This disclosure relates generally to refiners configured to process lignocellulosic material, and more particularly to rotor caps within refiners.
Mechanical pulping, dispersion, and medium density fiberboard (“MDF”) processes involve mechanical treatment of lignocellulosic material between rotating discs or cones. Throughout this application, “refiner” will be understood to refer mechanical refiners, dispersers, or other devices configured to separate, develop, and cut fibers in lignocellulosic material with refiner plates having abrasive surfaces.
Refiners can be broadly categorized into disc refiners and conical refiners. Disc refiners include the single-disc refiner, the double-disc, and the twin refiner. The double-disc refiner is also known as a “counter-rotating refiner.” The single-disc refiner generally has one rotor disc placed opposite a stationary stator disc. The double-disc refiner generally has two opposing discs that rotate in opposite directions. The twin refiner typically utilizes a rotating double-sided disc disposed between two stationary discs. Conical refiners use nested truncated cones to develop, separate, and cut lignocellulosic material. Some conical refiners comprise a flat refining area, followed by a conical refining area, while some conical refiners comprise only a conical section such that lignocellulosic material development, separation, and cutting occurs substantially entirely in the conical section.
Refiners typically have refiner plates mounted on two or more discs or cones. The refiner plates usually have an abrasive surface comprising a pattern of bars and grooves, a pattern of intermeshing teeth, or a combination thereof. A refiner plate's abrasive surface is generally adapted to process wood fibers or other lignocellulosic material to form pulp. A refining gap separates oppositely disposed abrasive surfaces on oppositely disposed discs or cones. In a mechanical pulp refiner, the refining gap typically has a width of less than one millimeter (“mm”). In mechanical dispersers, the width of the refining gap may range from 1 mm to about 6 mm.
Disc refiners generally have a feed inlet at the center of one of the opposing discs. In single disc refiners, the feed inlet typically extends through the center of the stator. During operation, the rotor spins quickly, generally in a range of 1,200 to 1,800 rotations per minute (“rpm”). Operators inject lignocellulosic feed material through the feed inlet and the lignocellulosic feed material quickly contacts a rotor cap at the center of the spinning rotor. As the lignocellulosic feed material contacts the rotor cap, wide bars on the rotor cap fling the lignocellulosic feed material into the refining gap. As such, the rotor cap is also known as a “flinger”.
The high centrifugal forces along the radial length of the rotor, force lignocellulosic material through the refining gap and thereby allow the refiner plates' abrasive surfaces to separate, develop, and cut the lignocellulosic fibers. This separation, development, and cutting of the lignocellulosic fibers can generate steam, which may contribute to abrasive surface erosion over time. After a single pass through the refiner, the lignocellulosic material generally exits the refining gap at the outer diameter of the refiner plates. Once expelled from the refining gap, the lignocellulosic material may be collected for further processing, which may include additional refining passes.
Over time, prolonged exposure to lignocellulosic feed material grinds away the rotor cap's wide bars. Contaminants in the lignocellulosic material such as sand, stones, and pieces of concrete, dirt, metal fragments, and other coarse biological material, can also accelerate rotor cap wear. Large contaminants, such as metal pieces or concrete can sheer off chunks of rotor cap and wear the rotor cap asymmetrically. Rotor cap wear, particularly uneven wear, can disrupt the rate at which lignocellulosic material enters the refining gap, which can ultimately destabilize the refiner, reduce refining capacity, and decrease fiber quality.
To avoid these problems, operators generally schedule maintenance periods to deactivate mechanical pulp refiners and evaluate wear. If the rotor cap has deteriorated sufficiently, an operator may prescribe replacement. Downtime varies depending on the type of refiner, but downtime generally ranges from three to twelve hours, and may require several workers and heavy equipment to handle worn rotor caps.
Rotor caps are commonly cast in steel or other durable material. Rotor caps may vary in weight. Large rotor caps may weigh over 100 kilograms (“Kg”). Operators typically utilize overhead cranes, forklifts, or similar heavy equipment when replacing a rotor cap for all but the lightest rotor caps. Heavy equipment increases maintenance time, costs, and risk of injury to personnel.
A rotor cap that is positioned so that the rotor cap's mass is evenly distributed around the rotor's center of rotation and that experiences uniform centripetal force during rotor operation is known as a “piloted” rotor cap. If a rotor cap is improperly piloted, the rotor cap's uneven weight distribution and unbalanced physical forces could create vibrations and accelerate rotor shaft wear. Improper piloting may also increase the risk that the oppositely disposed refiner plates will contact each other during operation, thereby predicating violent refiner plate destabilization, potential harm to personnel, and damage to surrounding equipment.
The time required to pilot a replacement rotor cap, together with the temporal and financial costs associated with maintenance periods contributes to production loss. As a result, operators may delay rotor cap replacement and extend rotor cap use beyond the rotor cap's useful life. Delayed maintenance can lead to inefficient mechanical refiner performance (e.g. from uneven rotor cap wear), which can pose safety risks, increase energy consumption, and negatively impact fiber quality.
As such, there is a long felt need to reduce maintenance time for the removal and replacement of worn rotor caps while improving safety conditions for operating personnel.
The problems of personnel safety risks and loss of production attributable to conventional refiner rotor caps is mitigated by using a segmented rotor cap assembly that comprises a cap segment retainer positioned behind rotor cap segments, wherein each rotor cap segment is configured to be retained by the cap segment retainer, wherein the cap segment retainer can be piloted around the rotor's center of rotation, and wherein the cap segment retainer has retaining means configured to pilot a rotor cap segment at a diameter intermediate the cap segment's inner diameter and outer diameter or at the rotor cap segment's outer diameter.
The present disclosure utilizes a segmented rotor cap assembly configured to position rotor cap segments such that the rotor cap segments resist the centrifugal force of a spinning rotor (i.e. the inertia the mass of the rotor experiences as a result of circular motion). High consistency refiners generally have rotors that can operate at 1,200 to 1,800 rpm and the segmented rotor cap assembly is desirably configured to withstand corresponding high inertia that results from the rotor's circular motion. In traditional single-piece rotor cap designs, this inertia is generally of minimal concern if the traditional rotor cap is adequately piloted at the rotor's center by a pin. If a traditional single-piece rotor cap is made of steel or another similar material commonly used in the industry, the structural integrity of the material generally provides sufficient centripetal force to cancel out the centrifugal forces of an operational rotor. That is, if the single-piece rotor cap's mass is evenly distributed around the rotor's center of rotation, the centrifugal and centripetal forces cancel out, thereby balancing the single-piece rotor cap.
Exemplary rotor cap segments typically have a shape of a geometric annulus sector and have an annularly truncated lower portion, such that the annular sector does not terminate in a pointed wedge. When operators attach multiple refiner plate segments directly or indirectly to the rotor and adjacently to other rotor cap segments, the multiple rotor cap segments typically form an annulus. In other exemplary embodiments, the segmented rotor cap assembly may further comprise a central cap segment disposed on the center of the cap segment retainer. In other exemplary embodiments, multiple central cap segments may be provided. Exemplary rotor cap segments, including central cap segments, and the cap segment retainer may be made of stainless steel or other materials configured to withstand frequent contact with the abrasive lignocellulosic feed material and corrosive steam.
Segmenting an otherwise single-piece rotor cap obviates the structural integrity of the single-piece rotor cap, creates multiple centers of gravity, and unbalances the rotor cap system. Despite this fact, Applicant decided to segment the rotor cap and; rather than attempt to pilot the rotor cap segments at the center of rotation, to instead provide piloting means at an intermediate diameter of the rotor cap segments. In other exemplary embodiments the rotor cap segments may be piloted at the rotor cap segment's outer diameter. If rotor cap segments are improperly piloted, the inertia caused by the rotor's rotational motion may cause the rotor cap segments to move radially outward from rotor's center of rotation, which may cause vibrations, cause a rotor cap segment to enter the refining gap, or otherwise interrupt the refiner's functionality.
To address this issue, Applicant has provided a segmented rotor cap assembly, which comprises a cap segment retainer that may desirably be piloted around the rotor. The cap segment retainer is generally circular or annular. The front of the cap segment retainer may have retaining means configured to engage positioning means on the back of rotor cap segments, particularly during the rotor's circular movement. In this manner, the cap segment retainer may position and provide centripetal forces sufficient to balance the inertia the rotor cap segments experienced during the rotor's circular movement and thereby pilot the rotor cap segments.
In an exemplary embodiment, the cap segment retainer may have retaining means configured to pilot a rotor cap segment at the rotor cap segment's outer diameter. In another exemplary embodiment, the cap segment retainer may have retaining means configured to pilot a rotor cap segment at a diameter intermediate the rotor cap segment's outer diameter and middle diameter. In still other exemplary embodiments, the cap segment retainer may have retaining means configured to pilot a rotor cap segment at a diameter intermediate the rotor cap segment's middle diameter and inner diameter.
The retaining means may be retaining lips, steps, protrusions, clamps, pins, teeth, or other similar retaining means configured to pilot the cap segments. In embodiments where the retaining means are retaining lips, the positioning means may be positioning lips configured to position the a rotor cap assembly in a concave space defined by one or more retaining lips and to engage the retaining lips during the rotor's circular motion. In this manner, the retaining lips and the positioning lips position the rotor cap segment on the rotor cap retainer and provide centripetal force configured to cancel out the inertia the rotor cap segments experience as a result of the rotor's circular motion to thereby pilot the rotor cap segments. In embodiments where the retaining means are retaining steps, the positioning means may be positioning steps configured to engage the retaining steps. In embodiments where the retaining means are clamps, the positioning means may be one or more protrusions configured to interlock with the clamps. In embodiments where the positioning means are pins, the retaining means may be a hole configured to receive the pin. In embodiments where the retaining means are teeth, the positioning means may be indentations configured to engage and interlock with the teeth. In embodiments where the retaining means are other retaining means configured to pilot the cap segments, the positioning means may be other positioning means configured to engage the retaining means whereby the retaining means provide centripetal force sufficient to cancel out the inertia of the rotor cap segment caused by the rotor's circular motion and whereby the retaining means and the positioning means position the rotor cap segment on the cap segment retainer during the rotor's circular motion.
It will be understood that in embodiments where lips, steps, clamps, pins, teeth or similar interlocking mechanisms are disposed on rotor cap segments, the retaining means on the cap segment retainer may be configured to interlock with the interlocking mechanisms on the rotor cap segments and vice versa. It will further be understood that lips, steps, clamps, pins, teeth, or similar interlocking mechanisms may be used singularly or in combination with the interlocking mechanisms disclosed herein. Further, in other exemplary embodiments, the interlocking elements that comprise the interlocking mechanisms (e.g. clamps and one or more protrusions configured to interlock with the clamps) may be disposed on a rotor cap segment, a central cap segment, the cap segment retainer, or a combination thereof. An interlocking element of an interlocking mechanism disposed on a cap segment is known as a “cap segment interlocking element,” an interlocking element of an interlocking mechanism disposed on a cap segment retainer is known as a “retainer interlocking element,” and an interlocking element disposed on a central cap segment is known as a “central cap segment interlocking element.” It will further be understood that interlocking mechanisms, in addition to retaining means configured to be used with positioning means, may be referred to as “piloting means” throughout this disclosure.
If the retaining means are retaining lips, the retaining lips may have a height of 5 mm to 15 mm. The retaining lips are generally configured such that the height of the retaining lip is sufficiently tall to engage the height of the sidewall of a positioning protrusion extending from the back of the rotor cap segment. The retaining lips are desirably configured to engage the sidewall of a protrusion extending from the back of the rotor cap segment such that each retaining lip is substantially flush to each sidewall of a protrusion extending from the back of the rotor cap segment.
By providing piloting means configured to pilot the rotor cap segments at a diameter intermediate the rotor cap segments' inner diameter and the rotor cap segments' outer diameter, or by providing piloting means configured to pilot the rotor cap segments at the rotor cap segments' outer diameter, Applicant has found that it is possible to use rotor cap segments in lieu of single-piece rotor caps.
Additionally, Applicant has found that wide bars and channels approaching the rotor cap's outer diameter tend to wear at a greater rate than wide bars and channels nearer the center of rotation. It is therefore an object of the present disclosure to permit localized replacement for worn wide bars near the outer periphery of a rotor cap assembly, while permitting serviceable wide bars and channels closer to the center of rotation to remain in use.
It is an object of the present disclosure to have rotor cap segments configured to be removed and replaced after a desired time period, such as bi-annually, to ensure suitable refiner operating performance and hence preserve fiber quality.
It is another object of the present disclosure to permit manual installation of rotor cap segments onto a cap segment retainer, without the need for using an overhead crane.
It is a further object of the present disclosure to reduce refiner downtime during maintenance periods.
It is a still further object of the present disclosure to provide a cap segment retainer configured to provide centripetal force to rotor cap segments engaged with the cap segment retainer.
In an exemplary embodiment of the rotor cap assembly, the rotor cap may comprise cap segments disposed adjacently to a cap segment retainer. The cap segment retainer may be mounted to a rotor in a refiner. The cap segment retainer may have a back side that may be disposed on the rotor, and the cap segment retainer may have a front side that is adjacent to the cap segments such that the cap segment retainer is disposed between the cap segments and the rotor. In still other exemplary embodiments, the cap segment retainer may be annular such that the cap segment retainer defines a hole in the center of the cap segment retainer. In embodiments comprising an annular cap segment retainer, a rotor central part (e.g. a hub) may be attached directly to the rotor and the rotor central part may extend through the hole in the center of the annular cap segment retainer. In such embodiments comprising an annular cap segment retainer, there is generally no central cap segment or central portion of the cap segment retainer. The cap segment retainer may have piloting means for the cap segments.
A rotor cap assembly in accordance with the present disclosure may be used in conjunction with each of either disc refiners or conical refiners. With regard to conical refiners, the cap segment retainer and cap segments may be substantially similar to cap segment retainers used in conjunction with disc refiners.
In another exemplary embodiment, the cap segment retainer may further comprise a first retaining means configured to pilot a rotor cap segment at a first intermediate diameter on the rotor cap segment and a second retaining means configured to pilot a rotor cap segment at a second intermediate diameter on the rotor cap segment radially distal from the first intermediate diameter. In certain exemplary embodiments, the second retaining means may be at a rotor cap segment outer diameter. The first retaining means can engage a first positioning means on the rotor cap segment's first intermediate diameter and the second retaining means can engage a second positioning means on the rotor cap segment's second intermediate diameter. In other exemplary embodiments, the first intermediate diameter may be disposed on an inner rotor cap segment while the second intermediate diameter may be disposed on an outer rotor cap segment. In exemplary embodiments involving an inner rotor cap segment and an outer rotor cap segment, the first diameter may be at the inner rotor cap's outer diameter. The second diameter may be at the rotor cap's outer diameter. In other exemplary embodiments, more than two sets of rotor cap segments may be disposed radially on the rotor. Combinations of the above are considered to be within the scope of this disclosure.
The retaining means may be circumferential. In certain exemplary embodiments, a series of retaining means may be configured to engage a rotor cap segment at a rotor cap segment outer diameter or rotor cap segment intermediate diameter. A series of positioning means on the rotor cap segments may be configured to engage the retaining means. In other exemplary embodiments, the retaining means may be circumferential, continuous, and disposed on a cap segment retainer at the cap segment retainer's outer diameter, a cap segment retainer intermediate diameter, or a combination thereof. The retaining means on the cap segment retainer may be disposed between about 10 mm from the center of rotation of the rotor (e.g. the rotational axis) to about 25 mm from the center of rotation of the rotor. In other exemplary embodiments, the retaining means may be disposed between about 10 mm from the rotor cap segment's outer diameter to about 25 mm from the rotor cap segment's outer diameter. The distance from the center of rotation of the rotor to the retaining means is commonly known as the radial length. The retaining means may desirably have a radial length of 12 mm.
An exemplary method for replacing a segmented rotor cap may comprise deactivating an active refiner, accessing the rotor, disengaging a rotor cap from a rotor, positioning a cap segment retainer over a center of the rotor, positioning a cap segment over the cap segment retainer, securing the cap segment retainer on the center of the rotor by using fasteners extending from the rotor cap segments through the cap segment retainer, and into the rotor, wherein the cap segment retainer has a front side and retaining means disposed on the front side of the cap segment retainer, wherein the rotor cap segments have a back side and positioning means disposed circumferentially at a diameter on the back side, and wherein the positioning means of the rotor cap segments engage the retaining means of the cap segment retainer. In other exemplary embodiments, the fasteners may extend from the rotor through the cap segment retainer and into the rotor cap segments.
In another exemplary method, the cap segment retainer may be positioned over a center of a plate holder. The cap segment retainer may be secured into position by fasteners extending from rotor cap segments through the cap segment retainer and into the plate holder. In other exemplary embodiments, the fasteners may extend from the plate holder through the cap segment retainer and into the rotor cap segments.
The foregoing will be apparent from the following more particular description of exemplary embodiments of the disclosure, as illustrated in the accompanying drawings. The drawings are not necessarily to scale, with emphasis instead being placed upon illustrating the disclosed embodiments.
The following detailed description of the preferred embodiments is presented only for illustrative and descriptive purposes and is not intended to be exhaustive or to limit the scope and spirit of the invention. The embodiments were selected and described to best explain the principles of the invention and its practical application. A person of ordinary skill in the art will recognize many variations can be made to the invention disclosed in this specification without departing from the scope and spirit of the invention. Except as otherwise stated, corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate embodiments of the present disclosure, and such exemplifications are not to be construed as limiting the scope of the present disclosure in any manner.
A stator 107 is disposed opposite the rotor 105. The stator 107 has a plate side 176b opposite the plate side 176a of the rotor 105. Bolts 181 engage a plate holder 113 to the plate side 176b of the stator 107 through fixing holes 182 in the stator 107. These bolts 181 similarly engage the plate holder 113 to the plate side 176a of the rotor 105 through fixing holes 182 in the rotor 105. The bolts 181 may extend through the stator 107. The bolts 181 may extend through the rotor 105. Fasteners 183 can extend to the plate holder 113 to engage refiner plate segments 115b on the stator 107. Similarly, fasteners 183 can extend through the plate holder 113 to hold the refiner plate segments 115a on the rotor 105. The plate holders 113 may provide additional fastener holes that do not communicate with the rotor 105. This allows operators to assemble the refiner plate segments 115a, 115b on the single piece plate holder before installing the plate holder 113 to the rotor 105.
Refiner plate segments 115 usually have an abrasive surface comprising a pattern of bars and grooves (see
In the depicted single disc refiner, the stator 107 further defines a feed inlet 111 disposed opposite the single-piece rotor cap 103. As the rotor 105 spins, operators feed lignocellulosic feed material F through the feed inlet 111. Wide bars 130 may be disposed upon the single-piece rotor cap 103. As the lignocellulosic material F contacts the spinning single-piece rotor cap 103 or wide bars 130, the single-piece rotor cap 103 or wide bars 130 flings the lignocellulosic feed material F through the refining gap 119 in the refining area 168 (see path depicted by arrows in
In
In
The rotor cap segments 317 are disposed radially outward from the center of rotation 306 around the central cap segment 365 or central cap portion 365′. The rotor cap segments 317 are generally configured to be regular segments of a geometric annulus. In other exemplary embodiments, fasteners 383 may extend through the rotor cap segments 317, cap segment retainer 318, and through pre-existing holes in the rotor 105 to sandwich the cap segment retainer 318 between the rotor cap segments 317 and the rotor 105.
For clarity, the use of the subscripts “a” or “b” after an element that may be configured to extend as a single piece around a diameter of a rotor 105, 605 rotor cap segment 317, 417, 517, 617, rotor cap segment retainer 318, central cap segment 365, or annular rotor cap segment retainer 527, 627 will be used to differentiate upper portions of the element from lower portions of the element.
The retaining lip 311a, has a sidewall 326a configured to contact the sidewall 359a of the protrusion 344. The retaining lip sidewall 326a is disposed opposite a sidewall 326b that extends from the body 347 of the cap segment retainer 318 toward the front side 323 of the segmented rotor cap assembly 303. The retaining lip sidewall 326a, the body 347 of the cap segment retainer 318 disposed between sidewall 326a and 326b, and sidewall 326b define a concave space 362 configured to receive the rotor cap's protrusion 344. The rotor cap protrusion 344 can be disposed between the sidewalls 326a and 326b. In this manner, the sidewalls 326a, 326b can define a space configured to receive the positioning means (e.g. the rotor cap's protrusion 344) and thereby position the rotor cap segments 317 relative to the central cap segment 365 or central cap portion 365′ while providing structures configured to balance the forces the refiner plate segments 317 experience as a result of the rotor's circular motion. Fasteners 383 can engage the rotor cap segments 317 to the cap segment to the rotor 105 or a plate holder 113 through the cap segment retainer 318. In the depicted exemplary embodiment, the fasteners 383 extend from holes 354 in the rotor cap segments 317 through holes 354 in the cap segment retainer 318 but the fasteners 383 do not extend into the rotor 105 or plate holder 113. The fasteners that extend through threaded holes 350 sandwich the cap segment retainer 318 between the central cap segment 365 and the plate holder 113 and thereby hold the central cap segment 365 and the cap segment retainer 318 to the plate holder 113. In the depicted embodiment, the fasteners 383 extending through holes 354 merely engage the rotor cap segments 317 to the cap segment retainer 318. In this manner, the cap segment retainer 318 with retaining means may have threaded holes 350 configured to align with pre-existing holes in the rotor 105 (see 450,
Without being bounded by theory, when the rotor 105 is spinning, the retaining lip 311a provides centripetal force C sufficient to cancel out the inertia I caused by the rotor's circular motion. In this example embodiment, retaining lip 311a is located near the outer diameter OD of the cap segment retainer 318 and is configured to pilot the rotor cap segment 317 at intermediate diameter IMD disposed between the rotor cap segment's outer diameter OD and the rotor cap segment's middle diameter MD. In
It will be understood that although a segmented rotor cap 317 having one protrusion 344 is depicted in these figures, rotor caps 317 having multiple protrusions, including multiple protrusions of different dimensions, as well as corresponding positioning means are considered to be within the scope of this disclosure.
The cap segment retainer 318 may have a central protrusion 345 extending from the body 347 of the cap segment retainer 318. The central cap segment 365 has steps 335a, 335b extending from the back side 361 of the central cap segment 365. The steps 335a, 335b, and the back side 361 of the central cap segment 365 define a concave space 367. In this exemplary embodiment, the steps 335a, 335b are located substantially halfway between the center of rotation 306 and the retaining lip 311b. The central protrusion 345 can be configured to extend into the concave space 365 such that the steps 335a and 335b contact the sidewalls 363a, 363b of the central protrusion 345 and thereby position the central cap segment around the center of rotation 306 at the central cap segment's middle diameter MD.
Because the central cap segment 365 is a single piece, the continuous structure of the central cap segment 365 provides sufficient centripetal force C to nullify the inertia I caused by the rotor's circular motion around the center of rotation 306. The centripetal force C supplied by the central cap segment 365 and the positioning provided by the steps 335a and 335b and central protrusion 345 of the cap segment retainer 318 pilot the central cap segment 365 around the center of rotation 306 at the central cap segment's middle diameter MD. Other piloting means may be used to pilot the central cap segment 365. In other exemplary embodiments the central cap segment 365 may be piloted at the cap segment retainer's intermediate diameter (IMD), a cap segment retainer's outer diameter (OD), or a combination thereof. The cap segment retainer 318 may be forged and machined to precise specifications. In other exemplary embodiments, the cap segment retainer may be cast and machined. In the example embodiments of
Although retaining lip 311 and rotor cap protrusion 344 pilot the rotor cap segments 317 in
In the exemplary embodiment depicted in
The annular cap segment retainer 527 is a single-piece rotor cap segment piloting plate. The annular cap segment retainer 527 may be configured to pilot the rotor cap segments 517 at a rotor cap segment's outer diameter OD. In other exemplary embodiments, the annular cap segment retainer 527 can be configured to pilot the rotor cap segments 517 at an intermediate diameter IMD disposed between the rotor cap segment's inner diameter ID and the rotor cap segment's outer diameter OD. In still other exemplary embodiments the annular cap segment retainer 527 can be configured to pilot the rotor cap segments 517 at a rotor cap segment's middle diameter MD.
In the exemplary embodiment of
The annular rotor cap assembly 503 may be disposed around a central part 666. The central part 666 may be conical to facilitate directing lignocellulosic feed material F from the feed inlet 611 toward the rotor cap segments 617 and ultimately the refining gap 619 defined by the opposing refiner plate segments 615a disposed on the rotor 605, 615b disposed on the stator 607.
In this exemplary embodiment, the rotor 605 has a pre-existing annular protrusion 698. The annular cap segment retainer 627 is a single piece that has an inner diameter ID and an outer diameter OD. The body 699 of the annular cap segment retainer 627 has a height h that may equal the height h′ of the pre-existing annular protrusion 698. The pre-existing annular protrusion 698 can position the annular cap segment retainer 627 around the center of rotation 606. Because the annular cap segment retainer 627 is a single-annular piece, the structural integrity of the annular cap segment retainer 627 provides the centripetal force sufficient to cancel out the inertia I caused by the rotor's circular motion. In this manner, the pre-existing annular protrusion 698 and the annular cap segment retainer 627 pilot the annular cap segment retainer 627 at the cap segment retainer's inner diameter ID.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This Application is a non-provisional application claiming the benefits of U.S. provisional patent application Ser. No. 62/081,818 filed Nov. 19, 2014, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
161456 | Trumbull, Jr. | Mar 1875 | A |
727156 | Lacey | May 1903 | A |
819599 | Robinson | May 1906 | A |
827059 | Davis | Jul 1906 | A |
1609717 | Holland-Letz | Dec 1926 | A |
2035994 | Sutherland, Jr. | Mar 1936 | A |
2220729 | Powers | Nov 1940 | A |
3125306 | Kollberg | Mar 1964 | A |
3473745 | Soars, Jr. | Oct 1969 | A |
4166584 | Asplund | Sep 1979 | A |
4469284 | Brubaker | Sep 1984 | A |
5203514 | Mokvist | Apr 1993 | A |
5383617 | Deuchars | Jan 1995 | A |
5875982 | Underberg | Mar 1999 | A |
5971307 | Davenport | Oct 1999 | A |
6024308 | Bartels | Feb 2000 | A |
6227471 | Virving | May 2001 | B1 |
6616078 | Gingras | Sep 2003 | B1 |
6932290 | Virving | Aug 2005 | B2 |
6957785 | Virving | Oct 2005 | B2 |
7191967 | Vuorio | Mar 2007 | B2 |
8028945 | Gingras | Oct 2011 | B2 |
8061443 | Gingras | Nov 2011 | B2 |
8061643 | Gingras | Nov 2011 | B2 |
8573521 | Gingras | Nov 2013 | B2 |
8671546 | Gingras | Mar 2014 | B2 |
9708765 | Gingras | Jul 2017 | B2 |
9968938 | Gingras | May 2018 | B2 |
20060175447 | Duggan | Aug 2006 | A1 |
20080296419 | Gingras | Dec 2008 | A1 |
20120018549 | Gingras | Jan 2012 | A1 |
20130015281 | Gingras | Jan 2013 | A1 |
20130270377 | Gingras | Oct 2013 | A1 |
20140077016 | Gingras | Mar 2014 | A1 |
20140110511 | Antensteiner | Apr 2014 | A1 |
20140131489 | Gingras | May 2014 | A1 |
20140246530 | Ahlgren | Sep 2014 | A1 |
20160138220 | Gingras | May 2016 | A1 |
20170275819 | Gingras | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
9837271 | Aug 1998 | WO |
Entry |
---|
Notification of First Office Action, Chinese Patent Application No. 201510802294.4, dated Mar. 21, 2018, pp. 1-5, Chinese Patent Office, Beijing, China. |
Maisonnier, Claire, Extended European Search Report, dated Mar. 21, 2016, pp. 1-7, European Patent Office, Munich, Germany. |
Number | Date | Country | |
---|---|---|---|
20160138220 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62081818 | Nov 2014 | US |