This application claims priority to European patent application no. 15306178.3 filed on Jul. 20, 2015, the contents of which are fully incorporated herein by reference.
The present invention relates to the field of bearings including rolling elements and spacing cages for maintaining these rolling elements.
Particularly in the field of large-diameter bearings, for example large-diameter rolling bearings adapted to be used in wind turbines or tunnel boring machines, it is known to use segmented cages which provide segments abutting circumferentially and having pockets for receiving the rolling elements.
Currently, the adjacent segments provide flat abutting surfaces which are in contact one on the other. When these segments pivot radially relative to each other, the contact plat surfaces take off from one another and the segments stay in contact only on inner or outer contacts, increasing the median nominal diameter of the cages.
Otherwise, as described in the U.S. Pat. No. 3,938,866, the contact abutting surfaces are cylindrical. One of these cylindrical surfaces is convex and is engaged in the other cylindrical surface which is concave, the diameters of these cylindrical surfaces being equal. When these segments pivot radially relative to each other, either the contact cylindrical surfaces take off from one another and the segments stay in contact only on inner or outer contacts or the cylindrical surfaces stay in contact and slide one over the other, the segments shifting radially one relative to the other.
The above situations induce untimely deteriorations and are not satisfying.
According to one embodiment, it is proposed a segmented cage for a bearing, comprising at least two successive segments each being able to receive at least one rolling element, these segments having inner and outer circumferential faces and adjacent end faces abutting circumferentially one on the other.
The adjacent end faces are shaped to obtain only one contact line or contact point between them, the contact point or contact line being distant from the inner and outer circumferential faces.
The contact point or contact line can be located in central zones of the ends faces distant from the inner and outer circumferential faces.
One of the end faces can have a convex shape.
The other end face can have a convex shape.
The other end face can have a concave shape.
The other face can have a flat shape.
One of the end faces can have a convex cylindrical shape, with an axis parallel to the axis of the cage.
The other end face can have a convex cylindrical shape.
The cylindrical shape of one of the end faces can be concave and the other one can be convex, the radius of the concave cylindrical shape being greater than the radius of the convex cylindrical shape.
One of the end faces can have a convex spherical shape.
It is also proposed a bearing comprising two rings, rolling elements interposed between the rings and, for receiving the rolling elements, the cage.
The present invention and its advantages will be better understood by studying a bearing with a segmented cage, given by way of non-limiting example and illustrated by the appended drawings on which:
As illustrated on
For supporting radial loads, the bearing 1 provides a row 4 of rolling elements 5 such as rollers, which are provided between raceways of the rings 2 and 3, which are provided between radially spaced apart cylindrical raceways 6 and 7 of the rings 2 and 3, the raceways 6 and 7 being radially spaced apart.
For supporting axial loads, from top to bottom, the bearing 1 comprising a top row 8 of rolling elements 9 such as rollers, which are provided between annular radial raceways 17 and 11 of the rings 2 and 3, the raceways 17 and 11 being axially spaced apart.
For supporting axial loads, from bottom to top, the bearing 1 comprising a bottom row 12 of rolling elements 13 such as rollers, which are provided between annular radial raceways 14 and 15 of the rings 2 and 3, the raceways 14 and 15 being axially spaced apart.
The inner ring 2 provides an outer annular portion 16 having axially on both sides the raceways 17 and 15 and having on its outer face the raceway 6.
The rolling elements 9 of the row 8 are maintained spaced apart through a cage 10 which can be in plastic, or metallic material such as bronze alloy. Therefore the cage can be obtained from injection molding, sand molding or machining.
The cage 10 is disposed between cylindrical faces 18 and 19 of the rings 2 and 3, which delimits radially the space in which the rolling elements 9 are moving.
The cage 10 is segmented and is constituted of a plurality of successive segments 20. Each segment 20 has inner and outer circumferential cylindrical faces 21 and 22 adjacent to the cylindrical faces 18 and 19 of the rings 2 and 3 and has circumferentially opposed abutting end faces 23 and 24 such that the adjacent end faces 23 and 24 of two successive adjacent segments 20A and 20B are abutting circumferentially. Each segment 20 is provided with axially transverse pockets 25 receiving respectively some of the rolling elements 9. Referring now to
As illustrated on
This contact line 26 is distant from the inner and outer circumferential cylindrical faces 21 and 22 thereof and preferably located in a central zone of the end faces, for example at substantially equal distances from the inner and outer circumferential cylindrical faces 21 and 22 thereof.
As illustrated on
Also in this case, the end faces 23 and 24 of two successive adjacent segments 20A and 20B are abutting along an axial contact line 26 as illustrated on
As illustrated on
Also in this case, the end faces 23 and 24 of two successive adjacent segments 20A and 20B are abutting along an axial contact line 26 as illustrated on
As illustrated on
This contact point 27 is distant from the inner and outer circumferential cylindrical faces 21 and 22 thereof and located in a central zone of the end faces 23 and 24.
According to another embodiment (not shown), the end faces 23 and 24 of each segment 20 have one a convex dome shape and the other a flat shape. Also in this case, the end faces 23 and 24 of two successive adjacent segments 20A and 20B are abutting only on one contact point 27 as illustrated on
The above-described specific shapes of the end faces 23 and 24 of the segments 20 of the cage 17 have the following advantages.
The abutting end faces 23 and 24 of two successive adjacent segments 20A and 20B can roll on each other relatively to the contact line 25 or the contact point 26.
The two successive adjacent segments 20A and 20B of the cage 17 can pivot radially with respect to each other, without substantially changing the circumferential length of the cage 17.
The adjacent end portions of adjacent segments 20A and 20B can move radially substantially simultaneously, towards the outer or towards the inner.
The present invention has been described regarding a cage receiving the rolling elements of a thrust bearing for supporting axial loads. The present invention can also be applied to a cage receiving the rolling elements of a bearing for supporting radial loads. The present invention can also be applied to a cage having segments each receiving only one rolling element.
Number | Date | Country | Kind |
---|---|---|---|
15306178 | Jul 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3938866 | Martin | Feb 1976 | A |
8882361 | Sekido | Nov 2014 | B2 |
20130223780 | Mangold et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
3245332 | Jun 1984 | DE |
3512202 | Oct 1986 | DE |
10010075 | Sep 2001 | DE |
H710554 | Jul 1993 | JP |
2011-133061 | Jul 2011 | JP |
2011-163513 | Aug 2011 | JP |
2012140982 | Jul 2012 | JP |
2013036510 | Feb 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20170023064 A1 | Jan 2017 | US |