The invention relates to accessories for suspended ceiling grid construction and, in particular, to a seismic clip for stabilizing the grid members.
U.S. Pat. Nos. 5,046,294; 7,293,393; and 7,552,567 are examples of seismic clips used to limit movement of the ends of grid tee members at the perimeter of a suspended ceiling grid. There remains a need for an improved seismic clip that, while being economical, is both versatile and easy in installation and rugged in its construction. In particular, the clip should be capable of being both snapped over a grid tee and slipped onto the grid tee end to satisfy the installer's preference or need. The installation of an individual clip should not require a high assembly force or complicated manipulation since a typical job will require the assembly of a clip and tee to be repeated numerous times.
The invention provides a seismic clip for suspended ceiling grid tees that offers high strength, rigidity, versatility and ease of assembly while improving the ability of a clip to self-align with a grid tee. The disclosed clip includes a lanced tab that serves to establish and maintain alignment of the clip body and the tee to which it is assembled. More specifically, a tendency of a clip to be tilted upwardly relative to the tee is eliminated or greatly reduced. As a related added benefit, the alignment tab serves to initially align the clip and tee either when it is assembled by snapping it over the tee or by sliding the tee endwise into the clip. The tab is configured so that it does not unduly add to the assembly force level when the clip is snapped over the tee or when the tee and clip are slipped endwise together.
Referring now to the drawings, a seismic clip is used to tie or anchor a grid tee 11 to a wall angle 12. The illustrated wall angle 12 is of a conventional construction being roll-formed sheet metal typically 10′ or 12′ long (or metric equivalent) and having perpendicular legs 13 of, normally, ⅞″ (or metric equivalent) width. The free edges of the legs 13 are folded back to form stiffening hems 14. As is conventional, a vertical leg 13 of the wall angle 12 is attached to a wall 16 with screws, nails, staples, or the like at ceiling level.
The illustrated grid tee 11 can be a main tee or a cross tee, these terms being commonly understood in the industry. Relatively long main tees are assembled with shorter cross tees to make up a suspended grid for supporting rectangular ceiling panels. A conventional tee 11 has a lower flange 17, a vertical stem or web 18, and an upper reinforcing or stiffening hollow bulb 19 usually rectangular in form and nominally ¼″ (or metric equivalent) in width.
The seismic clip 10 is preferably a unitary stamping made of suitable metal such as 0.028″ hot dipped galvanized (H.D.G.) sheet steel. The geometry of the seismic clip 10 is described with reference to its installed orientation.
In plan view, shown in
A central section or saddle 31 of the clip 10, forming the stem section of the T-shape of the clip seen in plan view, is proportioned to fit over the bulb 19 and web 18 of the end of a grid tee 11. The saddle 31 is a double wall structure; the walls, designated 32, 33, are in parallel vertical planes. The walls 32, 33 are spaced apart by an upper web 34. The web 34 is preferably dimensioned to closely fit the walls 32, 33 on the sides of the grid tee bulb 19.
Below their bulb engaging areas, the saddle walls 32, 33 are arranged to be spaced from the web 18 of the grid tee 11. An elongated horizontal slot or opening 36 is formed in each saddle wall 32, 33 so that the slots oppose one another. Above the slot 36 on each wall 32, 33 are a pair of holes 37. Adjacent a forward end or edge 38 of each wall, a tab 39 of trapezoidal shape is bent inwardly from a line or base 41 of attachment with the main body of the respective wall. In its free state, each tab 39 has an upper free or distal horizontal edge 42 configured, when assembled with a tee to extend beneath the bulb 19 and be spaced slightly from the tee web 18.
On the right saddle wall 32 there is stamped or lanced a tab 43. The tab 43 is angled inward and upward from a line or base 44 of attachment with the wall proper. The tab profile is that of a polygon with a forward edge 46 that angles rearwardly and upwardly from its base 44, an upper horizontal free edge 47, and a rearward edge 48 perpendicular to its base. Ideally, the tab 43 is similar to the leading tab 39 such that these tabs lie in a common plane and their respective bases 41, 44 and upper edges 42, 47 lie along common lines.
The clip 10 can, at the option of the installer, be assembled on the end of a grid tee 11 by either snapping it over the top of the bulb 19 or by sliding the tee and clip relative to one another in the longitudinal direction of the tee. A line 51 is embossed in the left saddle wall 33 to mark a distance of ¾″ from the plane of the wings 21 to be used as a gauge for the installer where a building code requires the grid tee to be installed not closer than this dimension from the vertical leg 13 of the wall angle 12. The clip 10 is assembled on a wall angle by lowering it onto the vertical leg 13 with the hooks or tabs 22 behind the leg and the main clip body in front of the leg. This can be done before or after the clip is assembled with the tee.
The front or leading tabs 39 on the saddle walls 32, 33 facilitate assembly of the clip onto the tee where the tee is inserted longitudinally into the clip. The leading edges of the tabs 39 guide the grid tee web 18 towards the center of the clip without impeding relative longitudinal motion. The free edges 42 of the tabs 39 are spaced only a limited distance greater than the thickness of the web 18, so that the bulb 19 is roughly centered before the bulb engages the saddle 31.
The lanced tab 43 serves to align the tee 11 and clip 10 so that the clip is restrained from tilting excessively upwardly. This is accomplished by the lanced tab 43 engaging the underside of the reinforcing bulb 19 with its upper edge 47. The lanced tab 43 can be proportioned to allow some tilt between the clip 10 and tee 11 for ease of assembly and compatibility with various sized reinforcing bulbs. Such tilting is restricted so that where the clip 10 is positioned on the end of the grid tee 11 prior to positioning of the clip onto the wall angle 12, the tilt is not severe enough to prevent the tabs or hooks 22 from contacting the wall and slipping behind the wall angle 12. Reference is made to
The clip 10 can be secured to the wall 16 after it is properly located on the wall angle with screws or nails in some or all of the wing holes 24, 26. Depending on the applicable building code, self-drilling screws can be driven into the reinforcing bulb 19 through the holes 37 that abut the sides of the bulb 19 to lock the clip 10 and tee 11 against relative movement. In other cases where limited movement between the clip 10 and tee 11 is desired, a self-drilling screw can be located at the center of the slot 36 and driven into the tee web 18.
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the fair scope of the teaching contained in this disclosure. The invention is therefore not limited to particular details of this disclosure except to the extent that the following claims are necessarily so limited.
Number | Name | Date | Kind |
---|---|---|---|
3565474 | Stumbo et al. | Feb 1971 | A |
3798865 | Curtis | Mar 1974 | A |
D248013 | Win | May 1978 | S |
4462198 | Sharp | Jul 1984 | A |
4479341 | Schuplin | Oct 1984 | A |
4715161 | Carraro et al. | Dec 1987 | A |
4893961 | O'Sullivan et al. | Jan 1990 | A |
4989387 | Vukmanic et al. | Feb 1991 | A |
5046294 | Platt | Sep 1991 | A |
5195289 | LaLonde et al. | Mar 1993 | A |
5201787 | LaLonde et al. | Apr 1993 | A |
6205732 | Rebman | Mar 2001 | B1 |
6305139 | Sauer | Oct 2001 | B1 |
7293393 | Kelly et al. | Nov 2007 | B2 |
7552567 | Ingratta et al. | Jun 2009 | B2 |
7614195 | Platt et al. | Nov 2009 | B2 |
D612224 | Wendt | Mar 2010 | S |
7673429 | Frecska | Mar 2010 | B2 |
7690168 | LaLonde | Apr 2010 | B2 |
7788875 | Wendt | Sep 2010 | B2 |
7874116 | LaLonde | Jan 2011 | B2 |
7930864 | Wendt | Apr 2011 | B2 |
8046966 | Moore et al. | Nov 2011 | B2 |
20050086888 | Moore et al. | Apr 2005 | A1 |
20050160696 | Kelly et al. | Jul 2005 | A1 |
20060096219 | Ingratta et al. | May 2006 | A1 |
20070180787 | Fecska | Aug 2007 | A1 |
20080060306 | Platt et al. | Mar 2008 | A1 |
20110146194 | Tedesco et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
0 516 330 | Dec 1992 | EP |
Entry |
---|
U.S. Appl. No. 29/299,675, filed Jan. 1, 2008, Inventor: James J. Lehane, Title: Perimeter Clip for Ceiling Grid Systems. |
USG Interiors, Inc., Ceiling Systems, Marketing Catalog, Publication No. SC2392, Aug. 2002, p. 229. |
Written Opinion of the International Searching Authority & International Search Report dated Mar. 23, 2011 for corresponding PCT/US2010/061225, filed Dec. 20, 2010. |
Number | Date | Country | |
---|---|---|---|
20110146194 A1 | Jun 2011 | US |