The application claims priority to Chinese patent application No. 202210332045.3, filed on Mar. 31, 2022, the entire contents of which are incorporated herein by reference.
The present invention relates to the technical field of seismic imaging resolution analysis, in particular to a seismic imaging resolution analysis method and device and a memory medium.
Three-dimensional seismic exploration is a major means for oil and gas exploration; and the underground structural features can be obtained only when processing data for seismic acquisition is imaged. Therefore, the selection of a seismic imaging method is crucial to the imaging quality.
Prestack seismic migration imaging has already become a mainstream technology in the industry. However, for the reasons of band-limited data, limited imaging apertures, spatial sampling, complex structures and the like, prestack seismic migration imaging is limited to imaging resolution, and it is a challenging task of assessing the effectiveness of a single factor on imaging. Existing resolution analysis with a point spread function and traditional focusing analysis are both based on the response of a single-point scatterer, with ignoring the effect of surrounding points, and are generally applied to an acquisition observation system without being suitable for imaging data. In addition, for existing prestack seismic migration imaging, resolution analysis based on a wave equation is huge in computational cost and low in computational efficiency. Therefore, it requires a better auxiliary tool to measure the resolution performance for seismic imaging.
An objective of the present invention is to provide a seismic imaging resolution analysis method and device and a memory medium, so as to solve the above problems in the Background.
In order to achieve the above objective, the present invention provides the following technical solution:
A seismic imaging resolution analysis method, comprising:
Further, by giving the depth of the target reflector and an initial computational frequency and inputting a single-frequency common-shot gather and a single-frequency common-detector gather at the same time, computation is conducted to obtain a detector focusing result and a source point focusing result of the focus points, and the results are put at the source point positions and the detector positions respectively.
Further, the weighted source-focusing operator Pik† (zn, zn) is calculated through a formula 2, and the formula 2 is as follows: Pik†(zn, zn)=Fi†(zn, z0)P(z0, z0)Fk(z0, zn)+ε(z), (z≠zn);
Further, the information, received from the ground and reflected from the subsurface interface, of the wavefield is as follows:
P(z0,z0)=D(z0)Σn=1N[W(z0,zn)R(zn,zn)W(zn,z0)]S(z0),
D (z0) is a detector matrix, containing information, received by the detectors, of arrangement of seismic wavelets and detectors. S (z0) is a source point matrix, containing arrangement information of source wavelets and a seismic source. W (z0, zn) is an upgoing wave propagation matrix; and when in a uniform medium, each row is a discrete Green function matrix, representing that the wavefield is propagated from the depth zn to the depth zn upward. W (zn, z0) is a downgoing wave propagation matrix; and when in the uniform medium, each column is a discrete Green function matrix, representing that the wavefield is propagated from the depth z0 to the depth zn downward. R (zn, zn) is a reflection coefficient matrix, representing reflection and scattering relationships between a subsurface reflection point and an adjacent point.
Further, a resolution function is calculated by a formula 4, and the formula 4 is as follows: Bik(zn, zn)=√{square root over (Pik(zn,zn)⊗Pik\(zn,zn))}, in which ⊗ represents multiplication of elements.
In order to achieve the above objective, the present invention further provides the following technical solution:
Disclosed is a seismic imaging resolution analysis device, comprising:
In order to achieve the above objective, the present invention further provides the following technical solution:
In order to achieve the above objective, the present invention further provides the following technical solution:
Compared with the prior art, the present invention has the beneficial effects that:
Referring to
A seismic imaging resolution analysis method includes the following steps:
Involved Formulas
Information, received from the ground and reflected from the subsurface interface, of a wavefield:
P(z0,z0)=D(z0)Σn=1N[W(z0,zn)R(zn,zn)W(zn,z0)]S(z0), (1)
zn is a depth of a target reflector, and z0 is a depth of a detector. D (z0) is a detector matrix, containing information, received by the detectors, of arrangement of seismic wavelets and detectors. S (z0) is a source point matrix, containing arrangement information of source wavelets and a seismic source. W (z0, zn) is an upgoing wave propagation matrix; and when in a uniform medium, each row is a discrete Green function matrix, representing that the wavefield is propagated from the depth zn to the depth z0 upward, W (zn, z0) is a downgoing wave propagation matrix; and when in the uniform medium, each column is a discrete Green function matrix, representing that the wavefield is propagated from the depth z0 to the depth zn downward, R (zn, zn) is a reflection coefficient matrix, representing reflection and scattering relationships between a subsurface reflection point and an adjacent point. Multiplication of the focusing operators and the detector matrix is detector focusing analysis, and multiplication of the focusing operators and the source point matrix is source point focusing analysis.
In the step 3), the weighted source-focusing operator is calculated through a formula 2:
P
ik
†(zn,zn)=Fi†(zn,z0)P(z0,z0)Fk(z0,zn)+ε(x),(z≠zn), (2)
In the step 6), the weighted detector-focusing operator is calculated through a formula 3:
P
ik(zn,zn)=Fk(zn,z0)P(z0,z0)Fi(z0,zn)+ε(z),(z≠zn), (3)
In the step 7), a resolution function is calculated through a formula 4:
B
ik(zn,zn)=√{square root over (Pik(zn,zn)⊗Pik†(z0,zn))}, (4)
in which ⊗ represents multiplication of elements.
In the step 8), the seismic migration imaging process is the process of conducting detector focusing and source point focusing on information of the wavefield; and therefore, a seismic migration imaging result may be obtained directly through a focal-beam method.
z0 is the depth of the target reflector, and z is an ordinate. In the present invention, z0 is the depth of the target reflector, i.e. the position with the depth of 0, which is the ground, zn is the position with the depth of n, representing a reflector. The depth of the target reflector is from Om to nm; and as shown in
In the present invention, the focal-beam analysis method belongs to the prior art, specifically referring focal-beam analysis (Berkhout, et al., 2001; Volker, et al., 2001, 2002) which is a method of applying the prestack depth migration theory to evaluation on a design solution of a three-dimensional seismic acquisition observation system. The basic thought of the method is as follows: wavefield continuation and focusing computation are conducted on detectors and source points respectively to obtain a detector focusing matrix and a source point focusing matrix.
The present invention will be described below in detail in combination with the accompanying drawings and the embodiments.
As shown in
Three-dimensional seismic exploration is a major means for oil and gas exploration; and the underground structural features can be obtained only when processing data for seismic acquisition is imaged. Therefore, the selection of a seismic imaging technology/method is crucial to the imaging quality.
Prestack seismic migration imaging has already become a mainstream technology/method in the industry. However, for the reasons of limited-band data, limited imaging aperture, spatial sampling, complex structure and the like, prestack seismic migration imaging is limited to imaging resolution, and it is a challenging task of assessing the effect of a single factor on imaging. Existing resolution analysis with a point spread function and traditional focusing analysis are both based on response of a single-point scatterer, with ignoring the effect of surrounding points, and are generally applied to an acquisition observation system without being suitable for imaging data. In addition, for existing prestack seismic migration imaging, resolution analysis based on a wave equation is huge in computational cost and low in computational efficiency. Therefore, it requires a better auxiliary tool to measure the resolution performance for seismic imaging.
Aiming to the above problems, an objective of the present invention is to provide a seismic imaging resolution analysis method. Weighted focal-beam analysis is introduced into focal-beam migration, and focal-beam resolution analysis may be achieved with prestack seismic migration together without additional wavefield extrapolation, which may significantly lower the computational cost to develop practical resolution analysis for an imaging system with a complex medium. In the weighted focal-beam resolution analysis method of the present invention, detector focusing processing and source point focusing processing are conducted on the common-shot gathers and the common-detector gathers respectively; and the integral effects of a plurality of scatterers may be separated, and an Obtained focal-beam resolution function may be used for calculating a horizontal resolution and a definition of each focus point.
In the present invention, computer equipment may comprise a memory, a memory controller, one or more (only one is shown in the figure) processors and the like. Various components are electrically connected with each other directly or indirectly so as to achieve transmission or interaction of data. For example, these components may be electrically connected with each other through one or more communication buses or signal buses. The seismic imaging resolution analysis method comprises at least one software functional module which may be stored in the memory in a form of a software or a firmware, for example, a software functional module or a computer program comprised in a seismic imaging resolution analysis device. The memory may store various software programs and modules, for example, corresponding program instructions/modules of the seismic imaging resolution analysis method and device according to the embodiments of this application. The processor performs a variety of function applications and data processing by running the software programs and modules stored in the memory, that is, the parsing methods in the embodiments of this application are implemented.
Number | Date | Country | Kind |
---|---|---|---|
202210332045.3 | Mar 2022 | CN | national |