Embodiments of this disclosure relate generally to vehicle lamps. More specifically, embodiments of this disclosure include lamps configured to provide segmented shuttering and a changeable outward appearance.
Various switchable mirror devices are known. For example, U.S. Pat. No. 7,679,808 to Kim discloses a portable electronic device having a switchable mirror display capable of switching between a transparent state and a reflecting state. U.S. Pat. No. 9,254,789 to Anderson et al. discloses a rearview mirror assembly that includes a switchable mirror system. U.S. Pat. No. 8,179,588 to Yamada et al. discloses a switchable mirror element having a switchable layer to be reversibly changed from a transparent state to a mirror state.
In an embodiment, a segmented switchable mirror vehicle headlamp includes a light source, a switchable electrochemical film having a plurality of segments, and a controller electrically coupled with each segment of the plurality of segments, such that each segment of the plurality of segments is individually controllable for switching between a substantially transparent state and a substantially reflective state. The plurality of segments include a low-beam array of segments configured for providing a low-beam light distribution from the light source, and a high-beam array of segments configured for providing a high-beam light distribution from the light source. The controller is configured for switching the low-beam array of segments and the high-beam array of segments between the substantially transparent state and the substantially reflective state for controlling the low-beam light distribution and the high-beam light distribution, respectively.
In another embodiment, an adaptable-driving-beam headlamp for a vehicle includes a plurality of light-emitting diodes (LEDs) mounted on one or more printed circuit board, an inner lens aligned with the plurality of LEDs for shaping light emitted therefrom, an outer lens adapted to receive light from the inner lens and project the light from the vehicle, a camera system for imaging a forward view from the vehicle, and a controller adapted for determining a target location based on images received from the camera system. The outer lens includes a first transparent layer and a second transparent layer adjacent the first transparent layer, a switchable electrochemical film disposed between the first transparent layer and the second transparent layer, wherein the switchable electrochemical film includes a plurality of film segments. The plurality of film segments are each individually controllable via the controller such that each of the plurality of film segments is switchable between a substantially transparent state and a substantially opaque state for actively dimming a portion of light projected from the outer lens based on the target location.
A switchable-mirror adaptable-driving-beam headlamp for a vehicle includes a switchable mirror having a plurality of electrochemical film segments, a controller electrically coupled with each segment of the plurality of electrochemical film segments, such that each segment is individually controllable for switching between a substantially transparent state and a substantially reflective state, and a collimated light source directed at the switchable mirror such that each segment in the substantially reflective state reflects light from the collimated light source for projecting from a vehicle headlamp, and each segment in the substantially transparent state does not reflect light from the collimated light source.
Illustrative embodiments of the present disclosure are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
Light source 120 is, for example, an array of light-emitting diodes (LEDs) mounted to a printed-circuit board (PCB) 125. As depicted in
Inner lens 130 may be any type of optic lens adapted for projecting light from light source 120. In certain embodiments, inner lens 130 is an ADB matrix lens having a plurality of inner lenses adapted for shaping light from light source 120. For example, each inner lens may be a projection-type lens that includes optic elements centered over a respective LED of light source 120. Exemplary ADB matrix lenses are described in pending U.S. application Ser. No. 16/598,403, entitled Light Module and filed on Oct. 10, 2019, and U.S. application Ser. No. 16/561,640, entitled Vehicle Adaptable Driving Beam Headlamp and filed on Sep. 5, 2019. The entireties of these applications are herein incorporated by reference.
Segmented switchable lens 110 includes four layers of a transparent material such as plastic or glass that provide substrates for supporting electrochemical films and electrodes, which are configured for providing an adjustable transparency as described below. In certain embodiments, the transparent substrates are molded parts made of a clear or transparent plastic, such as polycarbonate or acrylic. The substrates may be molded into a variety of shapes having curvature, protrusions, indentations, grooves, recesses, bulges, etc. In the schematic diagram of
In certain embodiments, the first and second electrochemical films 115, 116 are formed of a thin film of polymer-dispersed liquid-crystals (e.g., as in a liquid-crystal display or “LCD”). Alternatively, in some embodiments, electrochemical films 115, 116 are formed a thin film of an electrochromic material such as a transition-metal hydride electrochromic. Yet in other embodiments, electrochemical films 115, 116 are a thin film laminate of particles suspended in liquid (e.g., as in a “suspended-particle device”). For all of these embodiments, a switch between transparent and non-transparent modes is controlled by a change in applied voltage. In addition to substantially transparent and substantially opaque states, different levels of semi-transparency or semi-opaqueness may be achieved by, for example, PWM of the applied electric potential, as further described below.
Electrochemical films 115, 116 may be divided into segments (e.g., 1-mm by 1-mm sized segments or larger) that are each independently adapted for switching between an active mode and an inactive mode. That is, the individual film segments may be wired separately for individually controlling their applied voltage. In this way, electrochemical films 115, 116 are adapted to provide a plurality of independently activated shutters or mirrors (see below), enabling greater variation and control of light emitted from lamp assembly 100. The individual segments of films 115, 116 may each be made substantially transparent, semi-transparent, or substantially opaque, e.g., under control of controller 350. The individual film segments may also be rapidly transitioned between the different transparency states under control of controller 350.
Outer lens 140 may be configured as a projection lens that receives light that passes through transparent segments of segmented switchable lens 110 and projects the light (e.g., in front of the vehicle). Outer lens 140 may be an undivided freeform optic surface, undivided aspheric surface, or undivided modified aspheric surface that generates one collective undivided image (e.g., in front of the vehicle) when lamp assembly 100 is lit. To improve beam image uniformity, an inner surface of outer lens (e.g., the “B surface” facing lens 110) may include pillow optics, flutes, or a swept optic surface, or it may be flat.
An optional heating element 180 may be provided with segmented switchable lens 110 for maintaining a predetermined minimum temperature (e.g., −40° C.) of the electrochemical films 115, 116 to maintain proper function. In an embodiment, heating element 180 includes a transparent conductive layer that is electrically powered to produce heat. The transparent conductive layer is, for example, a thin film layer of indium tin oxide (ITO) or silver nanowires configured to provide a transparent resistor. The transparent conductive layer may be disposed on a transparent substrate (e.g., clear plastic or glass). Other types of heating elements and/or other types of transparent conductive layers may be used without departing from the scope hereof.
Segments 141-164 may be formed on curved or planar surfaces and in a variety of shapes, such as those depicted in the 2×12 array of segments 141-164 of
In some embodiments, light source 120 includes a 2×12 LED-array having two rows of twelve LEDs such that each LED is aligned with a corresponding segment 141-164 of the segmented switchable lens 110 depicted in
Segmented switchable lens 110 may be used in various lamp assemblies as an outer or inner lens (not shown), or alternatively as a mirror (e.g., as segmented switchable mirror 415 of
Controller 350 includes a memory 354, including a non-transitory medium for storing software 356, and a processor 352 for executing instructions of software 356. Memory 354 may be used to store information used by the controller, including but not limited to instructions, algorithms, lookup tables, and computational models. Controller 350 may further include one or more switches (e.g., for performing PWM). An optional user interface 360 enables a user to transmit instructions and receive information, as further described below. Controller 350 is not limited by the materials from which it is formed or the processing mechanisms employed therein and, as such, may be implemented via semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)), and so forth.
In certain embodiments, user interface 360 includes a user input device, which may include one or more buttons or switches located in a vehicle cabin or on a handheld device (e.g., a key fob) for controlling the lamp assembly 100. In some embodiments, user interface 360 includes a touch screen display device configured for receiving touch indications by the user. The touch screen display device may be located in the vehicle cabin and/or accessed remotely via a mobile device (e.g., smartphone, tablet, or laptop computer). User interface 360 may be configured to present a menu for selecting for example ADB settings, among other patterns of transparent/reflective states.
In certain embodiments, controller 350 is optionally coupled communicatively with other vehicle subsystems 370. This enables automatic control of the lamp assembly 100 based on input signals provided by other subsystems of the vehicle. For example, a camera subsystem may be used to image a vehicle's forward view. The images are transmitted to controller 350 for determining which segments of film 115 to turn off in real-time or near real-time to control light projected on a target location, based on the camera images, as further described below in connection with
Functional control of segments of the first and second electrochemical films 115, 116 (e.g., turning on/off or dimming) may be matched to occur in a coordinated manner via controller 350. Alternatively, matching segments of films 115, 116 may be wired together using the same electrical lead such that supply of current/voltage for functional control is inherently matched for each segment of the pair. This arrangement has the added benefit of halving the total number of electrical leads needed for controlling segmented switchable lens 110.
System 300 of
Communication between user interface 360, controller 350, other vehicle subsystems 370, and lamp assembly 100 may be by a wired and/or wireless communication media. For example, controller 350 may include a transmitter/receiver, a multi-channel input/output (I/O) data bus, or the like (not shown) for communicatively coupling with user interface 360 and lamp assembly 100. The controller 350 is programmed with instructions for sending signals to the electrochemical films 115, 116 for switching individual segments 141-164 of segmented switchable lens 110, between active (e.g., substantially transparent), partially active (e.g., semi-transparent), and non-active (e.g., substantially opaque) modes. Other electronics known to those of skill in the art may be used in conjunction with the controller 350 for switching the modes and for providing PWM without departing from the scope hereof. The controller 350 may also be programmed with instructions for controlling one or more lights of light source 120 in coordination with corresponding segments 141-164. The programmed instructions may be predetermined and/or responsive to inputs from the user interface 360 or other vehicle subsystems 370.
In operation, the active mode occurs when an electric potential is applied to segments 141-164 of lens 110, and the non-active mode occurs when the electric potential is switched off. In the active mode, a high voltage and a low current are applied causing suspended particles to become charged such that the particles align in a particular orientation based on the electric potential across a corresponding segment of electrochemical films 115, 116. When a segment of films 115, 116 is switched on, the applied voltage/current electrically charges that segment like a charged capacitor. The suspended particles align such that light is allowed to pass making an active segment of films 115, 116 substantially transparent, similar to a glass window. When all segments of films 115, 116 are switched to the active mode becoming substantially transparent, lens 110 functions like a typical lens allowing light to pass and appears like a typical lens of a typical lamp assembly. When individual segments of films 115, 116 are switched to the inactive mode, the corresponding segments of lens 110 become substantially opaque enabling their use to block a portion of light from light source 120. For example, portions of a light source may be blocked to mitigate glare perceived by pedestrians or drivers in oncoming vehicles (e.g., for providing an ADB function).
In certain embodiments, segmented switchable lens 110 attains between about 80% to about 90% transparency when all segments are activated, meaning that about 80% to about 90% of light directed to lens 110 passes through lens 110. In some embodiments, lens 110 attains about 87% transparency when all segments are activated, which is lower than a standard lens (e.g., a standard lens normally has between about 90% to about 93% transparency). However, the optics of the lens 110 are not affected by the decreased transparency, and an increase in light output from light source 120 may be used to compensate for the decreased transparency.
In the absence of an applied electric potential, the suspended particles remain unorganized, and their random orientation blocks, absorbs, and/or reflects light. When all segments of films 115, 116 are inactivated, lens 110 is substantially opaque, which hides from view the inner workings of lamp assembly 100.
In certain embodiments, the suspended particles are highly reflective such that when unorganized in the non-active mode, lens 110 substantially reflects light in such a way as to have an appearance of a reflective mirror-like surface. The mirrored reflectiveness of the lens 110 may be adapted to provide a sleek and streamlined appearance that hides the unattractive functional appearance of a typical lamp assembly. The segmented switchable lens 110 may be used to completely hide, partially hide, or completely reveal anything disposed behind the lens 110 when segments of electrochemical films 115, 116 are completely non-active, partially active, or completely active, respectively.
Segmented switchable lens 110 may be molded to include curvature, contoured portions, grooves, textured surfaces, and other features, which may correspond to inner workings of a lamp assembly, such as light sources, etc. (e.g., low-beam and high-beam light sources of a headlamp). The electrochemical films 115, 116 may be applied to substrates in such a way as to accommodate curvature and other features molded into lens 110. An exemplary switchable-mirror lens assembly is described in pending U.S. application Ser. No. 15/931,824, entitled Switchable-Mirror Lens Assembly, and filed on May 14, 2020, the entirety of which is herein incorporated by reference.
By selectively activating individual segments 141-164 of segmented switchable lens 110, lamp assembly 100 is able to provide an ADB headlamp function that adaptively dims or turns off portions of a headlamp while driving for the purpose of reducing glare as perceived by someone outside the vehicle (e.g., a pedestrian or occupant of another vehicle). In certain embodiments, light source 120 is adapted for producing a high-beam function of a vehicle headlamp and lens 110 is disposed in front of the high-beam light source. By controlling some segments of segmented switchable lens 110 to be in the active mode and other segments to be in the inactive mode, an amount of light emitted from lamp assembly 100 may be varied (e.g., from a full high-beam state down to a legal low-beam state). Therefore, segmented switchable lens 110 may be used to protect oncoming traffic or pedestrians from glare by rapidly shuttering any portion of high-beam light that would otherwise cause glare to the oncoming traffic. Similarly, segments of segmented switchable lens 110 may be rapidly switched to alternate between active and inactive modes (e.g., using PWM), under control of the controller, thereby reducing an amount of light emitted from any segment.
The controller 350 of
Segments 141-164, shown in
In addition to glare reduction, the direction of light emitted from a vehicle ADB headlamp may be adaptively changed by controlling segments 141-164. For example, while the vehicle is turning, controller 350 may determine a degree by which the vehicle is turning (e.g., via rotation sensors at the steering column as part of other vehicle subsystems 370) and selectively activate individual segments 141-164 to emit portions of light from light source 120 directed towards the direction of the turn. At the same time, controller 350 may block or dim portions of light from light source 120 by selectively inactivating or pulse-width modulating individual segments 141-164 directed away from the direction of the turn. Control of segments 141-164 enables the emitted beam pattern to shift or swivel without requiring any moveable components or a motor. For example, a hot spot of the beam (e.g., a brighter portion of the beam) may be moved in coordination with turning of the vehicle. Control of the beam pattern via segments 141-164 may be independent of, or in coordination with, control of individual LEDs (e.g., LEDs 120A-120D) of light source 120.
The number of segments and LEDs, the arrangement of segments and LEDs, and the shape and arrangement of inner lens 130 may be varied based on the illumination requirements of lamp assembly 100 and the luminance provided by the individual LEDs, among other things. Since a higher number of segments increases the resolution capability for adaptable light shaping, segmented switchable lens 110 provides a higher resolution in the horizontal direction by having twelve segments (e.g., 141-152), whereas a lower resolution is provided in the vertical direction due to only having two rows of segments. Other arrangements of segments, and the size, shape, and aspect ratio of the segments may be configured to achieve different lighting objectives (see e.g.,
The segments of segmented switchable lens 110 may have variable geometries, such as a variable width (also known as the “pitch”). This provides different exit areas for light to be emitted among lenses of differing width. For example, as depicted in
Advantages of using segmented switchable lens 110 are that it replaces a mechanical shutter and reduces the number of LEDs needed for providing a functional ADB headlamp module. A reduction in the number of LEDs importantly corresponds with a reduction in the size of a heat sink or other means needed to remove heat from the lamp assembly.
By using segmented switchable lens 110 in combination with an ADB matrix of inner lenses for inner lens 130, greater control may be provided for shaping emitted light compared to a conventional ADB headlamp while requiring a smaller number of inner lenses and a smaller number of LEDs. In other words, the number of LEDs and corresponding inner lenses may be reduced without a corresponding decrease in the resolution of the adaptable light shaping capability.
Switchable mirror assembly 410 includes a segmented switchable mirror 415 configured with a pair of segmented electrochemical films to provide individually controllable mirror segments that are switchable between transparent and reflective states. The segmented electrochemical films are examples of electrochemical films 115, 116 described above in connection with
A first seal 418 is disposed along a top side of the mirror segments. Functional portions of the mirror segments are within the first seal 418, and electrical connections to electrical leads are disposed outside of the first seal 418 (e.g., along the periphery of segmented switchable mirror 415). In other words, the electrical connections are made to the top portion of each segment in the top row (e.g., first mirror segment 415A) and to the bottom portion of each segment in the bottom row (e.g., second mirror segment 415B), outside the perimeter of first seal 418. First seal 418 is for example a silicone sealing material providing a barrier that prevents debris from entering to maintain clean mirror segments and for mitigating oxidation of the mirror segments. A second substrate 412 and a third substrate 413 are best viewed in
In operation, ADB vehicle headlamp assembly 400, under control of controller 350, may be used with segmented switchable mirror 415 to produce spot images or images having gaps or dark spots in which a portion of the light distribution image is not illuminated (not shown), thereby reducing glare at a target location. Exemplary spot images and images having gaps are shown in pending U.S. application Ser. No. 16/561,673, entitled Programmable Glare-Free High Beam and filed on Sep. 5, 2019, the entirety of which is herein incorporated by reference.
A camera subsystem may be used to image a vehicle's forward view, and controller 350 of
In addition to providing high/low-beam light distributions and dynamic glare reduction, a direction of light emitted from a vehicle ADB headlamp may be adaptively changed by controlling segments of segmented switchable mirror 415. For example, while the vehicle is turning, controller 350 of
Unlike a digital micro-mirror device (DMD), such as the DMD described in the above referenced U.S. application Ser. No. 16/561,673, in which individual mirrors pivot between positions for reflecting light in different directions, no moving parts are needed for segmented switchable mirror 415 to alter light output. Also, all of the individual DMD mirrors are of the same size, shape, and aspect ratio, whereas segmented switchable mirror 415 is easily configured with variable and customizable sizes, shapes, and aspect ratios of the individual segments (see e.g., switchable mirror array 515 of
In the exploded views of
A first substrate 411 has a first common ground 429A disposed thereon for electrically grounding the electrochemical circuits of the plurality of switchable mirror segments. A second substrate 412 has a plurality of switchable mirror segments disposed thereon, including first mirror segment 415A and second mirror segment 415B as shown in
In the embodiment depicted in
The two sets of switchable mirror arrays of segments are used to provide different polarizations of light. For example, first mirror segment 415A and second mirror segment 415B may be configured to provide a left-hand light polarization, whereas third mirror segment 416A and fourth mirror segment 416B may be configured to provide a right-hand light polarization. By having two sets of switchable mirror arrays optically aligned with one another, light transmitted from segmented switchable mirror 415 is polarized in both clockwise and counter-clockwise directions. Individual mirror segments may be controlled in pairs based on polarization. In other words, each segment from the top set is paired with a matching segment from the bottom set, and the pair of segments are controlled together. For example, functional control of the first and third mirror segments 415A and 416A (e.g., turning on/off or dimming) may be matched to occur in a coordinated manner via controller 350. Alternatively, each of the paired segments (e.g., first mirror segment 415A and third mirror segment 416A) may be wired together using the same electrical lead such that supply of current/voltage for functional control is inherently matched for each segment of the pair. This arrangement has the added benefit of halving the total number of electrical leads needed for controlling segmented switchable mirror 415.
Heating element 480 is optionally disposed adjacent segmented switchable mirror 415. In the embodiment depicted in
A low-beam switchable-mirror segment array 520 includes individually controllable segments of the electrochemical film having wider segments towards the periphery and narrower segments towards the center. A multi-segment notch 524 is provided in a portion of segments of array 520 to provide a legal antiglare cutoff point 624 in the low-beam light distribution (see
A high-beam switchable-mirror segment array 530 also includes individually controllable segments of the electrochemical film having various sizes, shapes and aspect ratios, and arranged in a non-linear array. As depicted in
Alternatively, switchable mirror array 515 is configured for using both switchable mirror segment arrays 520, 530 to provide ADB low-beam functions, and the high-beam (e.g., a standard high-beam) is provided separately. Another option is to provide only one array for ADB functionality, e.g., low-beam switchable-mirror segment array 520, and have the other beam (e.g., the high-beam) provided separately.
In operation, ADB vehicle headlamp assembly 400, under control of controller 350, may be used with switchable mirror array 515 to produce spot images or images having gaps or dark spots in which a portion of the light distribution image is not illuminated (not shown) that are used to reduce glare at a target location. Exemplary spot images and images having gaps are shown in the above referenced U.S. application Ser. No. 16/561,673. A camera subsystem may be used to image a vehicle's forward view, and controller 350 of
In addition to providing high/low-beam light distributions and dynamic glare reduction, a direction of light emitted from a vehicle ADB headlamp may be adaptively changed by controlling electrochemical film segments of switchable mirror array 515. For example, while the vehicle is turning, controller 350 of
Unlike a digital micro-mirror device (DMD), such as the DMD described in the above referenced U.S. application Ser. No. 16/561,673, in which all of the individual mirrors are of the same size, shape, and aspect ratio, the size, shape, and aspect ratio of the segments of switchable mirror array 515 are variable and customizable. Also, unlike a DMD, no moving parts are needed for switchable mirror array 515 to alter light output.
Features described above as well as those claimed below may be combined in various ways without departing from the scope hereof. The following examples illustrate some possible, non-limiting combinations:
(A1) A segmented switchable mirror vehicle headlamp includes a light source, a switchable electrochemical film having a plurality of segments, and a controller electrically coupled with each segment of the plurality of segments, such that each segment of the plurality of segments is individually controllable for switching between a substantially transparent state and a substantially reflective state. The plurality of segments include a low-beam array of segments configured for providing a low-beam light distribution from the light source, and a high-beam array of segments configured for providing a high-beam light distribution from the light source. The controller is configured for switching the low-beam array of segments and the high-beam array of segments between the substantially transparent state and the substantially reflective state for controlling the low-beam light distribution and the high-beam light distribution, respectively.
(A2) For the segmented switchable mirror vehicle headlamp denoted as (A1), a camera subsystem for imaging a forward view from a vehicle may be provided, wherein the controller may be configured to determine: a) a target location based on images from the camera subsystem, and b) which segments of the plurality of segments to switch between substantially transparent and substantially reflective states for mitigating glare at the target location.
(A3) For the segmented switchable mirror vehicle headlamp denoted as (A1) or (A2), the controller may be configured to actively switch each segment of the plurality of segments between the substantially transparent state and the substantially reflective state in a coordinated manner for shifting a direction of light projected from the segmented switchable mirror vehicle headlamp without the use of any moveable components or a motor
(A4) For the segmented switchable mirror vehicle headlamp denoted as any of (A1) through (A3), the controller may dim a portion of light projected from the segmented switchable mirror vehicle headlamp via pulse-width modulation of at least one segment of the plurality of segments.
(A5) For the segmented switchable mirror vehicle headlamp denoted as any of (A1) through (A4), the switchable electrochemical film may include a first layer that provides a polarization of light in a first direction, and a second layer, optically aligned with the first layer, that provides a polarization of light in a second direction, different from the first direction.
(B1) An adaptable-driving-beam headlamp for a vehicle includes a plurality of light-emitting diodes (LEDs) mounted on one or more printed circuit board, an inner lens aligned with the plurality of LEDs for shaping light emitted therefrom, an outer lens adapted to receive light from the inner lens and project the light from the vehicle, a camera system for imaging a forward view from the vehicle, and a controller adapted for determining a target location based on images received from the camera system. The outer lens includes a first transparent layer and a second transparent layer adjacent the first transparent layer, a switchable electrochemical film disposed between the first transparent layer and the second transparent layer, wherein the switchable electrochemical film includes a plurality of film segments. The plurality of film segments are each individually controllable via the controller such that each of the plurality of film segments is switchable between a substantially transparent state and a substantially opaque state for actively dimming a portion of light projected from the outer lens based on the target location.
(B2) For the adaptable-driving-beam headlamp for a vehicle denoted as (B1), the inner lens may include an assembly of sub-lenses, and each of the sub-lenses is aligned with a respective one of the plurality of LEDs for shaping light emitted therefrom.
(B3) For the adaptable-driving-beam headlamp for a vehicle denoted as (B1) or (B2), the plurality of film segments may be shaped to provide a high-beam cutoff, and the controller may control the plurality of film segments according to the high-beam cutoff, thereby switching between a low-beam pattern and a high-beam pattern of light projected from the outer lens.
(B4) For the adaptable-driving-beam headlamp for a vehicle denoted as any of (B1) through (B3), the beam pattern may be adaptively shifted by actively switching a transparency state of the plurality of film segments to swivel the direction of light projected from the outer lens without the use of any moveable components or a motor.
(B5) For the adaptable-driving-beam headlamp for a vehicle denoted as any of (B1) through (B4), the controller may dim a portion of light projected from the outer lens via pulse-width modulation of a portion of the plurality of film segments.
(C1) A switchable-mirror adaptable-driving-beam headlamp for a vehicle includes a switchable mirror having a plurality of electrochemical film segments, a controller electrically coupled with each segment of the plurality of electrochemical film segments, such that each segment is individually controllable for switching between a substantially transparent state and a substantially reflective state, and a collimated light source directed at the switchable mirror such that each segment in the substantially reflective state reflects light from the collimated light source for projecting from a vehicle headlamp, and each segment in the substantially transparent state does not reflect light from the collimated light source.
(C2) For the switchable-mirror adaptable-driving-beam headlamp for a vehicle denoted as (C1), a camera subsystem may be provided for imaging a forward view from the vehicle, wherein the controller may be configured to determine a target location based on images received from the camera subsystem, and the controller may control a portion of the plurality of electrochemical film segments to switch to the substantially transparent state thereby substantially dimming a corresponding portion of light.
(C3) For the switchable-mirror adaptable-driving-beam headlamp for a vehicle denoted as (C1) or (C2), the switchable mirror may be configured for producing a low-beam light distribution and a high-beam light distribution based on a size, shape, and arrangement of the plurality of electrochemical film segments, and the controller may be configured to control the plurality of electrochemical film segments for switching between the low-beam light distribution and the high-beam light distribution.
(C4) For the switchable-mirror adaptable-driving-beam headlamp for a vehicle denoted as any of (C1) through (C3), the controller may be configured to actively switch each segment between the substantially transparent state and the substantially reflective state in a coordinated manner to provide a hot spot in a light distribution and to shift a direction of the hot spot in coordination with turning of a vehicle.
(C5) For the switchable-mirror adaptable-driving-beam headlamp for a vehicle denoted as any of (C1) through (C4), a heating element may be provided having a transparent conductive layer electrically powered to produce heat for heating the switchable mirror.
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present disclosure. Embodiments of the present disclosure have been described with the intent to be illustrative rather than restrictive. Embodiments of the present disclosure have been described in the context of vehicle headlamps, but other uses and alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present disclosure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all operations listed in the various figures need be carried out in the specific order described.
This application claims the benefit of U.S. Provisional Patent Application No. 62/864,591 filed on Jun. 21, 2019, and U.S. patent application Ser. No. 16/906,533 filed on Jun. 19, 2020, which are both entitled “Segmented Switchable Mirror Lamp Assembly” and are both herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5938319 | Hege | Aug 1999 | A |
7679808 | Kim | Mar 2010 | B2 |
8179588 | Yamada et al. | May 2012 | B2 |
9254789 | Anderson et al. | Feb 2016 | B2 |
20030002291 | Strazzanti | Jan 2003 | A1 |
20030107323 | Stam | Jun 2003 | A1 |
20030156425 | Turnbell et al. | Aug 2003 | A1 |
20130107559 | Gava | May 2013 | A1 |
20150219305 | Michiels | Aug 2015 | A1 |
20180320884 | Salter et al. | Nov 2018 | A1 |
20190283663 | Ohgitani | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1162714 | Oct 1997 | CN |
102013020549 | Jun 2015 | DE |
3026332 | Jun 2016 | EP |
3401591 | Nov 2018 | EP |
1996248451 | Sep 1996 | JP |
H08248451 | Sep 1996 | JP |
20130136111 | Dec 2013 | KR |
101469697 | Dec 2014 | KR |
Entry |
---|
European Patent Application 20825926.7 European Search Report dated May 19, 2022. |
PCT Patent Application PCT/US2020/038671 International Search Report and Written Opinion; dated Aug. 27, 2020. |
Number | Date | Country | |
---|---|---|---|
20220107073 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62864591 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16906533 | Jun 2020 | US |
Child | 17554800 | US |