In the oil field, slickline cable is used to introduce a slickline tool into a borehole that may be used for the production of hydrocarbons. The borehole may deviate, such that the borehole may transition, for example, from a vertical region to a horizontal region. Moving the slickline tool from a horizontal orientation to a vertical orientation, for example, without harming (e.g., kinking or breaking) the slickline cable is a challenge.
The following detailed description illustrates embodiments of the present disclosure. These embodiments are described in sufficient detail to enable a person of ordinary skill in the art to practice these embodiments without undue experimentation. It should be understood, however, that the embodiments and examples described herein are given by way of illustration only, and not by way of limitation. Various substitutions, modifications, additions, and rearrangements may be made that remain potential applications of the disclosed techniques. Therefore, the description that follows is not to be taken as limiting on the scope of the appended claims. In particular, an element associated with a particular embodiment should not be limited to association with that particular embodiment but should be assumed to be capable of association with any embodiment discussed herein.
While the following disclosure is described in the context of a slickline cable being used in a hydrocarbon well environment, it will be understood that the equipment and techniques described herein are useful in any environment in which it is desired to limit the bend radius of a flexible cable, rope, E-line, fiber optic cable, power cable or similar material. Further, the equipment and techniques described herein may be useful in sea-based production systems, land-based systems, multilateral wells, all types of drilling systems, all types of rigs, measurement while drilling (“MWD”)/logging while drilling (“LWD”) environments, wired drillpipe environments, coiled tubing (wired and unwired) environments, wireline environments, and similar environments.
The slickline cable 120 may be electronically and mechanically coupled to the tool 110. The coupling between the slickline cable 120 and the tool 110 may include a sturdy mechanical connection, capable of sustaining the connection through the entire slickline operation. In one or more embodiments, there is an electronic or optical connection (not shown) between the slickline cable 120 and the tool 110. The tool 110 may include sensors and actuators, such as probes, pressure sensors, and acoustic sensors.
The chain of bend-limiter segments 105 may include a plurality of bend-limiter segments 140. The chain of bend-limiter segments 105 may include a first end 145 and a second end 150. The borehole 115 may bend at a first location 155 causing the chain of bend-limiter segments 105 to bend at the first location 155. In
Typically, the slickline cable 120 has a minimum radius of curvature specification M, where M is measured in any units of length (English units, scientific units, etc.) below which the slickline cable 120 is susceptible to damage, such as kinking, breaking, or, more generally, experiencing stress that causes the slickline cable 120 to exceed its yield point (i.e., the point at which stress will cause the slickline cable to deform plastically rather than elastically) and permanently deform due to overstressing caused by subjecting the slickline cable 120 to a too-tight radius of curvature. Further, the slickline cable 120 is constrained where it joins to the tool 110, making the slickline cable 120 more susceptible to damage in that area.
To reduce the likelihood of such damage, the chain of bend-limiter segments 105 is coupled to the slickline cable 120 and to the tool 110 to restrict the radius of curvature M of the slickline cable 120 where it joins the tool 110. The chain of bend-limiter segments 105 may include a sucker rod adaptor 160, a fishneck end 165 and shear pins 170 to facilitate coupling the chain of bend-limiter segments 105 to the slickline cable 120 and the tool 110.
As illustrated in the magnified view A of
Each bend limiter segment 140 may include a channel 190 having a diameter D through the male end 175 and the female end 180 along the longitudinal axis. The chain of bend-limiter segments 105 may form a passage 195 from the first end 145 to the second end 150. The combined length of the male end 175 and the bottom of the cavity 185 is L. The radius of curvature M is defined by P and L:
For small values of P (i.e, P<2 degrees), M can be approximated as:
For very small values of P (i.e., P<½ degree), M can be approximated as:
L/P (3)
As can be seen in the equations, M increases as L increases and decreases as P increases.
The bend-limiter segment 140 may be manufactured from a polymer. The bend-limiter segment 140 may be manufactured from a metal or a similar material.
In order to retrieve the tool 110 from the borehole 115 using the slickline cable 120 while maintaining the minimum radius of curvature M of the slickline cable 120, the bend-limiter segment 140 may be designed and manufactured to meet certain parameters. Those parameters may include the diameter D of the passage 195; the length L and width of each bend-limiter segment 140; and other parameters of the bend-limiter segments 140.
An example of a bend-limiter segment 140 is illustrated in
The male end 175 have may have a crown surface 310 that is substantially parallel to the axial axis 215. The crown surface 310 may have a flat surface. The crown surface 310 may integrate with a crown rocker 315. The crown rocker 315 may have the shape of a truncated cone with a crown rocker large end 320 and a crown rocker small end 325. The crown rocker small end 325 may integrate with the crown surface 310. The area of the crown rocker large end 320 is greater than the area of the crown rocker small end 325. There may be a sloped surface 330 between the crown rocker small end 325 and the crown surface 310.
The crown rocker 315 may be integral with a truncated cone 335. The truncated cone 335 may be substantially positioned along the longitudinal axis 200. The outer surface of the truncated cone 335 may have a conical shape. The outer surface of the curved truncated cone 335 may have a parabolic shape. The truncated cone 335 may be truncated at a desired length. The dimensions of the curved truncated cone 335 may be one of the factors that define the maximum angle P that can be achieved between the longitudinal axis 200a through one of the bend-limiter segments 140 and the longitudinal axis 200b through the other bend-limiter segment 140.
The curved truncated cone 335 may have a bottom surface 340 integral with the crown rocker 315 and a top surface 345 integral with a neck 350 (discussed below). The bottom surface 340 is opposite the top surface 345. The curved truncated cone 335 may decrease in diameter along the longitudinal axis 200 starting from the bottom surface 340 to the top surface 345. The short dimension of the curved truncated cone 335 may be substantially parallel to the longitudinal axis 200. The long dimension of the truncated cone 335 may be substantially parallel to the axial axis 215.
The truncated section of the curved truncated cone 335 may be integral with a neck 350. The neck 350 may be positioned substantially along the longitudinal axis 200. The neck 350 may have substantially the same area as the truncated section of the curved truncated cone 335. The neck 350 may have a substantially cylindrical shape. The neck 350 may have the shape of a cylinder flared on both ends. The neck 350 may integrate with a shoulder 355.
The shoulder 355 is substantially positioned along the axial axis 215. The shoulder 355 may have the shape of a truncated cone. The shoulder 355 integrates with the neck 355 at one end and with a body 360 at the other end.
The body 360 may be cylindrical. The body 360 may have a cap screw hole 365 for placing the screw bolts 210. The cap screw hole 365 is bored through the body 360. The body 360 may have a plurality of cap screw holes 365. The body 360 may have a top end 370 and a bottom end 375. The body top end 370 may be integrated with the shoulder 355. The body bottom end 375 may be integral with the female end 180.
The female end 180 may include a cavity 185. The cavity 185 may be positioned substantially along the longitudinal axis 200 and opposite the male end 175. The cavity 185 may have a cavity bottom surface 380 positioned substantially along the axial axis 215. The cavity bottom surface 380 may have substantially the same surface area as the crown rocker large end 320.
The cavity 185 may also include a cavity wall 385 integrated with the cavity bottom surface 380. The cavity wall 385 may be adjacent the cavity bottom surface 380. The cavity wall 385 may have substantially the same shape as the curved truncated cone 335. The cavity 185 may have a conical shape. The cavity 180 may have a bowl shape. The cavity 180 may have a parabolic shape. The cavity 180 may be tapered.
The cavity 180 may have a cavity opening 390 positioned substantially along the axial axis 215 and opposite the cavity bottom surface 380. The cavity opening 390 may be large enough to allow the male end 175 to rotate sufficiently in the cavity 185 to achieve the angle P, as shown in
The bend-limiter segment 140 may include the channel 190. The channel 190 may be positioned substantially along the longitudinal axis 200. The channel 190 may traverse the entire length of the bend-limiter segment 140. The channel 190 may have a diameter at the male end 175 that gradually reduces as it traverses the body 360, and then gradually increases as it exits the female end 180.
Another example of the chain of bend-limiter segments 105 is illustrated in
When two or more bend-limiter segments 140 are coupled together, as illustrated in
Another example of the chain of bend-limiter segments 105 is illustrated in
The male end 175 may include a first truncated cone 510. A large end of the first truncated cone 510 may be integral to the convex surface 505. The male end 175 may include a truncated sphere (not shown). The male end 165 may include a second truncate cone 515. The small end of the first truncated cone 510 may be integral with a small end of the second truncated cone 515.
The male end 175 may include a neck 520. The large end of the second truncated cone 515 may be integral to the neck 520. The neck 520 may be cylindrical.
The male end 175 may include a male end link 525. The male end link 525 may be cylindrical. The male end link 525 may include a link top end 530. The link top end 530 may be integrated with the neck 520. The male end link 525 may include a link bottom end 535 opposite the link top end 530. The link top end 530 may have a surface area larger than the neck 520. The link top end 530 may have a surface area larger than the link bottom end 535.
The cavity 185 may include a cavity wall 545. The cavity wall 545 may be adjacent the cavity bottom surface 540. The cavity wall 545 may be substantially perpendicular to the cavity bottom surface 540. The cavity wall 545 may have substantially the same shape as the male end link 525.
The cavity 185 may include a cavity opening 550, as illustrated in
When two or more bend-limiter segments 140 are coupled together, as illustrated in
Another example of the chain of bend-limiter segments 105 is illustrated in
The chain of bend-limiter segments 105 may include the male end 175. The chain of bend-limiter segments 105 may include the female end 180. The chain of bend-limiter segments 105 may include a collar 605 (discussed below in connection with
The bend-limiter segment 140 may include a shaft 720. The shaft 720 may be coupled to the truncated bottom end 715. The shaft 720 may be a cylindrical. The shaft 720 may have a threaded end 725.
The bend-limiter segment 140 may include the channel 190 that traverses the entire length of the male end 175. The channel 190 may have a diameter that decreases as it traverses the truncated sphere 705 and increases as it exits the shaft 720. The channel 190 may include the non-metallic hose 405. The non-metallic hose 405 may traverse the entire length of the bend-limiter segment 140 and/or the chain of bend-limiter segments 105.
The bend-limiter segment 140 may include the collar 605. The collar 605 may have a top collar cavity 735 that has substantially the same shape as the truncated sphere 705. The collar 730 may include a bottom collar cavity 740. The bottom collar cavity 740 has a diameter that is larger than the shaft 720 to allow the male end to swivel within the bottom collar cavity 740 and the top collar cavity 735. The collar 605 may include spanner holes 745. The spanner holes may allow a spanner wrench to remove the collar 730 from the female end 180.
The collar 605 may include a collar neck 750. The collar neck 750 may include an irregular exterior. The collar neck 750 may be threaded. The collar 605 may include a collar shoulder 755. The collar shoulder 755 may be coupled to the collar neck 750. The collar shoulder 755 may be integral with the collar neck 750. The collar shoulder 755 may have an outside diameter that is greater than the collar neck's 750 outside diameter.
The bend-limiter segment 140 may include the female end 180. The female end 180 may include a clasp end 760. The clasp end may be threaded. The female end 180 may include a receptacle end 765 opposite the clasp end 760. The receptacle end 765 may be threaded. The receptacle end 765 has an internal shape that is complimentary to the external shape of the collar 605.
In one aspect, a method features coupling together a chain of bend-limiter segments, the chain having a first end and a second end, the chain being bendable such that an angle between the first end and the second end is at least N degrees and a radius of curvature of the chain is at least M. A cable is inserted through the chain from the first end to the second end. The chain and the cable are coupled to a tool. The tool is pulled using the cable. The chain maintains a radius of curvature of the cable greater than M and prevents a stress level in the cable from exceeding a yield point.
Implementations may include one or more of the following. The cable may be coupled to a surface equipment. The chain of bend-limiter segments, the tool, and the cable may be deployed into a borehole, past a first location where the borehole deviates. Pulling the tool using the cable may include retrieving the tool from the deviated borehole when the tool passes through the first location. Pulling the tool using the cable may include lifting the tool from a first orientation to a second orientation different from the first orientation using the cable. Coupling together a chain of bend-limiter segments may include coupling two or more bend-limiter segments. Coupling together a chain of bend-limiter segments may include dividing the bend limiter segments into two or more halves. Coupling together a chain of bend-limiter segments may include mounting the two or more halves about the cable. Coupling together a chain of bend-limiter segments may include securing the two or more halves to the cable.
In one aspect, an apparatus features a chain of bend-limiter segments, the chain of bend-limiter segments having a first end and a second end. The chain of bend-limiter segments is bendable such that an angle between a first end and a second end is at least N degrees. A radius of curvature of the chain of bend-limiter segments is M when the angle between the first end and the second end is N degrees. N and M are determined by parameters of the bend-limiter segments. The bend-limiter segments have channels such that the chain of bend-limiter segments has a passage from the first end to the second end.
Implementations may include one or more of the following. The bend-limiter segments may include a male end having a male shape. A female end may be coupled to the male end. The female end may have a cavity with a cavity shape that is complementary to the male shape with a restriction in the cavity that confines angular movement of the male shape within the cavity to P degrees from a longitudinal axis through the male end and the female end. The bend-limiter segments may include a channel having a diameter D through the male end and the female end along the longitudinal axis.
In one aspect, a system features a surface equipment located on a surface of the earth. The system includes a tool coupled to the cable. The system includes a bend-limiter coupled to the cable adjacent the tool. The bend-limiter includes a chain of bend-limiter segments, the chain of bend-limiter segments having a first end and a second end. The chain of bend-limiter segments is bendable such that an angle between the first end and the second end is at least N degrees. A radius of curvature of the chain of bend-limiter segments is M when the angle between the first end and the second end is N degrees. N and M are determined by parameters of the bend-limiter segments. The bend-limiter segments have channels such that the chain of bend-limiter segments has a passage from the first end to the second end.
Implementations may include one or more of the following. The chain of bend-limiter segments may include a first end and a second end. The chain of bend-limiter segments may be bendable such that an angle between a first end and a second end is at least N degrees. A radius of curvature of the chain of bend-limiter segments may be M when the angle between the first end and the second end is N degrees. N and M may be determined by parameters of the bend-limiter segments. The bend-limiter segments may include a male end having a male shape. The bend-limiter segment may include a female end coupled to the male end and having a cavity with a cavity shape that is complementary to the male shape with a restriction in the cavity that confines angular movement of the male shape within the cavity to P degrees from a longitudinal axis through the male end and the female end. The bend-limiter segment may include a channel having a diameter D through the male end and the female end along the longitudinal axis.
References in the specification to “one or more embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
The operations of the flow diagrams are described with references to the systems/apparatus shown in the block diagrams. However, it should be understood that the operations of the flow diagrams could be performed by embodiments of systems and apparatus other than those discussed with reference to the block diagrams, and embodiments discussed with reference to the systems/apparatus could perform operations different than those discussed with reference to the flow diagrams.
The word “coupled” herein means a direct connection or an indirect connection.
The text above describes one or more specific embodiments of a broader invention. The invention also is carried out in a variety of alternate embodiments and thus is not limited to those described here. The foregoing description of an embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/061227 | 11/18/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/086943 | 5/26/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
254809 | Martin | Mar 1882 | A |
4396797 | Sakuragi et al. | Aug 1983 | A |
4442908 | Steenbock | Apr 1984 | A |
4647255 | Pow | Mar 1987 | A |
4739801 | Kimura et al. | Apr 1988 | A |
5254809 | Martin | Oct 1993 | A |
5337839 | Warren et al. | Aug 1994 | A |
6039081 | Albert | Mar 2000 | A |
6220303 | Secher | Apr 2001 | B1 |
6331129 | Earley | Dec 2001 | B1 |
6920945 | Belew | Jul 2005 | B1 |
7062143 | Berens et al. | Jun 2006 | B1 |
8245785 | Peters | Aug 2012 | B2 |
8323297 | Hinman et al. | Dec 2012 | B2 |
8528644 | Brunet | Sep 2013 | B2 |
8607826 | Krohn et al. | Dec 2013 | B2 |
9651181 | Luce | May 2017 | B2 |
9845641 | Belew | Dec 2017 | B2 |
9889907 | Hubert | Feb 2018 | B2 |
10041306 | Wang | Aug 2018 | B2 |
D829179 | Whitefield | Sep 2018 | S |
10100965 | Whitefield | Oct 2018 | B2 |
10301885 | Farnes | May 2019 | B2 |
10428993 | Whitefield | Oct 2019 | B2 |
10472900 | Harbison | Nov 2019 | B2 |
20020108787 | Baird | Aug 2002 | A1 |
20060254827 | Orban | Nov 2006 | A1 |
20060283635 | Moody | Dec 2006 | A1 |
20070059954 | Suggs, III | Mar 2007 | A1 |
20080044233 | O'Sullivan | Feb 2008 | A1 |
20090200284 | Sanchez | Aug 2009 | A1 |
20120304447 | Smith et al. | Dec 2012 | A1 |
20130160988 | Armstrong et al. | Jun 2013 | A1 |
20140116675 | Ocalan et al. | May 2014 | A1 |
20150240573 | Jacobson et al. | Aug 2015 | A1 |
20190003267 | Thomas | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1586922 | Nov 2008 | EP |
2269274 | Feb 1994 | GB |
2011096820 | Aug 2011 | WO |
2014109642 | Jul 2014 | WO |
Entry |
---|
International Searching Authority, Patent Cooperation Treaty, International Search Report and Written Opinion, International application No. PCT/US2015/061227, which is a PCT parent of the instant application, entire document, dated Aug. 18, 2016. |
Number | Date | Country | |
---|---|---|---|
20190003267 A1 | Jan 2019 | US |