This application claims priority to German Patent Application DE102008061800.4 filed Dec. 11, 2008, the entirety of which is incorporated by reference herein.
This invention relates to a labyrinth sealing ring.
More particularly, the present invention relates to a crack-resistant sealing lip of a labyrinth sealing ring for use with a labyrinth seal of a turbine disk of a gas turbine, in particular a high-pressure gas turbine.
It is known from the state of the art to use metal for the fabrication of such sealing rings. They feature at least one annular sealing lip mating with small clearance with a component moving relatively to the sealing ring.
Sealing lips on rotating components are designed with small clearance tolerances between the static and the rotary members. This provides for good sealing properties without larger leakage rates.
In practice, however, it frequently happens, for example in normal engine operation during engine start-up and shut-down, that the sealing lip of the labyrinth sealing ring at least temporarily contacts the associated component, for example a static part of a stator disk. This initially results in local heating of the sealing lip. As a result, material stresses will occur which in turn may cause crack formation and crack propagation.
In particular on high-pressure turbine disks, this incurs increased failure risk. Consequently, it may be necessary to replace the entire turbine disk. This demands considerable financial effort, especially at engine overhaul.
In a broad aspect, the present invention provides a labyrinth sealing ring of the type specified above, which avoids the disadvantages of the state of the art, has a long service life and features low susceptibility to crack formation, while being simply designed and easily and cost-effectively manufacturable.
According to the present invention it has therefore been provided that at least one groove extending essentially in the radial direction is arranged on the circumference of the sealing lip.
The provision of a groove, which in a preferred embodiment features a very small width, for example between 50 μm and 300 μm, reduces thermal stresses caused by the sealing lip being heated when contacting the associated component moving relatively to it.
According to the present invention, the sealing ring can be stationary or rotary, with the invention not being limited to a labyrinth sealing ring attached to a turbine disk.
By allowing the sealing lip to thermally expand in the circumferential direction, the hazard of crack formation is substantially reduced. In a particularly favorable development, the present invention provides for several, circumferentially arranged grooves or slots. The grooves or slots are producible by micromachining.
It is further advantageous if the bottom area of the groove is provided with a rounding. Thus, crack propagation originating from the very narrow groove is prevented. The rounding can, for example, be in the form of a microhole precluding crack initiation.
According to the present invention, uncontrolled cracking due to thermal stresses is thus avoided. Since cracking in the sealing lip can in practice propagate not only through the sealing ring but also through the turbine disk, the life of the latter is directly increased. Thus, the scrap rate of turbine disks is also considerably reduced, resulting in lower spare parts and overhaul costs for the entire engine. Further advantageously, repair or restoration of damaged sealing lips at engine overhaul is no longer required.
The present invention is further advantageous in that coating of the sealing lips can be dispensed with. This also reduces manufacturing costs.
The generally reduced risk of crack formation also lowers the risk of non-detectable cracks overlooked during inspection in the framework of engine overhaul.
The present invention is more fully described in light of the accompanying drawings showing a preferred embodiment. In the drawings,
According to the present invention, it has been provided that on a turbine disk 1 an annular element 3 is arranged which has at least one sealing lip 4 interacting and forming a labyrinth seal with a stator element 2, as shown in
Circumferentially distributed, grooves 5 are provided on each of the sealing lips 4. For a better representation, the grooves 5 are shown extremely broad in
The height of the grooves 5 essentially amounts to the full radial height of the sealing lip 4. In the bottom area 7, a rounding or borehole is provided to preclude crack propagation in the base material of the annular element 3 and thus in the turbine disk 1.
According to the present invention, the grooves 5 can be arranged parallel to the machine axis 6, i.e. in a plane including the machine axis 6. However, the grooves can also be inclined relatively to this plane, and thus be obliquely arranged, to thereby reduce the airflow through the seal by increasing the pressure ratio, thus requiring less bleed air and consequently increasing engine performance.
The arrangement of the grooves on the circumference of the sealing lip and their height may be uniform or different. Furthermore, in accordance with the present invention, different cross-sectional shapes of the sealing lips 4 are providable in line with the respective application.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 061 800 | Dec 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4157232 | Bobo et al. | Jun 1979 | A |
5290144 | Kreitmeier | Mar 1994 | A |
5568931 | Tseng et al. | Oct 1996 | A |
5756217 | Schroeder et al. | May 1998 | A |
6471216 | Brainch et al. | Oct 2002 | B1 |
6478304 | Hoffelner | Nov 2002 | B1 |
6805530 | Urban | Oct 2004 | B1 |
6939104 | Chantal | Sep 2005 | B2 |
7326033 | Boegli et al. | Feb 2008 | B2 |
7744093 | McMillan | Jun 2010 | B2 |
20040012151 | Beeck et al. | Jan 2004 | A1 |
20070040335 | Kowalczyk | Feb 2007 | A1 |
20070110562 | Mons et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
4432998 | Apr 1996 | DE |
102004025321 | Dec 2005 | DE |
60203214 | Mar 2006 | DE |
112004000657 | Feb 2007 | DE |
1785651 | May 2007 | EP |
2451568 | Feb 2009 | GB |
Number | Date | Country | |
---|---|---|---|
20100148449 A1 | Jun 2010 | US |