Reflection seismology finds use in geophysics, for example, to estimate properties of subsurface formations. As an example, reflection seismology may provide seismic data as a type of imagery data representing waves of elastic energy (e.g., as transmitted by P-waves and S-waves, in a frequency range of approximately 1 Hz to approximately 100 Hz). Seismic data may be processed and interpreted, for example, to understand better composition, fluid content, extent and geometry of subsurface rocks.
In accordance with some embodiments, a method includes receiving imagery data; fitting a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generating curvature attribute data based at least in part on the fitting. In accordance with some embodiments, system includes a processor; memory operatively coupled to the processor; and processor-executable instructions stored in the memory to instruct the system to: receive imagery data; fit a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generate curvature attribute data based at least in part on the fitting. In accordance with some embodiments, one or more computer-readable storage media include computer-executable instructions to instruct a computing system where the instructions include instructions to: receive imagery data; fit a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generate curvature attribute data based at least in part on the fitting. Various other apparatuses, systems, methods, etc., are also disclosed.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Features and advantages of the described implementations can be more readily understood by reference to the following description taken in conjunction with the accompanying drawings.
The following description includes the best mode presently contemplated for practicing the described implementations. This description is not to be taken in a limiting sense, but rather is made merely for the purpose of describing the general principles of the implementations. The scope of the described implementations should be ascertained with reference to the issued claims.
In various example embodiments, a method can include receiving imagery data; fitting a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generating curvature attribute data based at least in part on the fitting. In such an example, imagery data can be seismic data or, for example, another type of imagery data (e.g., medical, meteorological, non-destructive testing, etc.).
As an example, a multidimensional polynomial function can be utilized as part of a filtering process. For example, a method can include generating filtered imagery data.
In various example embodiments, one or more filters may be applied to attenuate seismic noise. Such an approach may be part of a workflow such as, for example, an interpretation workflow that operates on data such as seismic data, data derived from seismic data, etc.
As an example, a method may include analyzing seismic data to detect features such as horizons, fractures, other structures, etc. As an example, seismic analyses may be implemented in a framework as a module, set of modules, etc.
Where seismic data may include noise at a level to be considered “noisy”, an analysis or analyses may include filtering. As an example, one or more analyses may be performed to assist with detection of one or more features of interest in oil and gas exploration and production (E&P). For example, results from an analysis may assist with well placement, geologic modeling, sill analyses, detection of fractured zones or fracture corridors, and in E&P for unconventional resources and carbonate fields (e.g., consider shale fields).
As an example, filter may aim to efficiently attenuate one or more types of noise that may exist in seismic data, processed seismic data, etc. As an example, a filtering technique may be applied to 3D seismic images optionally without dip-steering of a filter. In such an example, the filtering technique may provide an ability to calculate various shape and curvature attributes from a 3D seismic image, in addition to one or more curvature attributes (e.g., as may be calculated from one or more structural attributes). As an example, an approach may provide for an ability to decompose a 3D seismic image into separate architectural elements, for example, based on one or more of calculated shape, direction and curvature attribute(s). As an example, a filtering technique may provide for an ability to perform analytics between 3D seismic data and one or more types of measurements (e.g. wireline measurements, etc.).
As an example, a filtering technique may employ fitting of a parametric function to data (e.g., seismic data, data derived from seismic data, etc.) to first attenuate noise, and then calculate one or more attributes based on the parametric function. As an example, a least-squares fitting may be employed to generate a parametric function.
As an example, a method can include implementing a low-pass filter that can act to smooth data. For example, consider a Savitzky-Golay filter (S-G filter). As an example, an S-G filter may be implemented as a digital filter that can be applied to a set of digital data points for the purpose of smoothing the data, that is, to increase the signal-to-noise ratio without substantially distorting the signal.
As an example, a method can include convolution, for example, performed via fitting successive sub-sets of adjacent data points with a low-degree polynomial by a linear least-squares approach. In such an example, when the data points are approximately equally spaced, an analytical solution to least-squares equations may be determined, for example, in the form of a single set of “convolution coefficients” that can be applied to a plurality of data sub-sets, to give estimates of a smoothed signal, (e.g., or derivatives of the smoothed signal) at a central point of each data sub-set to which it is applied. As an example, an S-G filter may be applied to multidimensional data (e.g., 2D data, 3D data, etc.).
Fracture corridors or faults may give rise to seismic signals that may be exhibited in acquired seismic data, for example, in cross sections and as lineaments on slices or seismic surfaces. Detection of such features may include processing seismic signals, seismic data or both to generate one or more edge detection attributes, for example, where an attribute may be considered a measurable “property” of seismic data (e.g., consider amplitude, dip, frequency, phase, polarity, etc.). For example, an attribute may be a value or a set of values derived from seismic signals, seismic data, etc. and defined with respect to a coordinate system (e.g., one-dimensional, two-dimensional, three-dimensional, four-dimensional or of an even higher dimension). As an example, a dimension may be a spatial dimension, a time dimension, a frequency dimension, etc. As an example, consider providing seismic data as a “cube” where each voxel (volume element) in the cube has a value. In such an example, an edge detection algorithm may process the values in a cube to generate new values where the new values are referred to collectively as an edge detection attribute (e.g., an attribute cube).
As an example, a seismic cube (e.g., a seismic volume or seismic data for a volume) may be processed to generate an attribute cube (e.g., an attribute volume or attribute values for a volume). As another example, a seismic surface may be processed to generate an attribute surface. As yet another example, a seismic line may be processed to generate an attribute line. As an example, a seismic point may be processed to generate an attribute point.
Attributes may be derived, measured, etc., for example, at one instant in time, for multiple instances in time, over a time window, etc. and, for example, may be measured on a single trace, on a set of traces, on a surface interpreted from seismic data, etc. Attribute analysis may include assessment of various parameters, for example, as to a reservoir, consider a hydrocarbon indicator derived from an amplitude variation with offset (AVO) analysis.
As to structure detection in a seismic cube, on a seismic reflection surface, etc., various techniques have been applied such as those including local angle and azimuth angle; minimum, maximum, and Gaussian curvature; coherence; 3D curvatures; and spectral decomposition. Various techniques tend to be sensitive to noise in seismic data, acquisition footprint in seismic data or both noise and acquisition footprint in seismic data. While filtering or smoothing may be applied in an effort to eliminate noise and acquisition footprints in seismic data and to obtain more useful information about faults and fractures, such filtering or smoothing may suppress noise and acquisition footprints that include useful information (e.g., about latent structures, etc.). In other words, filtering, smoothing, etc. of seismic data may “remove” or “diminish” small seismic data features (e.g., small in time, space or both time and space) that may be associated with faults, fractures, etc. (e.g., small seismic data features associated with seismic energy interacting with faults, fractures, etc.).
As to noise, it may arise from unwanted seismic energy, such as shot generation ground roll, surface waves, multiples, effects of weather, random occurrences in the Earth, seismology equipment, etc. Noise may exist as coherent noise, incoherent noise or other type of noise. As an example, coherent noise may appear as undesirable seismic energy artifacts with somewhat consistent phase from seismic trace to seismic trace (e.g., consider ground roll and multiples). As an example, incoherent noise, including random noise, may appear as disturbances in seismic data that lack coherence (e.g., lack a phase relationship between adjacent traces).
As to acquisition footprint, a footprint may refer to a region for which seismic data are acquired while an “acquisition footprint” may refer to artifacts that result from equipment, techniques, etc. used to acquire the seismic data. For example, for a region at sea, a footprint may be covered by an array of streamers towed by a vessel or vessels. In such an example, the spacing between streamers may be evidenced in seismic data as an acquisition footprint. For example, an acquisition footprint may appear as variations in properties of seismic data (e.g., encountered during processing) that are related to acquisition geometry and that may distort amplitude and phase of reflections.
As an example, consider seismic data where information about a structure (e.g., a fault, a fracture, etc.) exists within the data as high-frequency features in cross sections and as lineaments in slices or in seismic surfaces, which may lack coherence (e.g., to varying degree depending on one or more factors). As noise may include high-frequency characteristics and as information for acquisition footprint may exist as high-frequency artifacts within seismic data, approaches that aim to reduce the impact of noise and acquisition footprint within seismic data may also strip out at least a portion of the high-frequency features within the seismic data that are associated with a latent structure or latent structures.
As an example, a method may include accessing or providing wellbore information. As an example, fault and fracture auto tracking technology such as ant-tracking may be applied to one or more selected slices and/or cubes, for example, to improve or enhance information (e.g., consider ant-tracking to generate a fracture image). As an example, detecting may include classifying, for example, where classification information (e.g., model information, results from previously analyzed data, etc.) may assist in detecting one or more features that may belong to a class of features (e.g., a type of feature).
Below, an example of a system is described followed by various technologies, including examples of techniques, which may, for example, include filtering, etc.
In the example of
In an example embodiment, the simulation component 120 may rely on entities 122. Entities 122 may include earth entities or geological objects such as wells, surfaces, reservoirs, etc. In the system 100, the entities 122 can include virtual representations of actual physical entities that are reconstructed for purposes of simulation. The entities 122 may include entities based on data acquired via sensing, observation, etc. (e.g., the seismic data 112 and other information 114). An entity may be characterized by one or more properties (e.g., a geometrical pillar grid entity of an earth model may be characterized by a porosity property). Such properties may represent one or more measurements (e.g., acquired data), calculations, etc.
In an example embodiment, the simulation component 120 may rely on a software framework such as an object-based framework. In such a framework, entities may include entities based on pre-defined classes to facilitate modeling and simulation. A commercially available example of an object-based framework is the MICROSOFT® .NET™ framework (Redmond, Wash.), which provides a set of extensible object classes. In the .NET™ framework, an object class encapsulates a module of reusable code and associated data structures. Object classes can be used to instantiate object instances for use in by a program, script, etc. For example, borehole classes may define objects for representing boreholes based on well data.
In the example of
As an example, the simulation component 120 may include one or more features of a simulator such as the ECLIPSE™ reservoir simulator (Schlumberger Limited, Houston Tex.), the INTERSECT™ reservoir simulator (Schlumberger Limited, Houston Tex.), etc. As an example, a reservoir or reservoirs may be simulated with respect to one or more enhanced recovery techniques (e.g., consider a thermal process such as SAGD, etc.).
In an example embodiment, the management components 110 may include features of a commercially available simulation framework such as the PETREL® seismic to simulation software framework (Schlumberger Limited, Houston, Tex.). The PETREL® framework provides components that allow for optimization of exploration and development operations. The PETREL® framework includes seismic to simulation software components that can output information for use in increasing reservoir performance, for example, by improving asset team productivity. Through use of such a framework, various professionals (e.g., geophysicists, geologists, and reservoir engineers) can develop collaborative workflows and integrate operations to streamline processes. Such a framework may be considered an application and may be considered a data-driven application (e.g., where data is input for purposes of simulating a geologic environment).
In an example embodiment, various aspects of the management components 110 may include add-ons or plug-ins that operate according to specifications of a framework environment. For example, a commercially available framework environment marketed as the OCEAN® framework environment (Schlumberger Limited, Houston, Tex.) allows for integration of add-ons (or plug-ins) into a PETREL® framework workflow. The OCEAN® framework environment leverages .NET® tools (Microsoft Corporation, Redmond, Wash.) and offers stable, user-friendly interfaces for efficient development. In an example embodiment, various components may be implemented as add-ons (or plug-ins) that conform to and operate according to specifications of a framework environment (e.g., according to application programming interface (API) specifications, etc.).
The model simulation layer 180 may provide domain objects 182, act as a data source 184, provide for rendering 186 and provide for various user interfaces 188. Rendering 186 may provide a graphical environment in which applications can display their data while the user interfaces 188 may provide a common look and feel for application user interface components.
In the example of
In the example of
In the example of
As mentioned, the system 100 may be used to perform one or more workflows. A workflow may be a process that includes a number of worksteps. A workstep may operate on data, for example, to create new data, to update existing data, etc. As an example, a may operate on one or more inputs and create one or more results, for example, based on one or more algorithms. As an example, a system may include a workflow editor for creation, editing, executing, etc. of a workflow. In such an example, the workflow editor may provide for selection of one or more pre-defined worksteps, one or more customized worksteps, etc. As an example, a workflow may be a workflow implementable in the PETREL® software, for example, that operates on seismic data, seismic attribute(s), etc. As an example, a workflow may be a process implementable in the OCEAN® framework. As an example, a workflow may include one or more worksteps that access a module such as a plug-in (e.g., external executable code, etc.).
As shown, the formation 201 includes a horizontal surface and various subsurface layers. As an example, a borehole may be vertical. As another example, a borehole may be deviated. In the example of
As to the convention 215 for dip, as shown, the three dimensional orientation of a plane can be defined by its dip and strike. Dip is the angle of slope of a plane from a horizontal plane (e.g., an imaginary plane) measured in a vertical plane in a specific direction. Dip may be defined by magnitude (e.g., also known as angle or amount) and azimuth (e.g., also known as direction). As shown in the convention 215 of
Some additional terms related to dip and strike may apply to an analysis, for example, depending on circumstances, orientation of collected data, etc. One term is “true dip” (see, e.g., DipT in the convention 215 of
As shown in the convention 215 of
In terms of observing dip in wellbores, true dip is observed in wells drilled vertically. In wells drilled in any other orientation (or deviation), the dips observed are apparent dips (e.g., which are referred to by some as relative dips). In order to determine true dip values for planes observed in such boreholes, as an example, a vector computation (e.g., based on the borehole deviation) may be applied to one or more apparent dip values.
As mentioned, another term that finds use in sedimentological interpretations from borehole images is “relative dip” (e.g., DipR). A value of true dip measured from borehole images in rocks deposited in very calm environments may be subtracted (e.g., using vector-subtraction) from dips in a sand body. In such an example, the resulting dips are called relative dips and may find use in interpreting sand body orientation.
A convention such as the convention 215 may be used with respect to an analysis, an interpretation, an attribute, etc. (see, e.g., various blocks of the system 100 of
Seismic interpretation may aim to identify and classify one or more subsurface boundaries based at least in part on one or more dip parameters (e.g., angle or magnitude, azimuth, etc.). As an example, various types of features (e.g., sedimentary bedding, faults and fractures, cuestas, igneous dikes and sills, metamorphic foliation, etc.) may be described at least in part by angle, at least in part by azimuth, etc.
As shown in the diagram 220 of
As an example, seismic data may be acquired for a region in the form of traces. In the example of
In the example of
In the example of
As an example, one or more attribute modules may be provided for processing seismic data. As an example, attributes may include geometrical attributes (e.g., dip angle, azimuth, continuity, seismic trace, etc.). Such attributes may be part of a structural attributes library (see, e.g., the attribute component 130 of
As mentioned, as an example, seismic data for a region may include one million traces where each trace includes one thousand samples for a total of one billion samples. Resources involved in processing such seismic data in a timely manner may be relatively considerable by today's standards. As an example, a dip scan approach may be applied to seismic data, which involves processing seismic data with respect to discrete planes (e.g., a volume bounded by discrete planes). Depending on the size of the seismic data, such an approach may involve considerable resources for timely processing. Such an approach may look at local coherence between traces and their amplitudes, and therefore may be classified in the category of “apparent dip.”
As an example, a filtering technique may be applied without implementing dip-steering (i.e. as may be applied parallel to seismic reflectors in a 3D image). In such an example, a workflow may be performed that includes filtering without calculating structural dips, which may be compute-expensive, particularly to achieve determine accurate structural dips. Further, calculated dips, as mentioned above, are estimated dips, and tend to include errors particularly close to genuine discontinuities (e.g., one or more of faults, unconformities, salt boundaries, channel edges) in a seismic image. Where dip-steering is implemented, dip estimates can bias a filter. Such an approach may generate misleading results, for example, where a wrong dip is followed, particularly across a fault as to a horizon, etc.
As an example, a filtering technique may include applying a multidimensional filter and a multidimensional parametric function (e.g., z(x,y)). In such an example, there may be a number of fixed degrees of freedom. In such an example, the filtering technique may be applied to 2D or 3D post-stack seismic data. For example, such an approach may be applied as to one or more of inline slices, cross-line slices, time-slices, horizon-slices and other types of slices.
As an example, a 2D filter approach may implement a 2nd degree polynomial, z(x,y) in two dimensions. As an example, such an approach may be applied to 2D or 3D post-stack seismic data. For example, such an approach may be applied as to one or more of inline slices, cross-line slices, time-slices, horizon-slices and other types of slices.
As to a 2nd degree polynomial, it may be applied for calculating a least-squares fit in a selected number of 2D windows (e.g., of size m*n samples/pixels) in a 2D image (e.g., of size M*N samples/pixels). For example, consider, as an example, the following 2nd degree polynomial set forth as a polynomial function:
z(x,y)=ax2+by2+cxy+dx+ey+f (1)
where x is a position in a first dimension and y is position in a second dimension, and z(x,y) is the estimated value of the polynomial function at a location (x,y) in a 2D space.
As an example, the foregoing second order polynomial approach may be applied in a least-squares fitting scheme for attenuating noise in a seismic image or seismic images (e.g., optionally including an attribute image or attribute images). As an example, a method can include filtering individual 2D time-slices (e.g., or depth-slices, if the seismic data has been depth-migrated) in a 3D seismic cube independently. As an example, a method can include determining a value for the parameter “f” in the equation (1) as presented above.
As an example, a method can include selecting a window size or window sizes and optionally window shape or shapes. As an example, a method can include running several windows of different sized and/or shape. In such an example, a result may be selected to utilize for a particular set of data, a particular feature to be highlighted (e.g., enhanced as to signal-to-noise, etc.), a particular type of noise to be attenuated, etc.
As an example, a window may be a rectangular window. As an example, a window size may be selected based at least in part on a number of unknowns (e.g., in a polynomial). As an example, a window may include more samples than unknowns in a polynomial. As an example, consider a 3×3 window, a 3×2 window, a 2×3 window, a 33×33 window, etc. As an example, filtering may account for bin size (e.g., consider about 12.5 m×about 25 m). As an example, a window may be applied vertically, horizontally or at another angle. As an example, a sample size may be selected with respect to dimensions, optionally chosen independently as to sample rate and noise level. As an example, a window size and/or shape may be selected based at least in part on a shape and/or size of a feature and/or type of noise.
As an example, a process may aim to “connect” structures, for example, by resolving features such as ridges and/or valleys; optionally including applying one or more techniques such as, for example, ant-tracking.
As an example, a method may be applied to post-stack and/or pre-stack data. As an example, a method may include calculating dip estimates or not calculating dip estimates. As an example, as to pre-stack data, a method may be applied before migration or NMO correction. As an example, a method may be applied to common midpoint (CMP) data (e.g., gathers, etc.), optionally in set pairs, etc. As an example, a seismic survey may be an AVO, an AVA (e.g., with offsets/angles) and/or one or more other types of surveys. As an example, a survey may be a land-based and/or a sea-based survey (e.g., optionally employing streamers. As an example, a method may be applied to data prior to calculation of dip estimates. In such an example, a quality of data may be assessed and optionally utilized to characterize the data and/or dip estimates calculated therefrom (e.g., as to certainty, quality, etc.).
As an example, the method 410 can include selecting a window size for the fitting. As an example, the method 410 can include least squares fitting of a second order multidimensional polynomial function to seismic amplitudes of a window.
As an example, a method can include receiving seismic data; fitting a multidimensional polynomial function to at least a portion of the seismic data to generate one or more values for one or more corresponding parameters of the function; and, based at least in part on the fitting, outputting information.
The method 500 of
As an example, the block 610 can be a calculation block for calculating a least-squares fit in 2D windows (of size m*n samples/pixels) in a 2D image (of size M*N samples/pixels) to an example polynomial function of the form (Equation (1) as set forth above and represented for convenience below, now italicized):
z(x,y)=ax2+by2+cxy+dx+ey+f (1)
where x is position in the first dimension and y is position in second dimension, and z(x,y) is the estimated value of the polynomial function at location (x,y) in 2D space.
In such an example, the least-squares approximation may be performed, for each window in the image, by first defining a [6×1] coefficient vector x:
x
T=[abcdef] (2)
Such a process may then include defining a [p×1] sample/pixel vector y, containing p=m*n sample values z1, z2, . . . , zp in the 2D window, such as:
y
T=[z1z2 . . . zp] (3)
The process can then include defining a [p×6] matrix A, where the values in A can be set as follows:
A[i,1]=xi2 (4)
A[i,2]=yi2 (5)
A[i,3]=xi*yi (6)
A[i,4]=xi (7)
A[i,5]=yi (8)
A[i,6]=1.0 (9)
where i=1 p, xi is the signed distance between the location of sample #1 and the center point of the window in the first (x) direction, and yi is the signed distance between the location of sample #1 and the center point of the window in the second (y) direction.
In the foregoing example, it is implied that the window size p is to be equal or larger than 6. This is because at least six equations are to be considered to resolve the six unknown parameters in the vector x.
If p=6, then consider the following relationship:
y=Ax (10)
The foregoing implies that if A is invertible (and it will be, if at least three samples in each direction, i.e. m>=3 and n>=3), then the process can include finding the coefficients in x, for example, as:
x=A
−1
y (11)
If p>6 then the system is an overdetermined system (i.e., more equations than unknowns). One example approach to resolve x in this situation is to estimate it in a least-squares sense. For example, consider finding x as follows:
x=B y (12)
where B is a [6×6] matrix, defined as:
B=(ATA)−1AT (13)
Note that if the window size and sample spacing in both directions is common for all windows in the image, then B is invariant (i.e. it does not change as a process moves the window around in the image), and can hence be calculated once. Such an approach may be a “Moore-Penrose pseudoinverse approach”, which may efficiently calculate x as the trivial convolution of B and y (Equation (12)).
As an example, the block 620 of the method 600 can be another calculation block. For example, with inverted polygon parameters xT=[a b c d e f], the calculation block 620 can include calculating estimated (and hence filtered) values at one or more locations in a window using Equation (1). For example, consider calculating the filtered value z′ for a center sample/pixel in each window as follows:
z′=z(0,0)=f (14)
In such a manner, the method 600 may include constructing a filtered image by, for each sample/pixel in the image, extracting a window of samples around it, invert for z′, and set z′ as the filtered value for that location in the image.
As an example, the calculation block 620 may optionally implement a 2D Savitzky-Golay filter, for example, as explained above (see, e.g., the S-G filter above).
The aforementioned approach (e.g., of blocks 610 and 620) may be part of a 2D filter approach that uses one or more types of parametric function z(x,y), with a particular fixed degrees of freedom. As an example, the block 630 of the method 600 of
As an example, a 2D filter approach may include the aforementioned particular 2nd degree polynomial, given as z(x,y), in two dimensions in Equation (1). Such an approach may be applied to 2D or 3D post-stack seismic data (e.g., inline slices, cross-line slices, time-slices, horizon-slices or other) and/or to pre-stack seismic data.
Various trials demonstrate that the aforementioned filter approach, using that particular polynomial form (Equation (1)) for the least-squares fitting, can be efficient and can attenuate noise in seismic images. As an example, consider applying such an approach by filtering one or more 2D time-slices (e.g., or depth-slice, if the seismic data has been depth-migrated) in a 3D seismic cube, for example, independently.
Referring again to the method 500 of
As an example, a system can include one or more processors for processing information; memory operatively coupled to the one or more processors; and modules that include instructions stored in the memory and executable by at least one of the one or more processors. As shown in the example of
As an example, a filtering technique may be applied using a multidimensional polynomial where the filtering technique does not include dip-steering (e.g., it may be applied parallel to seismic reflectors in a 3D image). Calculating accurate structural dips can be compute-expensive as calculated dips can be estimated dips and can be wrong close to genuine discontinuities (e.g., faults, unconformities, salt boundaries, channel edges, etc.) in a seismic image. Such dips may result in errors for dip-steering (e.g., where a filter follows an erroneous dip). As explained with respect to the method 310 of
As an example, the block 640 of the method 600 of
An article by Roberts, A. (2001), Curvature attributes and their application to 3D interpreted horizons (First Break, 19: 85-100. doi: 10.1046/j.0263-5046.2001.00142.x), is incorporated by reference herein.
As an example, where values of the shape index range between −1.0 and +1.0 with Si=−1.0 indicating a bowl or cup, a rut or valley is Si=−0.5, a saddle is Si=0.0, a ridge is Si=+0.5 and a cap or dome is Si=+1.0. As an example, shape index values between the aforementioned values can indicate that the shape is somewhere between the shapes listed above. For example, a shape index of 0.75 may indicate that a shape is in the middle between a ridge and a dome, and hence may have a “cigar” shape.
In Roberts, the coefficients a-b-c-d-e are listed; noting that the coefficient “f” is not used in Roberts; whereas, as an example, as explained herein, the coefficient “f” may be utilized as part of a filtering technique (see, e.g., blocks 630 and/or 640 of the method 600 of
With reference to
While the term Amplitude Curvature is mentioned above, there is another use of this term, which may be more appropriately referred to as “Energy Curvature” because it involves first calculating the energy level in a whole 3D cube (e.g. using a vertical Root-Mean-Squared operator), then calculating the inline and cross-line gradients of the energy level, and finally using those two gradient volumes to estimate constants a, b and c, and assume that d, e and f are all zero; where robustness is via spatially filtering the energy level cube before the gradients are calculated.
As an example, a method can include calculating one or more curvature attributes in a “pseudo” sense, for both amplitude 3D input seismic data and edge (e.g., or one or more other attributes derived from seismic data) 3D input data. As to some examples of curvature attributes, consider the following:
As to the foregoing example equations, Equation (15) is mean curvature, Equation (16) is Gaussian curvature, Equation (17) is maximum curvature, Equation (18) is minimum curvature, Equation (19) is shape index (e.g., to define local surface shape independent of scale), Equation (20) is curvedness (e.g., magnitude of curvature independent of shape), Equation (21) is dip angle and Equation (22) is azimuth. As an example, a combination of mean curvature and Gaussian curvature can allow for description of a local shape of a structure in imagery data. For example, where Gaussian curvature is less than zero, a local shape can be identified as a saddle, where Gaussian curvature is approximately zero, a local shape can be identified as a ridge (e.g., mean curvature greater than zero), flat or planar (e.g., mean curvature approximately zero), or a valley (e.g., mean curvature less than zero), and where Gaussian curvature is greater than zero, a local shape can be identified as a dome (e.g., mean curvature minimum and maximum greater than zero) or as a bowl (e.g., mean curvature minimum and maximum less than zero).
As an example, the block 660 of
As an example, a method that may include one or more of the following:
Highlight karst structures in edge attributes (e.g., where they can have shape index close to +1.0);
Extract fault lineaments from the edge attributes (e.g., where they can have shape index close to +0.5);
Extract fault lineaments in a particular azimuth direction (e.g., filter on curvature azimuth and shape index); and
Remove lineaments which are likely to be acquisition footprints (e.g., where they can have azimuth close to the inline/sail angle).
As an example, the block 670 of
As an example, the block 680 may be a structural guidance block that may implement, for example, structural steering. As an example, consider structural steering of a filter (e.g., as in the method 600). As an example, a method may include comparing filtering with and without structural guidance.
As an example, fitting can include utilizing a Moore-Penrose pseudo-inverse approach where such fitting can be in a least-squares sense that aims to determine values of parameters of a multidimensional polynomial. As mentioned, given values of various parameters, one or more equations (see, e.g., the Equations (15) to (22), etc.) may be utilized to generate curvature attribute data. As an example, curvature attribute data may be utilized in a positive manner and/or in a negative manner. For example, in a positive manner, curvature attribute data may be utilized to identify curved structure(s) while, in a negative manner, curvature attribute data may be utilized to “filter-out” particular structure(s), which may, for example, help to identify linear structure(s).
The method 1710 is shown in
As an example, imagery data can be or can include seismic data. As an example, imagery data can be medical imagery data from a machine such as an ultrasound machine, an X-ray machine, a nuclear magnetic resonance machine (e.g., MRI) or another type of medical imaging machine. As an example, imagery data can be satellite imagery data. As an example, imagery data can be photographic imagery data. As an example, imagery data can be microwave imagery data. As an example, imagery data can be infrared imagery data. As an example, imagery data can be meteorological imagery data (e.g., cloud data, wind data, rain data, snow data, etc.).
As an example, imagery data can be data that is based at least in part on sensed data. For example, a receiver can receive energy where such energy can be recorded with respect to a dimension or dimensions of an object, a portion of an object, etc. Such data may be processed and can be processed imagery data, which is a type of imagery data. As an example, seismic data can be seismic attribute data.
As an example, imagery data can be pixel data where each pixel has corresponding dimensions. As an example, each of the corresponding dimensions can exceed approximately 5 meters. For example, for seismic data that is multidimensional, in a plane, the seismic data can be organized as pixels where each pixel has a dimension that exceeds approximately 5 meters.
As an example, imagery data can be seismic data that includes seismic amplitude data and where a method can include fitting a multidimensional polynomial function to the seismic amplitude data.
As an example, a method can include generating filtered imagery data based at least in part on fitting a multidimensional polynomial function to the imagery data. As an example, a filter size may be selected where the filter size is based at least in part on a feature size of a structure in imagery data.
As an example, a multidimensional polynomial function can include a number of parameters as unknowns where fitting can include utilizing a window size that encompasses a number of samples of the imagery data that is equal to or greater than the number of parameters.
As an example, a multidimensional polynomial function can be a two-dimensional polynomial function. As an example, a multidimensional polynomial function can include six parameters as unknowns. As an example, a multidimensional polynomial function can be z(x,y)=ax2+by2+cxy+dx+ey+f where x and y are coordinates of a Cartesian coordinate system and where a, b, c, d, e, and f are the parameters of the function.
As an example, imagery data can include seismic data and a method can include generating filtered seismic data based at least in part on the fitting to attenuate acquisition footprint noise in the seismic data.
As an example, a method can include least-squares fitting that fits a multidimensional polynomial to at least a portion of imagery data.
As an example, a method can include identifying at least one structural feature in imagery data based at least in part on curvature attribute data.
As an example, a system can include a processor; memory operatively coupled to the processor; and processor-executable instructions stored in the memory to instruct the system to: receive imagery data; fit a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generate curvature attribute data based at least in part on the fitting. In such an example, the imagery data can include seismic data.
As an example, a system can include a multidimensional polynomial function that can be z(x,y)=ax2+by2+cxy+dx+ey+f where x and y are coordinates of a Cartesian coordinate system and where a, b, c, d, e, and f are the parameters of the function.
As an example, one or more computer-readable storage media can include computer-executable instructions to instruct a computing system where the instructions include instructions to: receive imagery data; fit a multidimensional polynomial function to at least a portion of the imagery data to generate one or more values for one or more corresponding parameters of the function; and generate curvature attribute data based at least in part on the fitting. In such an example, the imagery data can be or can include seismic data.
As an example, a method can include identifying one or more structures in seismic data of geologic environment. For example, consider one or more of identifying a fault or faults, mapping a fault or faults, separating a fault or faults. As an example, a method can include fault mapping that maps faults in a geologic environment based at least in part on curvature attribute data. As an example, a method can include fault separating that separates faults in a geologic environment based at least in part on curvature attribute data.
As shown in the example plots of
As shown in the example plots of
As shown in
As an example, a method can include receiving seismic data; fitting a multidimensional polynomial function to at least a portion of the seismic data to generate one or more values for one or more corresponding parameters of the function; and, based at least in part on the fitting, outputting information. In such an example, the method can include receiving seismic data that includes seismic amplitude data where the fitting includes fitting the multidimensional polynomial function to the seismic amplitude data. As an example, seismic data may be or include seismic attribute data.
As an example, a method can include generating filtered seismic data based at least in part on fitting of a multidimensional polynomial function to seismic data. As an example, a method can include generating curvature attribute data based at least in part on fitting of a multidimensional polynomial function to seismic data.
As an example, a multidimensional polynomial function can include a number of parameters as unknowns and fitting can include utilizing a window size that encompasses a number of samples of seismic data that is equal to or greater than the number of parameters.
As an example, a multidimensional polynomial function can be a two-dimensional polynomial function. As an example, a multidimensional polynomial function can include six parameters as unknowns. As an example, a multidimensional polynomial function can be: be z(x,y)=ax2+by2+cxy+dx+ey+f where x and y are coordinates of a Cartesian coordinate system and where a, b, c, d, e, and f are the parameters of the function.
As an example, a function may be specified in a Cartesian coordinate system and/or in another type of coordinate system (e.g., cylindrical, etc.).
As an example, a method can include generating filtered seismic data based at least in part on filtering to attenuate acquisition footprint noise in seismic data.
As an example, seismic data may be a seismic volume (e.g., a seismic cube). As an example, a method can include performing fitting on a plurality of 2D slices of seismic data, optionally independently. In such an example, a method may include performing fitting in parallel and/or in series using one or more processor cores. As an example, a method can include least-squares fitting.
As an example, a system can include one or more processors for processing information; memory operatively coupled to the one or more processors; and modules that include instructions stored in the memory and executable by at least one of the one or more processors, where the modules include a reception module that receives seismic data; a fitting module that fits a multidimensional polynomial function to at least a portion of the seismic data generate one or more values for one or more corresponding parameters of the function; and an output module that, based at least in part on fitting, outputs information. In such an example, the fitting module can be or include a least-squares fitting module.
As an example, one or more computer-readable storage media can include computer-executable instructions to instruct a computing system where the instructions include instructions to: receive data where the data includes seismic data or seismic attribute data; fit a multidimensional polynomial function to at least a portion of the data to generate one or more values for one or more corresponding parameters of the function; and output information. In such an example, the output information can include filtered data. As an example, seismic data can include seismic amplitude data where fitting fits a function to at least a portion of the seismic amplitude data.
In an example embodiment, components may be distributed, such as in the network system 1810. The network system 1810 includes components 1822-1, 1822-2, 1822-3, . . . 1822-N. For example, the components 1822-1 may include the processor(s) 1802 while the component(s) 1822-3 may include memory accessible by the processor(s) 1802. Further, the component(s) 1802-2 may include an I/O device for display and optionally interaction with a method. The network may be or include the Internet, an intranet, a cellular network, a satellite network, etc.
As an example, a device may be a mobile device that includes one or more network interfaces for communication of information. For example, a mobile device may include a wireless network interface (e.g., operable via IEEE 802.11, ETSI GSM, BLUETOOTH®, satellite, etc.). As an example, a mobile device may include components such as a main processor, memory, a display, display graphics circuitry (e.g., optionally including touch and gesture circuitry), a SIM slot, audio/video circuitry, motion processing circuitry (e.g., accelerometer, gyroscope), wireless LAN circuitry, smart card circuitry, transmitter circuitry, GPS circuitry, and a battery. As an example, a mobile device may be configured as a cell phone, a tablet, etc. As an example, a method may be implemented (e.g., wholly or in part) using a mobile device. As an example, a system may include one or more mobile devices.
As an example, a system may be a distributed environment, for example, a so-called “cloud” environment where various devices, components, etc. interact for purposes of data storage, communications, computing, etc. As an example, a device or a system may include one or more components for communication of information via one or more of the Internet (e.g., where communication occurs via one or more Internet protocols), a cellular network, a satellite network, etc. As an example, a method may be implemented in a distributed environment (e.g., wholly or in part as a cloud-based service).
As an example, information may be input from a display (e.g., consider a touchscreen), output to a display or both. As an example, information may be output to a projector, a laser device, a printer, etc. such that the information may be viewed. As an example, information may be output stereographically or holographically. As to a printer, consider a 2D or a 3D printer. As an example, a 3D printer may include one or more substances that can be output to construct a 3D object. For example, data may be provided to a 3D printer to construct a 3D representation of a subterranean formation. As an example, layers may be constructed in 3D (e.g., horizons, etc.), geobodies constructed in 3D, etc. As an example, holes, fractures, etc., may be constructed in 3D (e.g., as positive structures, as negative structures, etc.).
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. § 112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words “means for” together with an associated function.
This application claims priority to and the benefit of a U.S. Provisional Application having Ser. No. 62/238,259, filed 7 Oct. 2015, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/055392 | 10/5/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62238259 | Oct 2015 | US |