1. Field of the Invention
This invention relates generally to firefighting monitors and in particular to a compact segmented monitor having three nonorthogonal swivel joints, and minimal convolutions in the flowpath to reduce fluid pressure loss and to reduce overall turbulence of a discharge stream exiting from the segmented monitor.
2. Description of Related Art
A firefighting monitor is a conduit that is supplied with a pressurized fluid (usually water) at the inlet end and has a fire-fighting nozzle connected at the discharge end. The firefighting monitor's primary purpose is to allow the fluid exiting the nozzle to be redirected in both elevation and azimuth angles and then remain pointed at the desired target.
Monitors may be installed in fixed locations, may be portable devices, or may be mounted on mobile equipment such as fire trucks, trailers, and the like. Monitors in the fire service are generally fitted with a nozzle on their discharge whose purpose it is to increase the velocity of the jet and form a spray of a desired type or shape. The most common purpose of the monitor is the delivery of a straight stream over considerable distances. The usefulness of the stream is a function of the turbulence in the monitor itself.
Monitors have been classified into three basic types as follows: spherical ball-in-socket designs, bending of a flexible hose, and mutually perpendicular swivel joints. Most ball-in-socket designs develop motion through a sliding motion between the ball and socket, thus tending to have high friction to overcome. A single ball-in-socket is restricted to travels substantially less than 90 degrees from straight which limits their usefulness. Ball-in-socket devices arranged in a series allow a wider range of motion. The position of the ball joints are retained by friction alone. However, reaction forces on ball joints arranged in a series cause position to be unstable when the centerline of the nozzle reaction force does not pass through the centers of rotation.
U.S. Pat. No. 557,799 issued Apr. 7, 1896 to H. H. Gorter discloses an adjustable nozzle for hose pipes comprising in series a first curved section and a second curved section having an upper end which is a hollow semiglobular enlargement to which a nozzle is connected. The nozzle has a semiglobular enlargement which fits over the enlargement end of the second curved section and is secured to it by a trunion on each side thus forming a pivoted ball-and-socket joint.
U.S. Pat. No. 4,506,738 issued Mar. 26, 1985 to John L. Evans, et al. and assigned to Chubb Fire Security Limited of Sanbury-on-Thames, England, discloses a spherical head type liquid-projecting monitor comprising a head and housing which together define a chamber from which water is led through an inlet in the rear of the head to a passage extending through the head. The head has a frusto-spherical external surface which forms a sliding seal against an O-ring to keep the chamber watertight throughout the permitted range of pivotal movement of the head relative to the housing. The cross-sectional area of the passage within the head is approximately constant throughout its length to reduce turbulence and pressure drop. However, the axle passing through the flowpath presents a disruption to the flow causing turbulence while the ball in socket arrangement is limited to relatively limited range of motion.
U.S. Pat. No. 6,305,620 issued Oct. 23, 2001 to Antonio B. Marchese discloses a firefighting monitor having a plurality of outlet arms extending from the main inlet pipe. A main rotary joint is provided for rotating the casing and the plurality of outlet arms. Each outlet arm has an outlet rotary joint. A swiveling nozzle is coupled to each outlet arm for directing water from each outlet arm separately. Each swiveling nozzle has a ball joint having a passageway therethrough and having a handle thereon for rotating the main inlet pipe and the plurality of outlet nozzles. The main rotary joint and outlet arm rotary joint have an annular rack gear engaging a worm gear. When the outlet arm is rotated, the nozzles are rotated for vertical adjustment of the spray. However, the ball joints would be difficult to move under pressure because of the sliding motion of the ball within their sockets. In addition, the rotating joints would be difficult to move because of the eccentric loading of the nozzle reaction forces on the rotating joints.
U.S. Pat. No. 5,297,443 issued Mar. 20, 1994 to John D. Wentz discloses flexible positioning by bending a flexible hose. While the number of bends and turbulence in the flow path are minimized, in all cases the support for managing the hose relies on an external structural mechanism. This mechanism must withstand the forces of nozzle reaction, and in some cases the internal pressure of the hose itself. In addition, flexible hoses are limited by compression set properties of the flexible hose material. Adverse stresses exist within the hose for all positions other than neutral, which limits their degree of flexibility, and optimal storage position.
Because of their limitations, the use of the ball in socket devices and flexible hose mechanisms accounts for only a small percentage of the actual number of monitors commercially produced each year.
Monitors with mutually perpendicular swivel joints for use in firefighting account for the vast majority of monitors. These have been constructed with single or with twin waterways of various designs. The motion is controlled by swiveling the monitor through two mutually perpendicular axes. The line of action of the discharge trajectory is generally designed to pass substantially through both axes of rotation such that the reaction forces of the discharged fluids do not create a rotational moment on the monitor's swivel joint. Controlling the motion of the swivel joints with simple worm gear or other mechanisms are known in the art.
Monitors for use on the deck of fire trucks at flows up to 2000 GPM typically use a single waterway design. The most compact of these is the Stream Master® manufactured by Akron Brass of Wooster, Ohio. In the Stream Master® the water enters from a vertical feed pipe into the monitor, and undergoes approximately 3 bends of 90 degrees each. From here it enters the exit section where it undergoes 3 additional 90 degree bends. The water undergoes a total of 540 degrees of convolutions. Because compactness in mobile equipment design is desirable, the form of the bends in this monitor have been optimized as flattened shapes with essentially a zero inside elbow bend radius. It is doubtful that the flow area in these bends is equal to the flow area of the 4″ inlet diameter. With such an ultra contorted flow path these bends produce severe turbulence which adversely effect friction loss, stream quality and range.
Other prior art monitors are known and described in the following U.S. patents:
In U.S. Pat. No. 6,109,360 issued Aug. 29, 2000 to Thomas Mandzukia and assigned to Premier Farnell Corp. of Cleveland, Ohio, a firefighting monitor is disclosed having a rotatable extension member for adjusting the elevation of an outlet attached to the extension member while maintaining the discharge direction. Both the extension member and the outlet member are independently rotatable through an arc of at least 135 degrees in one direction from the vertical. However, this monitor has mutually perpendicular swivel joints in the same general shape and amount of convolutions in the water way as the Stream Master® of Akron Brass above.
In U.S. Pat. No. 4,674,686 issued Jun. 23, 1987 to James M. Trapp and assigned to Elkhart Brass Manufacturing Co., of Elkhart, Ind., a portable fire apparatus monitor is disclosed comprising a snap-fitting latch pin which fits beneath a swivel bearing on the monitor mount and which secures the monitor in place during firefighting operation and provides for quick connection to and disconnection from the mount. The flow path of this monitor comprises a plurality of turns which create undesirable turbulence and friction losses.
Therefore, it is desirable to have a monitor that has compact size with wide range of motion and minimal convolutions within the flowpath to minimize turbulence and friction losses.
Accordingly, it is therefore an object of this invention to provide a single flowpath firefighting monitor having positionable segments that swivel about an axis of rotation for a wide range of motion with a minimum number of convolutions in the flowpath.
It is another object of this invention to provide a segmented monitor having a stationary segment and three adjustable segments for forming a range of discharge elevation directions from being parallel with the inlet fluid direction to a discharge direction that has a maximum angular displacement of 136 degrees from the inlet fluid direction, and also adjustable to any azimuth direction.
It is another object of this invention to provide a segmented monitor having approximately planar motion of the discharge stream during elevation adjustments of the monitor.
It is a further object of this invention to provide a segmented monitor with a controlling mechanism that is substantially free from restraining forces resulting from internal pressure or nozzle reaction.
It is another object of this invention to provide a compact monitor with minimum turbulence and friction losses to produce a discharge stream which reaches a greater distance.
It is yet another object of this invention to synchronize the equal and opposite rotation of two of the segments using a single device mechanism.
These and other objects are accomplished by a firefighting monitor for redirecting a flow of fluid from a pressurized fluid source through a conduit, the conduit comprising four consecutive segments rotatably connected in series wherein an axis of rotation is provided at each connection between the four segments. The conduit comprises a first segment connected to the fluid source followed in series by a second segment connected to an outlet of the first segment, a third segment connected to an outlet of the second segment and a fourth segment connected to an outlet of the third segment forming consecutively at each connection a first axis of rotation, a second axis of rotation and a third axis of rotation respectively; the monitor includes a redirection of an azimuth angle of the conduit by an azimuth rotation between the first segment and the second segment on the first axis of rotation, and the monitor further includes a redirection of an elevation angle of the conduit by a first rotation between the second segment and the third segment on the second axis of rotation in a first direction and by a second rotation between the third segment and the fourth segment on the third axis of rotation in an opposite direction to the first direction. The fourth segment comprises a discharge end having a discharge centerline which intersects with a centerline of the second axis of rotation and a centerline of the third axis of rotation, thereby minimizing rotational torque on the connection between the second segment and the third segment and the rotational torque on the connection between the third segment and the fourth segment.
The redirection of an elevation angle of the monitor includes a synchronization of the first rotation between the second segment and the third segment and the second rotation between the third segment and the fourth segment in counter rotating directions to obtain approximately planar motion of the discharge centerline during the elevation angle redirection. The fourth segment comprises a discharge end having a discharge centerline that is approximately co-planer with the first axis of rotation thereby minimizing rotational torque on the connection between the first segment and the second segment. The monitor comprises an angle of approximately 68 degrees between the first axis of rotation and the second axis of rotation, an angle of approximately 34 degrees between the second axis of rotation and the third axis of rotation, and an angle of approximately 34 degrees between the third axis of rotation and the discharge centerline. The monitor comprises an angle between the second axis of rotation and the third axis of rotation and a substantially equal angle between the third axis of rotation and the discharge centerline. The second segment comprises a predetermined curvature adjacent to an outlet end, the third segment comprises a predetermined curvature between an inlet end and the outlet end, and the fourth segment comprises a first curvature extending from an inlet end and a second curvature extending to an outlet end of the fourth segment. The fourth segment comprises the first curvature and the second curvature to minimize rotational torque on the connection between the first segment and the second segment. The predetermined curvature of the second segment comprises approximately 68 degrees, the predetermined curvature of the third segment comprises approximately 34 degrees, and the first curvature of the fourth segment comprises approximately 73 degrees and the second curvature of the fourth curvature comprises approximately 39 degrees. At least one of the rotatable connections comprises a male/female ball race. The first segment is rotatably connected to the second segment by a first male/female ball race, the second segment is rotatably connected to the third segment by a second male/female ball race, and the third segment is rotatably connected to the fourth segment by a third male/female ball race. The second segment comprises an azimuth shaft assembly connected to a first turning device for adjusting the azimuth rotation, and the azimuth shaft assembly comprises a worm for engaging a worm wheel located on the circumference of the first segment. The synchronization comprises gears. The gears comprise bevel gears.
The redirection of an elevation angle of the conduit comprises a first ring gear rotatably connected on an inlet end of the third segment, a second ring gear attached to an inlet end of the fourth segment, the second ring gear engaging the first ring gear at a predetermined angle, a half-ring gear attached to an outer receiving surface of the third segment, and a pinion, rotatably connected on a side of the second segment adjacent to the first ring gear and the half-ring gear, comprising a bevel gear for driving the first ring gear and the half-ring gear in opposite directions. The conduit further comprises an elevation shaft assembly having an end connected to a second turning device for adjusting the elevation angle, and the pinion comprises a worm wheel for engaging with a worm of the elevation shaft assembly for changing the elevation angle in response to the second turning device. The first ring gear and the second ring gear engage each other at an angle substantially equal to an angle between the second axis of rotation and the third axis of rotation.
The objects are further accomplished by a firefighting monitor for redirecting a flow of fluid from a pressurized fluid source through a conduit comprising a stationary segment connected to the fluid source, a lower segment of the conduit having a predetermined curvature between an inlet end and an outlet end, the inlet end being rotatably connected to the stationary segment, the lower segment including means for enabling azimuth rotation of the monitor, a middle segment of the conduit having a predetermined curvature between an inlet end and an outlet end, the middle segment being rotatably connected to the lower segment, an upper segment of the conduit having a first curvature extending from an inlet end and a second curvature extending to an outlet end of the upper segment, the upper segment being rotatably connected to the middle segment, and means for performing an elevation positioning of the monitor by synchronizing the simultaneous rotation of the upper segment and the middle segment in opposite directions with respect to the lower segment. The means for enabling azimuth rotation of the monitor includes the lower segment rotating about a cylindrical portion of the stationary segment. The means for providing azimuth rotation of the monitor comprises an azimuth shaft assembly connected to a first turning device. The azimuth shaft assembly comprises a worm for engaging a worm wheel located on the circumference of the stationary segment. The predetermined curvature of the lower segment of the conduit comprises a curvature of approximately 68 degrees. The predetermined curvature of the middle segment of the conduit comprises a curvature of approximately 34 degrees. The means for rotatably connecting the middle segment to the lower segment comprises a male/female ball race. The first curvature extending a predetermined distance from an inlet end of the upper segment of the conduit comprises a curvature of approximately 73 degrees. The second curvature of the upper segment extending over a predetermined distance from the first curvature distance to an outlet end comprises a curvature of approximately 39 degrees. The rotatable connection between the upper segment to the middle segment comprises a male/female ball race.
The means for performing an elevation positioning of the monitor by synchronizing the simultaneous turning of the upper segment and the middle segment in opposite directions with respect to the lower segment comprises means for rotatably connecting a first ring gear on an inlet end of the middle segment, a second ring gear attached to the inlet end of the upper segment and engaging with the first ring gear, a half-ring gear attached to an outer receiving surface of the middle segment, and a pinion, rotatably connected on a side of the lower segment adjacent to the first ring gear and the half-ring gear, comprises a bevel gear for driving the first gear and the half-ring gear. The predetermined curvature of the lower segment of the conduit comprises a curvature of approximately 68 degrees, the predetermined curvature of the middle segment of the conduit comprises a curvature of approximately 34 degrees, the first curvature extending a predetermined distance from an inlet end of the upper segment of the conduit comprises a curvature of approximately 73 degrees, and the second curvature of the upper segment, extending over a predetermined distance from the first curvature distance to an outlet end, comprises a curvature of approximately 39 degrees.
The objects are further accomplished by a method of providing a firefighting monitor for redirecting a flow of fluid from a pressurized fluid source through a conduit comprising the step of providing a conduit having four consecutive segments rotatably connected in series wherein an axis of rotation is provided at each connection between the four segments. The step of providing a conduit having four segments rotatably connected in series comprises the steps of connecting a first segment to the fluid source followed in series by connecting a second segment to an outlet of the first segment, connecting a third segment to an outlet of the second segment and connecting a fourth segment to an outlet of the third segment forming consecutively at each connection a first axis of rotation, a second axis of rotation and a third axis of rotation respectively, redirecting an azimuth angle of the conduit by rotating the second segment around the first segment on the first axis of rotation, and redirecting an elevation angle of the conduit by rotating the second segment and the third segment on the second axis of rotation in a first direction, and by rotating the third segment and the fourth segment on the third axis of rotation in an opposite direction to the first direction. The method further comprises the step of synchronizing the first rotation between the second segment and the third segment and the second rotation between the third segment and the fourth segment in counter rotating directions to obtain approximately planar motion of the discharge centerline during the elevation angle redirection.
Additional objects, features and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The appended claims particularly point out and distinctly claim the subject matter of this invention. The various objects, advantages and novel features of this invention will be more fully apparent from a reading of the following detailed description in conjunction with the accompanying drawings in which like reference numerals refer to like parts, and in which:
Referring to
Referring to
Referring now to
The inlet center line 60 and the outlet center line 63 are in the same elevation plane so that the force of a nozzle reaction does not produce a significant torque on the side-to-side swivel joint 50 (azimuth) of the azimuth drive 14. The inlet face and the outlet face of the middle segment 18 are angled relative to each other such that the desired range of elevation is obtained. The inlet end of the middle segment 18, the lower ring gear 24 and the half-ring gear 26 rotate about the axis 61. The shape of the upper segment 20 is such that a vector from the nozzle reaction acting along center line 63 passes through the intersection 64 of the inlet axis of rotation 61 and outlet axis of rotation 62 in the middle segment 18. Because the nozzle reaction stays on the centerline of both swiveling joints 51, 52, no torque is produced on these swiveling joints 51, 52 from the force of the nozzle reaction. This is important because the force from the nozzle reaction may be over 1000 pounds, and it is desirable to keep the required actuation power low.
Still referring to
Referring to
Still referring to
Still referring to
Referring now to
Referring again to
Referring to
Still referring to
Referring again to
Table 1 lists the specification for the worm 35 to worm wheel 21. There is a 1.500 inch center-to-center distance from worm 35 to worm wheel 21.
Table 2 lists the specification of the bevel gears 23, 24, 26 and 28. The pitch angle between the lower ring gear 24 (77 degrees) and the upper ring gear 28 (69 degrees) gives a 34 degree rotation axis change (180−77−69=34 degrees corresponding to angle E of
While bevel gearing is preferred because of its compact nature, other drives may be implemented providing the synchronization between the upper and middle segments is maintained.
Referring again to
Referring to
Referring to
The motor controller 91 comprises input controls for selecting position and nozzle control inputs to the segmented monitor 90. The input controls include switches for left, right, up and down position inputs, a fog switch, and a straight stream switch for selecting the type of nozzle output.
The azimuth and elevation gearmotors 94, 95 may each be embodied by Part No. GM 14634A140 manufactured by PITTMAN, of Harleysville, Pa. along with the motor controller 91. It will be apparent to one skilled in the art that the segmented monitor 10 may be automated by other types of motors such as hydraulic, or water actuated providing they have reversible drives. Further, electric gear motors may be DC or AC, single phase or multiphase.
This invention has been disclosed in terms of a certain embodiments. It will be apparent that many modifications can be made to the disclosed apparatus without departing from the invention. For example, synchronization of the motions of the middle and upper segments could also be performed using other driving devices such as cams, cables, cog teeth, or spur gears, or synchronization by use of hydraulic fluid volumes. Digital synchronization may be implemented with twin servo or stepper motors each driving one of the swivel/joints 51 and 52. Therefore, it is the intent of the appended claims to cover all such variations and modifications as come within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
557799 | Gorter | Apr 1896 | A |
2612402 | Miscovich | Sep 1952 | A |
3498325 | Ashton et al. | Mar 1970 | A |
4392618 | Evans et al. | Jul 1983 | A |
4506738 | Evans et al. | Mar 1985 | A |
4607702 | Miller | Aug 1986 | A |
4674686 | Trapp | Jun 1987 | A |
4679732 | Woodward | Jul 1987 | A |
4793557 | Marchese et al. | Dec 1988 | A |
4913354 | Woodward | Apr 1990 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5297443 | Wentz | Mar 1994 | A |
6109360 | Mandzukic et al. | Aug 2000 | A |
6305620 | Marchese | Oct 2001 | B1 |
6354320 | Kolacz et al. | Mar 2002 | B1 |
6550817 | Mitchell | Apr 2003 | B1 |
D479314 | Trapp | Sep 2003 | S |
6655613 | Brown | Dec 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050145727 A1 | Jul 2005 | US |