The invention lies in the field of large scale fire fighting nozzles, and more particularly in the field of fire fighting nozzles having a selectable discharge gap providing a wide range of fixed-flows, of nozzles requiring independently selectable additive proportioning, and of nozzles providing light weight, cost effective construction.
In the field of large scale (250 gpm or greater) fire fighting nozzles, “fixed-flow” nozzles, in general, have long been traditional. A nozzle is “fixed-flow,” or is referred to as “fixed-flow,” when the nozzle discharge gap is fixed during use. The reference or term is used even when the discharge gap is selectively adjustable.
A nozzle discharge gap is typically the annular gap defined between a portion of a nozzle barrel and a nozzle bafflehead. One traditional adjustable fixed-flow nozzle design, for instance, permits the gap to be manually adjusted by screwing in and out a bafflehead located at the discharge end of the nozzle barrel.
In “fixed-flow” nozzles the flow rate, or gpm, varies with the square root of supplied fluid pressure. Although in practice there can be a significant variation in the fire fighting fluid supply pressure, variations which can run possibly +/−50%, the variation in the square root of that pressure is not great. Thus, the resulting variation in flow rate caused by a varying supply pressure is not too great. Thus, such nozzles, with the discharge gap fixed during flow, are referred to as “fixed-flow” nozzles.
(In contrast, by way of background, so called “automatic or “pressure regulating” nozzles automatically vary a nozzle discharge gap during use to attempt to maintain a pre-selected discharge pressure. Typically in such nozzles a bafflehead, assisting in defining the discharge gap, will be automatically adjusted to attempt to maintain a pre-selected discharge pressure. Since range tends to vary directly with pressure, “pressure regulating” nozzles tend to deliver fluid at a fixed range notwithstanding variations in supply pressure. Flow rate, however, in “pressure regulating” nozzles varies significantly. The flow rate varies with the variation in discharge gap used to target the discharge pressure. From this condition arises the contrast with “fixed-flow” nozzles. The instant invention is directed to improved “fixed-flow” nozzles.)
Additive, usually a foam or foaming concentrate, is frequently supplied to a fire fighting nozzle. It is designed by manufacturers to be proportioned into fire fighting fluid at a stated ratio, typically 1%, 3%, 6%, 10%. Various means have been developed in the industry to adapt for changing additive products during a job; that is, means have been developed to change from a product with one proportioning ratio to an additive product with another proportioning ratio. One such means has been the provision for the manual insertion of variable orifices in a flow path or line between an additive source and a nozzle. Small insertable orifices would be provided for additives designed to be mixed at lower ratios; larger orifices would be provided for additives designed to be mixed at higher ratios. Another variation, Klein U.S. Pat. No. 4,224,956, discloses a simple, manually adjustable proportioning valve, the valve adjustable between a set of stop positions, in order to proportion at different ratios.
The desire and/or ability to significantly adjust flow rate in a “fixed-flow” nozzle greatly complicates, however, this selection of a proper orifice. When flow rate can be widely adjusted, such as between 250 gpm and 500 gpm or greater, a selection of the proper orifice for proportioning additive, which is dependent upon flow rate (e.g. upon the adjusted size of the gap of the discharge,) becomes complex.
(In the field of “automatic” nozzles, discussed above, means have been invented [by the instant inventor] wherein an automatic variation in the discharge gap automatically provides a coordinated variation in a port in the additive fluid flow path, the variation being coordinated in two ways. One variation in port size is calibrated to automatically vary additive flow rate with variations in primary fluid flow rate caused by the nozzle's system of automatic adjustment. A second variation of port size is also calibrated to vary port size in accordance with a selected variation in the proportioning ratio of the additive. See co-pending patent application Ser. No. 10/677,900.)
The instant invention provides for a selectable “fixed flow” fire fighting nozzle with independently selectable, gap coordinated additive proportioning ratios. The additive proportioning ratios and flow rate selections are coordinated, but they are selectable independently of each other. That is, a fire fighter can select, independently, preferably by turning a dial, a flow rate and a proportioning ratio. A turn of the dial can select a different flow rate for the same proportioning ratio or a different proportioning ratio for the same flow rate, or both different. The instant invention provides a pre-calibrated orifice system, calibrated with a bafflehead adjustment system that controls discharge gap, such that bafflehead adjustment and additive orifice selection are independently selectable. For instance, if a nozzle provided for the selection between three flow rates and three additive ratios, then three bafflehead positions and nine orifice positions would be provided, one orifice position for each additive ratio at each flow rate. The orifice system lies in a fluid communication path between an additive source and the discharge end of the nozzle. To the best of applicant's knowledge, no prior art system has coordinated and cross calibrated a selection of nozzle-flow rates and a selection of additive ratio proportioning orifices.
The instant invention involves a further improvement. To the instant inventor's best knowledge, in the field of industrial-scale fire fighting nozzles, only very small nozzles have ever been offered in plastic either in whole or in part. These nozzles are typically referred to as “wash-down” nozzles in the industry. These nozzles offered in plastic have had a diameter of approximately 1½ inches or less and have been no longer than approximately 8 inches. Their flow rate has been less than 100 gpm. To date, plastics have not been used for critical parts of large industrial scale fire fighting nozzles. Industry concerns that have blocked the use of plastics in large industrial scale fire fighting nozzles include: (1) concern that plastics cannot sustain in general the high temperature of a fire and/or the high pressures of water, i.e. that their melting point and their yield strength is not sufficiently high; and (2) concern that plastics cannot sustain in general the high reaction loads such as the high thread stresses.
The instant inventor has determined, however, that as a material for constructing industrial scale fire fighting nozzles, plastics can offer significant cost and weight advantages. Plastics can be corrosion resistant and can include additives for controlling friction in order to facilitate sliding parts. Against the weight of tradition, the instant inventor therefore has experimented with the use of plastics for components of a preferred embodiment of a selectable fixed-flow, selectable additive proportioning, industrial scale fire fighting nozzle. The instant selectable fixed-flow, selectable proportioning nozzle, with complex inter related parts, offered an excellent test case for experimentation. Both the cost and the weight of an all metal nozzle could be ameliorated using lighter and cheaper plastic parts. Testing has proven that nozzle parts constructed of plastic can withstand the temperature, pressure and corrosion resistance required for the large industrial scale fire fighting nozzle. And as an added benefit, major customers for fire fighting nozzles include the major plastics manufacturers.
The invention comprises a fire fighting nozzle having a selectively adjustable discharge gap and an independently selectable, gap coordinated additive proportioning system. Nozzle elements define a selectively adjustable discharge gap and are structured in combination such that the gap is selectively adjustable between a plurality of positions. The nozzle includes an additive passageway associated with the nozzle, the passageway defined in a path of fluid communication between a nozzle discharge and an additive source. The passageway is selectively adjustable between at least four configurations. At least two configurations are correlated with at least two discharge gap positions. A selective adjustment of nozzle elements is independent of, but coordinated with, a selective adjustment of the additive passageway.
The invention also includes a method for discharging fire fighting fluid at a manually adjustable flow rate and providing for independently selectable, gap coordinated additive proportioning. The method includes relatively adjusting nozzle elements to define one of a plurality of selectively adjustable discharge gaps for the nozzle, each gap coordinated with one of a plurality of selectable additive proportioning ratios. The method includes adjusting an additive passageway, defined in a line of fluid communication between a nozzle discharge and an additive source, to one of at least four configurations. Each configuration corresponds to one of at least two discharge gap positions and to one of at least two additive proportioning ratios. The relative adjusting of nozzle elements is coordinated with an adjusting of additive passageway, and the discharge gap and additive proportioning ratios can be independently selected.
The invention also includes large scale fire fighting nozzle having a diameter of at least 2½ inches and a flow rate of up to 250 gpm, the nozzle including barrel elements and a bafflehead element. At least one of a barrel element and a bafflehead element are constructed of reinforced high temperature polymer. Preferably, a fiber reinforced high temperature polymer is used. In a preferred embodiment the nozzle is constructed essentially of material comprised of aluminum, an aluminum/magnesium alloy and a fiber reinforced high temperature polymer.
A better understanding of the present invention can be obtained when the following detailed description of the preferred embodiments are considered in conjunction with the following drawings, in which:
Table I lists properties and desired requirements for plastic parts for a preferred embodiment of the instant invention.
Table II coordinates part numbers of
The drawings are primarily illustrative. It would be understood that structure may have been simplified and details omitted in order to convey certain aspects of the invention. Scale may be sacrificed to clarity.
The FNB and RNB body portions, as disclosed more fully below, are barrel elements that rotate relative to each other. The relative rotation between the two nozzle or barrel elements causes metering tube element MT, better illustrated in
The nozzle of
As more particularly illustrated in
An X Y cross section of the embodiment of
The instant inventor experimented with the use of plastic for component parts for fire fighting nozzles having diameters of 2½ inches or higher and flowing from 150 gpm to 750 gpm. Surprisingly, tests showed that plastic nozzle components can withstand the high water pressures as well as the necessary high operating temperatures, the high reaction loads and the high thread stresses. Good performance was achieved with a plastic that can withstand temperatures up to at least 400° F. This is true even though in the process the instant inventor determined that the maximum practical temperature for operating a fire fighting nozzle is 250° F. For operations at temperatures above 250° F., the o-rings and the hoses associated with the additive and its supply system begin to fail, even if all of the other parts are made of metal.
Primary advantages of a plastic construction are as follows:
The material of construction employed in one preferred embodiment nozzle design is a composite. The nozzle was preferably comprised essentially of parts constructed of aluminum, of an aluminum/magnesium alloy and/or of a fiber reinforced high temperature polymer. A high temperature polymer should be able to withstand temperatures of up to at least 300° F. A preferred fiber reinforced high temperature polymer is manufactured by RTP Company and is known as RTP 205 HS UV. Such a composite of materials offers advantages of light weight.
There are many advantages to a lighter weight construction. Lighter weight is less of a burden for a firefighter who has to carry fire fighting equipment around and may have to climb over pipe racks and other obstacles. Secondly, a lighter weight nozzle is more friendly on the end of the monitor than a heavier weight nozzle would be. If the monitor is tiller-bar operated it means less effort for the operator. On electrically or hydraulically actuated monitors, there is a limit to the weight they are designed to handle. There have been times when metal nozzles were simply too heavy for these monitors to handle.
An aluminum/magnesium alloy construction combination used to manufacture many parts of a preferred embodiment of the instant invention has a high strength to weight ratio and has an improved resistance to corrosion, as compared to conventional aluminum alloys.
To further enhance corrosion resistance, the metals are preferably hard coat anodized to military specifications
A preferred polymer is fiber reinforced, heat stabilized, UV protected and essentially impervious to corrosion. Such material has a high impact strength and excellent yield strength, not to mention the fact that the material is 42% lighter than aluminum.
In preferred embodiments of the invention metering tube MT, including bafflehead MTBH and metering ports MTAP, as well as barrel element RNB, with its interior cylinder, fins and keyways, are both constructed of a fiber reinforced high temperature polymer. In particular, they are comprised of material RTP 205 HS UV 2 Black polymer. The same black polymer is also preferably used for gap defining element RNBG, mixing plate MTMP and sliding sleeve RNBSL.
The foregoing description of preferred embodiments of the invention is presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the invention to the precise form or embodiment disclosed. The description was selected to best explain the principles of the invention and their practical application to enable others skilled in the art to best utilize the invention in various embodiments. Various modifications as are best suited to the particular use are contemplated. It is intended that the scope of the invention is not to be limited by the specification, but to be defined by the claims set forth below. Since the foregoing disclosure and description of the invention are illustrative and explanatory thereof various changes in the size, shape, and materials, as well as in the details of the illustrated device may be made without departing from the spirit of the invention. The invention is claimed using terminology that depends upon a historic presumption that recitation of a single element covers one or more, and recitation of two elements covers two or more, and the like. Also, the drawings and illustration herein have not necessarily been produced to scale.
Number | Name | Date | Kind |
---|---|---|---|
3863844 | McMillan | Feb 1975 | A |
4224956 | Klein | Sep 1980 | A |
4640461 | Williams | Feb 1987 | A |
5082633 | Stuper | Jan 1992 | A |
5445226 | Scott et al. | Aug 1995 | A |
5538784 | Subramanian | Jul 1996 | A |
6749027 | Crabtree | Jun 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20060090907 A1 | May 2006 | US |