The application relates generally to gas turbine engines and, more particularly, to an internal fuel manifold assembly.
An internal manifold ring mounted inside the gas generator case of a gas turbine engine has proven to be advantageous in terms of system weight and cost reduction. However, the manifold ring cannot be removed for maintenance without dismantling the engine case components from one another to provide access to the interior of the engine, which is a major maintenance operation with its associated costs and time off-wing for the engine.
In one aspect, there is provided a gas turbine engine comprising: an engine case having a circumferential wall defining a plenum around a combustor; at least one access port defined in the circumferential wall of the engine case; and a segmented annular fuel manifold mounted inside the engine case in the plenum, the segmented annular fuel manifold having a plurality of manifold ring segments, the manifold ring segments configured to be removable from the plenum via the at least one access port.
In another aspect, there is provided a gas turbine engine comprising: a combustor including a combustor shell defining a combustion chamber; an engine case defining a plenum around the combustor shell; an annular fuel manifold segmented into manifold ring segments removably mounted in the plenum; and access ports defined in the engine case to provide access to the manifold ring segments, the manifold ring segments being individually removable from the plenum via the access ports.
In a further aspect, there is provided a method for facilitating maintenance of an internal fuel manifold mounted inside a gas generator case of a gas turbine engine, the method comprising: segmenting the internal fuel manifold into manifold ring segments; and providing access ports in the gas generator case, the access ports being configured to permit removal of the manifold ring segments from the gas generator case without splitting the engine.
In a still further general aspect, there is provided a method of maintaining a gas turbine engine having a segmented fuel manifold mounted inside an engine case, the segmented fuel manifold comprising a plurality of manifold ring segments, the method comprising: disconnecting a first one of the manifold ring segments from a fuel source; opening an access port in a side of the engine case; physically disconnecting the first manifold ring segment from the engine case; and removing the first manifold ring segment from the engine case via the access port.
Reference is now made to the accompanying figures in which:
The combustor section 16 comprises a combustor having an annular combustor shell 19 concentrically mounted about the engine central axis 11 in a plenum 17 circumscribed by an engine case including a gas generator case 24 (
The combustor section 16 further comprises a fuel manifold assembly 20 for supplying fuel to the combustor. As can be appreciated from
To that end, internal manifold 22 can be segmented. In the illustrated example, the manifold 22 consists of a plurality (4 in the illustrated example) of rigid manifold ring segments 22a, 22b, 22c and 22d circumferentially spaced-apart by inter-segment gaps G. In the illustrated example, the manifold ring segments 22a, 22b, 22c and 22d are detachably mounted to the gas generator case 24 and individually removable from the plenum 17 via associated access ports 24a, 24b 24c (3 in the illustrated example) defined in the gas generator case 24. As shown in
According to the example depicted in
In the illustrated embodiment, the access port 24b is centrally located at the bottom of the gas generator case 24 and access ports 24a, 24c respectively for the right and left upper quadrant manifold segments 22a and 22d are angularly disposed or “clocked” around the circumference of the gas generator case 24 at a same angle from the bottom access port 24b. However, it is understood that various segment and port arrangements are contemplated.
Each access port 24a, 24b, 24c defines an opening which is shaped and size to allow for the passage (insertion or removal) of the associated manifold ring segment. As can be appreciated from
As can be appreciated, from
The fuel inlet tubes 26a, 26b, 26c, 26d may be brazed or otherwise rigidly connected to the associated manifold ring segments 22a, 22b, 22c, 22d to each form a one-piece of hardware. For instance, metal injection molding (MIM) or additive manufacturing (AM) could be used to form a manifold ring segment with an integral fuel inlet “leg”. The fuel inlet tubes 26a, 26b, 26c, 26d are strategically located at one end of the corresponding segments 22a, 22b, 22c, 22d to facilitate the removal thereof through the associated access ports 24a, 24b, 24c. With their respective fuel inlet tubes 26a, 26b, 26c, 26d the manifold ring segments 22a, 22b, 22c, 22d can be individually connected to a common source of fuel, thereby eliminating the need for serially interconnecting the segments in fluid flow communication and, thus, further facilitating the individual removal of the manifold ring segments 22a, 22b, 22c, 22d from the gas generator case 24.
In the illustrated embodiment, the manifold adapters 28a and 28c respectively of manifold ring segments 22a and 22d are fluidly connected to the dual manifold adapter 28b of manifold ring segments 22b, 22c. More particularly, the bottom manifold adapter 28b may have an inlet connected to the source of fuel, first and second outlets respectively connected to manifold segments 22b and 22c, a third outlet connected to fuel adapter 28a of the manifold ring segment 22a via a first external fuel line 30, and a fourth outlet connected to the fuel adapter 28c of the fourth manifold ring segment 22d. It is understood that each fuel line 32, 34 may include primary and secondary fuel conduits, as shown in
Each manifold ring segment 22a, 22b, 22c, 22d is detachably supported at a second end thereof opposite the fuel inlet tube 26a, 26b, 26c, 26d by respective support structures 36a, 36b, 36c, 36d depending radially inwardly from the gas generator case 24. Accordingly, each manifold ring segment 22a, 22b, 22c, 22d has two points of support, a first point of support provided by its fuel inlet tube 26a, 26b, 26c, 26d and a second point of support provided by the support structure 36a, 36b, 36c, 36d. As shown in the illustrated example, each support structure 36a, 36b, 36c, 36d can take the form of a locating pin engageable with attachment point in the second end of the associated manifold ring segment 22a, 22b, 22c, 22d. For instance, the locating pin could be threadably engageable in a corresponding threaded hole at the second end of the manifold segment. The locating pins can be engaged in respective tubular structures 38a, 38b, 38c, 38d provided on the gas generator case 24 at predetermined distance from the access ports 24a, 24b, 24c, 24d. In some applications, the tubular structures can be omitted. The locating pin could be mounted directly to the gas generator case 24. It is understood that other support arrangements are contemplated to detachably mount the manifold ring segments 22a, 22b, 22c, 22d inside the gas generator case 24.
Each of the manifold ring segments 22a, 22b, 22c, 22d may act as a single nozzle that has several injection points. For instance, each of the manifold ring segments 22a, 22b, 22c, 22d may be manufactured in the form of a rigid ring segment having an internal fuel conduit, which may include primary and secondary fuel passages, for feeding a series of injection heads 40 uniformly distributed along the length of the rigid ring segment. The injection heads 40 can, for instance, take the form of nozzle tips brazed in corresponding seats defined in the front face of the ring segment for projecting into corresponding injection holes 19e (
As compared to a full ring manifold design, the segmented configuration also allows to reduce the fuel “travel” time required to reach the last nozzle tip, thereby reducing heat gain by the fuel inside the manifold 22. This may lead to better fuel manifold and nozzle tip durability.
Referring now to
Similar procedures are followed for the other manifold ring segments 22a, 22b, 22c. Accordingly, the internal fuel manifold 22 can be completely removed and replaced either with new segments or repaired segments without splitting the engine. This simplifies the maintenance procedures and reduces the time required for the maintenance of an internal fuel manifold.
According to one aspect, the present disclosure provide for a method for facilitating maintenance of an internal fuel manifold mounted inside a gas generator case of a gas turbine engine. The method comprises segmenting the internal fuel manifold into manifold ring segments; and providing access ports in the gas generator case, the access ports being configured to permit removal of the manifold ring segments from the gas generator case without splitting the engine. The fuel inlet of each segment may be strategically located closer to one end of the segment to facilitate removal of the segment. The ability of removing the segments without splitting the engine facilitates the maintenance of internal manifolds.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For instance, the number of access ports can vary depending on the applications. It might be possible to have a single access port. All the segments could be removed via the same port. Also, more than one segments could potentially be removed at a time from an access same port. According to another embodiment, at least some of the segments could be fluidly connected to one another. Also one fuel adapter could be used to feed all segments. Furthermore, the number of segments and number/type of nozzle tips for each segment may vary. Lastly, the sequence of fuel delivery for each segment may vary depending on the requirements of each application. Modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.