel 114.


The lower shoot channel 114 includes an air inlet 138 and an air and commodity or manifold outlet 140. The lower shoot channel 114 is defined by the manifold housing and extends between the air inlet 138 and the manifold outlet 140. The lower shoot channel 114 is dissimilar from the upper and middle shoot channels 110, 112. The lower shoot channel 114 is a seed-on demand distribution system 100 similar to the distribution system 72 described with reference to FIGS. 3-4, though positioned within the manifold housing 26 as the lower shoot channel 114. Therefore, the lower shoot channel 114 is not merely a hollow tube extending between the air inlet 138 and the manifold outlet 140 but instead includes a tubular inlet portion or first portion 152 that extends at a downward angle (i.e., in the gravitational direction) from the air inlet 138 toward a bowl or container 156 that collects seeds flowing down from the commodity inlet 138 at the top of the manifold housing 26, bypassing the upper and middle shoot channels 110, 112. A tubular outlet portion or second portion 154 extends at an upward angle (i.e., opposite the downward direction) from the bowl 156 to the manifold outlet 140.


When the gates 124, 126 direct the commodity away from the upper shoot channel 110 and middle shoot channel 112, the gate 128 directs the commodity to the lower shoot channel 114. The gate 128 may be integrally formed with one or both of the first and second gates 124, 126. For example, the gates 124, 126, 128 may collectively transition between three positions: a first position in which the commodity is directed to the upper shoot channel 110, a second position in which the commodity is directed to the middle shoot channel 112, and a third position in which the commodity is directed to the lower shoot channel 114.



FIG. 7 illustrates a side view of the lower shoot 114 of the manifold housing 26. Each shoot 110, 112, 114 includes multiple inlets 120, 134, 138 and outlets 122, 136, 140 and this is illustrated via the lower shoot 114, which, as shown, includes sixteen outlets 140, each outlet leading to its own primary conduit 53. The system illustrated in FIG. 5 only illustrates a single one of the primary conduits 53 and the system associated therewith.


A valve 142 is positioned at the air inlets 134, 138 of the middle and lower shoot channels 112, 114. The valve 142 includes an inlet 146 for receiving an airflow from the fan 37B. A first outlet connects to the air inlet 134 of the middle shoot 112 and a second outlet connects to the air inlet 138 of the lower shoot 114. The valve 142 includes a valve member 144 that is switchable between a first position and a second position. In the first position, the valve member 144 blocks the inlet 138 of the lower shoot 114 such that the airflow generated by the fan 37B is directed to the middle shoot 112. In the second position, the valve member 144 blocks the inlet 134 of the middle shoot 112 such that the airflow generated by the fan 37B is directed to the lower shoot 114. Therefore, the valve member 144 is placed in the first position when volumetric metering only is desired. When it is desirable to also singulate the seeds from the commodity tank 18B positioned above the manifold 25, the valve member 144 is placed in the second position. The valve member 144 may also have a third (neutral) position in which airflow is directed to both the middle and lower shoot channels 112, 114.


When the seed is directed to the lower shoot channel 114, from the commodity tank 18B, through the volumetric meter 14B and commodity inlet 118, and through the various gates 124, 126, 128, it is carried to the mini-hoppers 38 based on the pressure within the third primary line 53 as discussed above with respect to the seed-on-demand system 72.


Various features of the disclosure are set forth in the following claims.

Claims
  • 1. A seeding system comprising: a commodity tank configured to store a commodity, the commodity tank having an outlet;a meter having a meter inlet at the outlet of the commodity tank, a meter outlet, and a metering device between the meter inlet and the meter outlet;a manifold having a commodity inlet at the meter outlet, a first shoot having a first air inlet and a first manifold outlet, and a second shoot having a second air inlet and a second manifold outlet; anda valve positioned upstream of the first and second air inlets and configured to selectively direct an airflow to the first air inlet and to selectively direct the airflow to the second air inlet,wherein each of the first shoot and the second shoot is in selective communication with the commodity inlet to receive the commodity therefrom,wherein the first air inlet provides the airflow to the first shoot, and wherein the commodity inlet provides the commodity to the first shoot separate from the airflow, andwherein the second air inlet provides the airflow to the second shoot, and wherein the commodity inlet provides the commodity to the second shoot separate from the airflow.
  • 2. The seeding system of claim 1, further comprising a fan positioned upstream of the first and second air inlets and configured to generate the airflow.
  • 3. The seeding system of claim 1, wherein the manifold includes a manifold housing, wherein the first shoot and the second shoot are formed in the manifold housing.
  • 4. The seeding system of claim 1, wherein the second shoot includes a container configured to hold the commodity, wherein the second air inlet extends in a downward direction to the container, and wherein the second manifold outlet extends in an upward direction from the container.
  • 5. The seeding system of claim 4, further comprising a mini-hopper positioned downstream of the second manifold outlet, the mini-hopper configured to store the commodity.
  • 6. The seeding system of claim 5, further comprising a singulating meter positioned downstream of the mini-hopper, the singulating meter configured to singulate the commodity such that when the second shoot is in communication with the commodity inlet to receive the commodity therefrom, the commodity is singulated.
  • 7. The seeding system of claim 6, wherein the first manifold outlet bypasses the mini-hopper and the singulating meter such that when the first chute is in communication with the commodity inlet to receive the commodity therefrom, the commodity is not singulated.
  • 8. The seeding system of claim 1, wherein the first shoot is positioned above the second shoot such that the first shoot is positioned between the second shoot and the commodity inlet.
  • 9. The seeding system of claim 1, wherein the manifold further comprises a third shoot having a third air inlet and a third manifold outlet, wherein the third shoot is in selective communication with the commodity inlet to receive the commodity therefrom.
  • 10. The seeding system of claim 9, wherein the third shoot is positioned above the second shoot such that the third shoot is positioned between the second shoot and the commodity inlet.
  • 11. The seeding system of claim 1, wherein the valve includes a valve member switchable between a first position in which the valve member blocks the second air inlet and the airflow is directed to the first air inlet, and a second position in which the valve member blocks the first air inlet and the airflow is directed to the second air inlet.
  • 12. The seeding system of claim 1, wherein the second manifold outlet is one of a plurality of second manifold outlets that extend upward from a container defined by the manifold.
  • 13. The seeding system of claim 1, wherein the manifold further comprises a gate that selectively directs the commodity away from the first shoot and toward the second shoot.
  • 14. A seeding system comprising: a commodity tank configured to store a commodity, the commodity tank having an outlet;a meter having a meter inlet at the outlet of the commodity tank, a meter outlet, and a metering device between the meter inlet and the meter outlet;a manifold having a commodity inlet at the meter outlet, a first shoot having a first air inlet and a first manifold outlet, and a second shoot having a second air inlet and a second manifold outlet; anda blower configured to selectively direct an airflow to the first air inlet and to selectively direct the airflow to the second air inlet,wherein each of the first shoot and the second shoot is in selective communication with the commodity inlet to receive the commodity therefrom and separately in selective communication with the blower to receive the airflow therefrom.
  • 15. The seeding system of claim 14, wherein the second shoot includes a container configured to hold the commodity, wherein the second air inlet extends in a downward direction to the container, and wherein the second manifold outlet extends in an upward direction from the container.
  • 16. The seeding system of claim 15, further comprising a mini-hopper and a singulating meter positioned downstream of the second manifold outlet, wherein the mini-hopper is configured to store the commodity, wherein the singulating meter is configured to singulate the commodity such that when the second chute is in communication with the commodity inlet to receive the commodity therefrom, the commodity is singulated.
  • 17. The seeding system of claim 16, wherein the first manifold outlet bypasses the mini-hopper and the singulating meter such that when the first chute is in communication with the commodity inlet to receive the commodity therefrom, the commodity is not singulated.
CROSS-REFERENCE TO RELATED APPLICATIONS

The application is a divisional of U.S. patent application Ser. No. 15/979,027 filed May 14, 2018, the entire contents of which are incorporated by reference.

US Referenced Citations (77)
Number Name Date Kind
4638748 Kopecky Jan 1987 A
4767062 Fletcher Aug 1988 A
4779765 Neumeyer Oct 1988 A
4793742 Strand Dec 1988 A
4852809 Davis et al. Aug 1989 A
5351635 Hulicsko Oct 1994 A
5379706 Gage et al. Jan 1995 A
5650609 Mertins Jul 1997 A
5826523 Gregor Oct 1998 A
5878679 Gregor et al. Mar 1999 A
6186083 Toto Feb 2001 B1
6192813 Memory et al. Feb 2001 B1
6213690 Gregor et al. Apr 2001 B1
6283679 Gregor et al. Sep 2001 B1
6609468 Meyer et al. Aug 2003 B1
6688244 Mayer et al. Feb 2004 B1
6935255 Hagen et al. Aug 2005 B2
6935256 Meyer Aug 2005 B1
7093547 Mayerle Aug 2006 B2
7353760 Mayerle et al. Apr 2008 B2
7509915 Memory Mar 2009 B2
7555990 Beaujot Jul 2009 B2
7743719 Memory Jun 2010 B2
7765943 Landphair Aug 2010 B2
7938075 Glendenning et al. May 2011 B1
8132521 Snipes et al. Mar 2012 B2
8281724 Snipes Oct 2012 B2
8350689 Mariman et al. Jan 2013 B2
8666608 Friggstad Mar 2014 B2
9043949 Liu et al. Jun 2015 B2
9488512 Hossain et al. Nov 2016 B2
9546051 Roberge et al. Jan 2017 B2
9596803 Wendte et al. Mar 2017 B2
9648801 Borkgren et al. May 2017 B2
9699953 Jagow et al. Jul 2017 B2
9814173 Frasier et al. Nov 2017 B2
9872427 Thompson et al. Jan 2018 B2
10942053 Nedved Mar 2021 B2
20030133759 Winther Jul 2003 A1
20040163578 Mcdonald et al. Aug 2004 A1
20040206283 Mayerle Oct 2004 A1
20050172873 Mayerle Aug 2005 A1
20050235889 Martin et al. Oct 2005 A1
20050247806 Meyer et al. Nov 2005 A1
20060042529 Johnson et al. Mar 2006 A1
20070266917 Riewerts et al. Nov 2007 A1
20090079624 Dean et al. Mar 2009 A1
20110035163 Landphair Feb 2011 A1
20120211508 Barsi et al. Aug 2012 A1
20120226461 Kowalchuk Sep 2012 A1
20120325130 Kowalchuk Dec 2012 A1
20140165890 Graham Jun 2014 A1
20140190376 Johnson et al. Jul 2014 A1
20140193215 Connors et al. Jul 2014 A1
20140216314 Bourgault et al. Aug 2014 A1
20140311598 Hui et al. Oct 2014 A1
20150090166 Allgaier et al. Apr 2015 A1
20150112556 Meyer zu Hoberge et al. Apr 2015 A1
20150223392 Wilhelmi et al. Aug 2015 A1
20160037713 Wendte et al. Feb 2016 A1
20160050843 Roberge et al. Feb 2016 A1
20160088791 Horsch Mar 2016 A1
20160095274 Wendte et al. Apr 2016 A1
20160120102 Roberge et al. May 2016 A1
20160120107 Chahley et al. May 2016 A1
20160121284 Roberge et al. May 2016 A1
20160135359 Kowalchuk et al. May 2016 A1
20160157417 Funck Jun 2016 A1
20160234996 Sauder et al. Aug 2016 A1
20160295792 Secrest et al. Oct 2016 A1
20160302353 Wendte et al. Oct 2016 A1
20170086351 Garner et al. Mar 2017 A1
20170086352 Frasier et al. Mar 2017 A1
20170086355 Borkgren et al. Mar 2017 A1
20170086356 Schweitzer et al. Mar 2017 A1
20170127605 Roberge et al. May 2017 A1
20170156259 Barsi et al. Jun 2017 A1
Foreign Referenced Citations (16)
Number Date Country
2016222360 Apr 2017 AU
2741267 Nov 2012 CA
8416161 Sep 1985 DE
102014115020 Apr 2015 DE
1560157 Aug 2005 EP
1591000 Nov 2005 EP
2196079 Jun 2010 EP
2708105 Mar 2014 EP
2765398 Aug 2014 EP
3000299 Mar 2016 EP
3235361 Oct 2017 EP
2973790 Oct 2012 FR
759063 Aug 1980 SU
2004017712 Mar 2004 WO
2013180619 Dec 2013 WO
2015094108 Jun 2015 WO
Non-Patent Literature Citations (14)
Entry
Australian Examination & Search Report issued in Australian Patent Application No. 2017225170 dated Jul. 27, 2022, in 13 pages.
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,515 dated Jan. 27, 2017 (13 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,515 dated May 10, 2017 (5 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,633 dated Jan. 19, 2017 (13 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,633 dated Jul. 6, 2017 (14 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,653 dated Jan. 31, 2017 (13 bages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,653 dated Jul. 17, 2017 (5 pages).
EP16190733.2 Extended European Search Report dated Feb. 2, 2017 (9 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 15/290,345 dated Jan. 17, 2018 (12 pages).
Office Action from the US Patent and Trademark Office for U.S. Appl. No. 14/871,515 dated Oct. 24, 2017 (13 pages).
German Patent Office Search Report for Application No. 102017216623.1 dated Aug. 29, 2018 (11 pages, statement of relevance included).
United States Patent Office Action for U.S. Appl. No. 15/290,345 dated Mar. 6, 2019 (10 pages).
German Patent Office Search Report for Application No. 102016218258.7 dated Apr. 24, 2019 (11 pages, statement pf relevance included).
Examination Report No. 1 issued by the Australian Government for Application No. 2016222360 dated Jul. 14, 2020 (6 pages).
Related Publications (1)
Number Date Country
20210190567 A1 Jun 2021 US
Divisions (1)
Number Date Country
Parent 15979027 May 2018 US
Child 17196585 US