Selectable lighting intensity and color temperature using luminaire lens

Information

  • Patent Grant
  • 11359794
  • Patent Number
    11,359,794
  • Date Filed
    Thursday, October 15, 2020
    5 years ago
  • Date Issued
    Tuesday, June 14, 2022
    3 years ago
  • CPC
  • Field of Search
    • CPC
    • H05B45/10
    • H05B45/20
    • H05B47/10
    • H05B47/11
    • F21S10/026
    • F21V9/40
  • International Classifications
    • F21V9/40
    • H05B47/10
    • F21S10/02
    • H05B45/10
    • H05B45/20
    • H05B47/11
Abstract
A lighting system includes a lighting device within a luminaire that generates a controllable light output. The lighting system also includes an input device within the luminaire. The input device includes a first selection mechanism communicatively coupled to the lighting device. The first selection mechanism receives a first input to transition the lighting system between a set of control states. The input device also includes a second selection mechanism communicatively coupled to the lighting device. The second selection mechanism receives a first rotational input to control a light intensity output of the lighting device or a correlated color temperature of the lighting device.
Description
TECHNICAL FIELD

Embodiments of the presently disclosed subject matter relate to light fixtures with selectable lighting intensity and color temperature outputs. In particular, the presently disclosed subject matter relates to a luminaire that selects lighting intensity, color temperature, or both using mechanical input from a lens of the luminaire.


BACKGROUND

Control of a luminaire is often provided using switches, chains, slider bars, or other actuating mechanisms that are located on an external surface of the luminaire. When providing selection mechanisms capable of controlling multiple light features (e.g., on/off, light intensity, correlated color temperature (CCT), etc.), external surfaces of the luminaire may become cluttered with the selection mechanisms. Other luminaires provide selection mechanisms in “hidden” locations when the luminaire is installed. Such an arrangement prevents the ability to adjust light features after the luminaire has been installed (e.g., for a downlight or a ceiling mounted light). To avoid external surface clutter, to increase usability, and to enable light output adjustments after the luminaire is installed, alternative selection mechanisms for the luminaire are desired.


SUMMARY

Certain aspects involve lighting control systems that enable control of luminaire operations. For instance, a lighting system includes a lighting device within a luminaire that generates a controllable light output. The lighting system also includes an input device within the luminaire. The input device includes a first selection mechanism communicatively coupled to the lighting device. The first selection mechanism receives a first input to transition the lighting system between a set of control states. The input device also includes a second selection mechanism communicatively coupled to the lighting device. The second selection mechanism receives a first rotational input to control a light intensity output of the lighting device or a correlated color temperature of the lighting device.


In an additional example, an input device includes a first selection mechanism positionable within a luminaire to communicatively couple to a lighting device of the luminaire. The first selection mechanism receives a first input to transition the lighting device from a first control state to a second control state. Additionally, the input device includes a second selection mechanism positionable within the luminaire to communicatively couple to the lighting device of the luminaire. The second selection mechanism receives a first rotational input to control a light intensity output of the lighting device or a correlated color temperature of the lighting device associated with the second control state.


In an additional example, a method includes receiving a first input from a first selection mechanism at a luminaire of a lighting system to transition from a first lighting control state to a second lighting control state. The method also includes receiving a second input from a rotational input mechanism at a luminaire of the lighting system to adjust a light output of the lighting system in the second lighting control state. Further, the method includes controlling a light intensity output or a correlated color temperature output of the lighting system using the second input from the rotational input mechanism.


These illustrative aspects are mentioned not to limit or define the disclosure, but to provide examples to aid understanding thereof. Additional aspects are discussed in the Detailed Description, and further description is provided there.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the present disclosure are better understood when the following Detailed Description is read with reference to the accompanying drawings.



FIG. 1 depicts a sectional schematic view of a luminaire including a lens diffuser selection mechanism, according to certain aspects of the present disclosure.



FIG. 2 depicts a schematic view of a room facing (e.g., downward facing) portion of the luminaire of FIG. 1, according to certain aspects of the present disclosure.



FIG. 3 depicts a sectional schematic view of a luminaire that extends below a ceiling and includes a lens diffuser selection mechanism, according to certain aspects of the present disclosure.



FIG. 4 depicts a flowchart of a process for controlling the luminaires of FIGS. 1 and 3 using a lens diffuser selection mechanism, according to certain aspects of the present disclosure.



FIG. 5 depicts an example of state diagram of the luminaires of FIGS. 1 and 3, according to certain aspects of the present disclosure.





DETAILED DESCRIPTION

The present disclosure relates to systems that that enable control of luminaire operations using interactive user interfaces. As explained above, devices currently used to control certain types of connected lighting systems may suffer from accessibility issues. As a result, access to control of the connected lighting system may be limited.


The subject matter of the presently disclosed embodiments is described herein with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.


The presently disclosed subject matter includes a luminaire with an internal light output selection mechanism. For example, the luminaire may include a mechanism capable of selecting a correlated color temperature (CCT), a light intensity, an “on” or “off” state, or a combination thereof using a depression of a lens diffuser of the luminaire, using a rotation of a portion of the luminaire, or using a combination of lens diffuser depression and rotation. For example, upon depressing a lens diffuser of a luminaire, the luminaire may enter an “on” state (e.g., generating light output) from an “off” state (e.g., not generating light output) or an “off” state from an “on” state. In another example, depressing the lens diffuser may change a light intensity output of the luminaire, or depressing the lens diffuser may change a CCT of the light output of the luminaire.


In another example, the light intensity, the CCT, or both of the luminaire may be adjusted by rotating the lens diffuser in a clockwise or counterclockwise direction. For example, the lens diffuser may rotate freely within a lens housing, and a rotation tracker may adjust the light intensity or CCT based on a detection of how much the lens diffuser has rotated. In an additional example, a cone reflector (e.g., within a downlight) may also be rotatable to control output of the light intensity or the CCT of the luminaire.



FIG. 1 is a sectional schematic view of a luminaire 100 including a lens diffuser selection mechanism 102. The luminaire 100 includes a housing 104 with a controller 106. The controller 106 may be coupled to an external or internal power source 108, and the controller 106 provides control signals to one or more lighting devices 110 (e.g., light emitting diodes or other light sources). The luminaire 100 may be installed within a ceiling 109, and a flange 111 of the luminaire 100 may be positioned flush with the ceiling 109 such that gaps are avoided between the luminaire 100 and a hole in the ceiling 109 in which the luminaire 100 is positioned.


In an example, the controller 106 controls the light intensity and the CCT of the lighting devices 110 based on a user interaction with the lens diffuser selection mechanism 102. The lens diffuser selection mechanism 102 may include a lens diffuser 112 that diffuses light from the lighting devices 110. In an example, a user may depress a lens diffuser 112 toward the lighting devices 110. Depression of the lens diffuser 112 exerts a force in a direction 114 on a selection rod 116 or other actuation device. The selection rod 116 may depress or otherwise interact with a switching mechanism 118. Based on the interaction between the selection rod 116 and the switching mechanism 118, a control signal is provided along a control line 120 to the controller 106 to control the light output of the lighting devices 110. Other components of the luminaire 100 may also be used to provide the force in the direction 114 on the selection rod 116. For example, a cone reflector 122 may be depressed to interact with a selection rod 116 of the switching mechanism 118.


As discussed above, the depression of the lens diffuser 112 may cause the controller 106 to control the lighting devices 110 in several different ways. For example, each depression of the lens diffuser 112 may result in the transition of the lighting devices 110 from an “off” state to an “on” state or from an “on” state to an “off” state. In another example, each depression of the lens diffuser 112 may cycle through available light intensities for the lighting devices 110. For example, a first depression of the lens diffuser 112 may provide an output light intensity of 100%, a second depression of the lens diffuser 112 may provide an output light intensity of 75%, a third depression of the lens diffuser 112 may provide an output light intensity of 50%, and so on. Other transitions between output light intensities are also contemplated. In another example, each depression of the lens diffuser 112 may cycle through available CCTs of the lighting devices 110. For example, a first depression of the lens diffuser 112 may provide an output CCT that appears “warm,” while a second depression of the lens diffuser 112 may transition the output CCT to appear “cool.” Other output CCT transitions are also contemplated.


In another example, the depression of the lens diffuser 112 may send a control signal along the control line 120 to the controller 106 to transition the control mode of the lighting devices 110. For example, a first depression of the lens diffuser 112 may transition the lighting devices 110 to an “on” state from an “off” state. A second depression of the lens diffuser 112 may transition the lighting devices 110 into a light intensity control mode. While the lighting devices 110 are in a light intensity control mode, the lens diffuser 112 may be rotated (e.g., clockwise or counterclockwise) to provide control signals to the controller 106 that control the light intensity of the lighting devices 110. For example, as the lens diffuser 112 rotates in a clockwise direction, the light intensity of the lighting devices 110 may increase. Similarly, as the lens diffuser 112 rotates in a counterclockwise direction, the light intensity of the lighting devices 110 may decrease.


A third depression of the lens diffuser 112 may transition the lighting devices 110 into a CCT control mode. While the lighting devices 110 are in the CCT control mode, the lens diffuser 112 may be rotated to provide control signals to the controller 106 to control the CCT output by the lighting devices 110. For example, as the lens diffuser 112 rotates in a clockwise direction, the CCT may gradually transition from a warmer color temperature to a colder color temperature. Similarly, as the lens diffuser 112 rotates in a counterclockwise direction, the CCT may gradually transition from a cooler color temperature to a warmer color temperature. Further, a fourth depression of the lens diffuser 112 may transition the lighting devices 110 from the “on” state to the “off” state.


The lighting devices 110 may also be controlled by depressing the lens diffuser 112 in different manners. For example, depressing the lens diffuser 112 with a “long” press (e.g., where the lens diffuser 112 is depressed for more than 1 second) may transition the lighting devices into one control mode (e.g., a CCT control mode or a light intensity control mode). Additionally, depressing the lens diffuser 112 with a “short” press (e.g., where the lens diffuser 112 is depressed for less than or equal to 1 second) may transition the lighting devices into the other control mode. Further, a series of “long” presses may control the lighting devices 110 in a manner different from a series of “short” presses. For example, three “long” presses may cycle through color temperature settings, while three “short” presses may cycle through light intensity settings. In another example, combinations of “long” and “short” presses may change the control mode of the lighting devices 110. For example, each control mode may be accessed by a unique combination of the “long” and “short” presses on the lens diffuser 112.


In another example, the rotational control of the lighting devices 110 may be provided by rotating a cone reflector 122 of the luminaire 100. For example, the cone reflector 122 may be rotated in place of the lens diffuser 112 or in addition to the lens diffuser 112. For example, upon depressing the lens diffuser 112 to transition the lighting devices 110 from the “off” state to the “on” state, the lens diffuser 112 may be rotated to control the light intensity of the lighting devices 110, while the cone reflector 122 may be rotated to control the CCT of the lighting devices 110. In another example, the lens diffuser 112 is rotated to control the CCT of the lighting devices 110, while the cone reflector 112 is rotated to control the light intensity of the lighting devices 110. Any other characteristics of the lighting devices 110 may also be controlled by the depression of the lens diffuser 112, rotation of the lens diffuser 112 or other component of the luminaire 100, or any combination thereof.


In another example, the depression of the lens diffuser 112 may cycle through light intensities of the lighting devices 110, while rotation of the lens diffuser 112 or the cone reflector 122 provides control of the CCT of the lighting devices 110. Similarly, the depression of the lens diffuser 112 may cycle through CCT settings of the lighting devices 110, while the rotation of the lens diffuser 112 provides control of the light intensity of the lighting devices 110.


While the rotational control is generally described herein as being provided by rotational movement of the lens diffuser 112 or cone reflector 122, other components of the luminaire 100 may also be rotated to control the output of the lighting devices 110. For example, the flange 111 may also be rotated to provide control of CCT, light intensity, or both of the lighting devices 110. Further, other control mechanisms may be incorporated into the luminaire 100. For example, a sliding bar may be installed within the luminaire 100 to provide control of one or more of the lighting characteristics of the lighting devices 110. In an example of a linear luminaire, the lens diffuser 112 may provide a sliding movement in place of the rotational movement of the lens diffuser 112 described above.



FIG. 2 is a schematic view of a room facing (e.g., downward facing) portion of the luminaire 100. As discussed above with respect to FIG. 1, any of the flange 111, the cone reflector 122, and the lens diffuser 112 can be rotated to control the CCT and light intensity of the lighting devices 110. Additionally, the luminaire 100 may include a bezel 202 that is rotatable around the lens diffuser 112. The bezel 202 may rotate about the lens diffuser 112 to control characteristics of the lighting devices 110 while the lens diffuser 112 remains stationary. Other lighting control mechanisms may also be installed with the luminaire 100 to control lighting characteristics of the lighting devices 110.



FIG. 3 is a sectional schematic view of a luminaire 300 that extends below a ceiling 309 and includes a lens diffuser selection mechanism 302. The luminaire 300 includes a housing 304 with a controller 306. The controller 306 may be coupled to an external or internal power source 308, and the controller 306 provides control signals to one or more lighting devices 310 (e.g., light emitting diodes or other light sources). The luminaire 300 may be installed within the ceiling 309.


In an example, the controller 306 controls the light intensity and the CCT of the lighting devices 310 based on a user interaction with the lens diffuser selection mechanism 302. For example, a user may depress a lens diffuser 312 toward the lighting devices 310. Depression of the lens diffuser 312 exerts a force in a direction 314 on a selection rod 316 or other actuation device. The selection rod 316 depresses or otherwise interacts with a switching mechanism 318. Based on the interaction between the selection rod 316 and the switching mechanism 318, a control signal is provided along a control line 320 to the controller 306 to control the light output of the lighting devices 310.


As discussed above, the depression of the lens diffuser 312 may cause the controller 306 to control the lighting devices 310 in several different ways. For example, each depression of the lens diffuser 312 may result in the transition of the lighting devices 310 from an “off” state to an “on” state or from an “on” state to an “off” state. In another example, each depression of the lens diffuser 312 may cycle through available light intensities for the lighting devices 310. For example, a first depression of the lens diffuser 312 may provide an output light intensity of 100%, a second depression of the lens diffuser 312 may provide an output light intensity of 75%, a third depression of the lens diffuser 312 may provide an output light intensity of 50%, and so on. Other transitions between output light intensities are also contemplated.


In another example, each depression of the lens diffuser 312 may cycle through available CCTs of the lighting devices 310. For example, a first depression of the lens diffuser 312 may provide an output CCT that appears “warm,” while a second depression of the lens diffuser 312 may transition the output CCT to appear “cool.” Other output CCT transitions are also contemplated.


In another example, the depression of the lens diffuser 312 may send a control signal along the control line 320 to the controller 306 to transition the control mode of the lighting devices 310. For example, a first depression of the lens diffuser 312 may transition the lighting devices 310 to an “on” state from an “off” state. A second depression of the lens diffuser 312 may transition the lighting devices 310 into a light intensity control mode. While the lighting devices 310 are in the light intensity control mode, the lens diffuser 312 may be rotated to provide control signals to the controller 306 to control the light intensity of the lighting devices 310. For example, as the lens diffuser 312 rotates in a clockwise direction, the light intensity of the lighting devices 310 may increase. Similarly, as the lens diffuser 312 rotates in a counterclockwise direction, the light intensity of the lighting devices 310 may decrease.


A third depression of the lens diffuser 312 may transition the lighting devices 310 into a CCT control mode. While the lighting devices 310 are in the CCT control mode, the lens diffuser 312 may be rotated to provide control signals to the controller 306 to control the CCT output by the lighting devices 310. For example, as the lens diffuser 312 rotates in a clockwise direction, the CCT may gradually transition from a warmer color temperature to a colder color temperature. Similarly, as the lens diffuser 312 rotates in a counterclockwise direction, the CCT may gradually transition from a colder color temperature to a warmer color temperature. Further, a fourth depression of the lens diffuser 312 may transition the lighting devices 310 from the “on” state to the “off” state.


In another example, the rotational control of the lighting devices 310 may be provided by rotating the housing 304 of the luminaire 100. For example, the housing 304 may be rotated in place of the lens diffuser 312 or in addition to the lens diffuser 312. In an example, upon depressing the lens diffuser 312 to transition the lighting devices 310 from the “off” state to the “on” state, the lens diffuser 312 may be rotated to control the light intensity of the lighting devices 310, while the housing 304 may be rotated to control the CCT of the lighting devices 310. In another example, the lens diffuser 312 is rotated to control the CCT of the lighting devices 310, while the housing 304 is rotated to control the light intensity of the lighting devices 310.


In other examples, the depression of the lens diffuser 312 may cycle through light intensities of the lighting devices 310, while rotation of the lens diffuser 312 or the housing 304 provides control of the CCT of the lighting devices 310. Similarly, the depression of the lens diffuser 312 may cycle through CCT settings of the lighting devices 310, while the rotation of the lens diffuser 312 provides control of the light intensity of the lighting devices 310.


While the rotational control is generally described herein as being provided by rotational movement of the lens diffuser 312 or the housing 304, other components of the luminaire 300 may also be rotated to control the output of the lighting devices 310. For example, other control mechanisms may also be incorporated into the luminaire 300 such as a diffuser lens bezel or other rotating component capable of providing control for one or more of the lighting characteristics of the lighting devices 310.



FIG. 4 is a flowchart of a process 400 for controlling the luminaire 100 using a lens diffuser selection mechanism 102. While the process 400 is described with respect to the luminaire 100 depicted in FIG. 1, the process 400 may also apply to the luminaire 300 depicted in FIG. 3. At block 402, the process 400 involves receiving a selection from the lens diffuser 112 to transition a state of the luminaire. In some examples, the selection may involve a user depressing the lens diffuser 112 to transition the state of the luminaire to a correlated color temperature (CCT) control state, a light intensity control state, an “on” or “off” state, or a combination thereof.


At block 404, the process 400 involves receiving a rotational input at the luminaire 100 to adjust the lumen output or the CCT output of the luminaire 100. The rotational input may be provided by rotation of the lens diffuser 112 or any other rotational elements of the luminaire 100, as described above with respect to FIGS. 1-3. In another example, the lens diffuser 112 may be rotated to control the CCT output of the luminaire 100, while an additional rotational element of the luminaire 100 (e.g., the cone reflector 122, the bezel 202, the flange 111, the housing 304, etc.) is rotated to control the light intensity of the luminaire 100. Moreover, any combination rotational elements of the luminaire 100 may be used for controlling the CCT output and the light intensity of the luminaire 100.


At block 406, the process 400 involves receiving a selection from the lens diffuser 112 to transition the luminaire 100 to an additional state of the luminaire 100. In an example, the luminaire 100 may transition from the CCT control state to the light intensity control state. In such an example, the process 400 may return to block 404 to receive another rotational input at the luminaire 100 to control the light intensity of the luminaire 100. In an additional example, the luminaire 100 may transition to the “off” state upon receiving the selection at block 406.



FIG. 5 depicts an example of state diagram 500 of the luminaires 100 and 300, according to certain aspects of the present disclosure. While the state diagram 500 depicts an OFF state 502 as an initial state, any of the described states may be the initial state of the luminaires 100 and 300. Further, the states depicted in the state diagram 500 may occur in any order. As shown, the OFF state 502 may be when the luminaires 100 and 300 are not generating a light output. After receiving an input from the lens diffuser selection mechanism 102, the luminaires 100 and 300 may transition to an ON state 504. The ON state 504 may be when the luminaires 100 and 300 output a light. The light output when transitioning to the ON state 504 may be a pre-determined light output (e.g., a pre-determined light intensity and CCT), or the light output may be a most recent light output prior to the luminaires 100 and 300 entering the OFF state 502.


Upon receiving another input from the lens diffuser selection mechanism 102, the luminaires 100 and 300 may transition to a light intensity control state 506. In the light intensity control state 506, the luminaires 100 and 300 may receive a rotational input from a rotational element of the luminaires 100 and 300 to control the light intensity of the light output from the luminaires 100 and 300. The rotational input in a clockwise direction may increase the light intensity, while the rotational input in the counterclockwise direction may decrease the light intensity of the luminaires 100 and 300.


Upon receiving another input from the lens diffuser selection mechanism 102, the luminaires 100 and 300 may transition to a correlated color temperature (CCT) control state 508. In the CCT control state 508, the luminaires 100 and 300 may receive a rotational input from a rotational element of the luminaires 100 and 300 to control the color temperature of the light output from the luminaires 100 and 300. The rotational input in a clockwise direction may increase the coolness of the color temperature of the light output, while the rotational input in the counterclockwise direction may increase a warmth of the color temperature of the light output of the luminaires 100 and 300. Upon receiving another input from the lens diffuser selection mechanism 102, the luminaires 100 and 300 may transition to the OFF state 502.


In an example, the transition from the OFF state 502 to the ON state 504 may transition the luminaires 100 and 300 directly to the light intensity control state 506 or the CCT control state 508 without an additional input after transitioning to the ON state 504. Further, the transitions to the light intensity control state 506 and the CCT control state 508 may occur simultaneously when the luminaires 100 and 300 have multiple rotational elements that can receive a rotational input. For example, the lens diffuser 112 can receive a rotational input to control the light intensity while the cone reflector 122 can receive a rotational input to control the CCT of the light output. That is, one rotational element may be assigned to light intensity control while another rotational element may be assigned to CCT control of the luminaires 100 and 300.


The foregoing is provided for purposes of illustrating, explaining, and describing various embodiments. Having described these embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of what is disclosed. Different arrangements of the components depicted in the drawings or described above, as well as additional components and steps not shown or described, are possible. Certain features and subcombinations of features disclosed herein are useful and may be employed without reference to other features and subcombinations. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the embodiments. Embodiments have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, embodiments are not limited to those described above or depicted in the drawings, and various modifications can be made without departing from the scope of the presently disclosed subject matter.

Claims
  • 1. A lighting system, comprising: a lighting device within a luminaire configured to generate a controllable light output; andan input device within the luminaire, comprising: a first selection mechanism communicatively coupled to the lighting device, wherein the first selection mechanism is configured to receive a first input to transition the lighting system between a set of control states;a second selection mechanism communicatively coupled to the lighting device, wherein the second selection mechanism is configured to receive a first rotational input to control a light intensity output of the lighting device or a correlated color temperature of the lighting device, anda lens diffuser configured to diffuse the controllable light output of the lighting device, wherein the first input comprises a depression of the lens diffuser that is detectable by the first selection mechanism.
  • 2. The lighting system of claim 1, wherein the first rotational input comprises a rotation of the lens diffuser that is detectable by the second selection mechanism.
  • 3. The lighting system of claim 1, wherein the first selection mechanism is further configured to receive a second input to transition the lighting system to an additional control state of the set of control states, and wherein the second selection mechanism is further configured to receive a second rotational input to control the light intensity output of the lighting device or the correlated color temperature of the lighting device associated with the additional control state.
  • 4. The lighting system of claim 1, further comprising: a third selection mechanism communicatively coupled to the lighting device, wherein the third selection mechanism is configured to receive a second rotational input to control the light intensity output of the lighting device or the correlated color temperature of the lighting device.
  • 5. The lighting system of claim 4, further comprising: a lens diffuser configured to diffuse the controllable light output of the lighting device, wherein the first rotational input comprises a rotation of the lens diffuser; andan additional rotational element, wherein the second rotational input comprises a rotation of the additional rotational element.
  • 6. The lighting system of claim 5, wherein the additional rotational element comprises a cone reflector, a bezel, a flange, or a housing of the lighting system.
  • 7. The lighting system of claim 1, wherein the set of control states comprises a correlated color temperature (CCT) control state, a light intensity control state, and an “on” or “off” state of the lighting system.
  • 8. The lighting system of claim 1, further comprising: a lens diffuser configured to transmit the first input to the first selection mechanism, wherein the first selection mechanism comprises: a switching mechanism; anda selection rod configured to receive the first input from the lens diffuser and to interact with the switching mechanism in response to the first input received from the lens diffuser.
  • 9. An input device, comprising: a first selection mechanism positionable within a luminaire and configured to communicatively couple to a lighting device of the luminaire, wherein the first selection mechanism is configured to receive a first input to transition the lighting device from a first control state to a second control state; anda second selection mechanism positionable within the luminaire configured to communicatively couple to the lighting device of the luminaire, wherein the second selection mechanism is configured to receive a first rotational input to control a light intensity output of the lighting device or a correlated color temperature of the lighting device associated with the second control state,wherein the first input comprises a depression of a lens diffuser of the lighting device.
  • 10. The input device of claim 9, wherein the first rotational input is configured to control the light intensity output when the lighting device is in the first control state, and wherein the first rotational input is configured to control the correlated color temperature when the lighting device is in the second control state.
  • 11. The input device of claim 9, wherein the first rotational input comprises a rotation of a lens diffuser, a cone reflector, a bezel, a flange, or a housing of the lighting device.
  • 12. The input device of claim 9, wherein the first selection mechanism is further configured to receive a second input to transition the lighting device to a third control state, and wherein the second selection mechanism is further configured to receive a second rotational input to control the light intensity output of the lighting device or the correlated color temperature of the lighting device that is associated with the third control state.
  • 13. The input device of claim 9, wherein the first control state and the second control state each comprise a correlated color temperature (CCT) control state, a light intensity control state, or an “on” or “off” state of the lighting device.
  • 14. The input device of claim 9, wherein the first selection mechanism comprises: a switching mechanism; anda selection rod configured to receive the first input from a lens diffuser of the lighting device and to interact with the switching mechanism in response to the first input received from the lens diffuser.
  • 15. A method, comprising: receiving a first input from a first selection mechanism at a luminaire of a lighting system to transition from a first lighting control state to a second lighting control state;receiving a second input from a rotational input mechanism at the luminaire of the lighting system to adjust a light output of the lighting system in the second lighting control state; andcontrolling a light intensity output or a correlated color temperature output of the lighting system using the second input from the rotational input mechanism,wherein receiving the first input from the first selection mechanism comprises detecting a depression of a lens diffuser of the lighting system, and wherein receiving the second input from the rotational input mechanism comprises detecting rotation of the lens diffuser.
  • 16. The method of claim 15, further comprising: receiving a third input from the first selection mechanism at the luminaire of the lighting system to transition from the second lighting control state to a third lighting control state;receiving a fourth input from the rotational input mechanism at the luminaire of the lighting system to adjust a light output of the lighting system in the third lighting control state; andcontrolling the light intensity output or the correlated color temperature output of the lighting system using the fourth input from the rotational input mechanism.
  • 17. The method of claim 16, wherein the second input from the rotational input mechanism controls the light intensity output while maintaining the correlated color temperature output of the lighting system, and wherein the fourth input from the rotational input mechanism controls the correlated color temperature output while maintaining the light intensity output of the lighting system.
CROSS-REFERENCE TO RELATED APPLICATION

This claims the benefit to U.S. Provisional Application No. 62/916,422 filed on Oct. 17, 2019, titled “SELECTABLE LIGHTING INTENSITY AND COLOR TEMPERATURE USING LUMINAIRE LENS,” the disclosure of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (176)
Number Name Date Kind
6201351 Rudolph et al. Mar 2001 B1
6323598 Guthrie et al. Nov 2001 B1
6995355 Rains, Jr. et al. Feb 2006 B2
7014336 Ducharme et al. Mar 2006 B1
7088059 McKinney et al. Aug 2006 B2
7135664 Vornsand et al. Nov 2006 B2
7173383 Vornsand et al. Feb 2007 B2
7329998 Jungwirth Feb 2008 B2
7416312 McDermott Aug 2008 B1
7423387 Robinson et al. Sep 2008 B2
7497590 Rains, Jr. et al. Mar 2009 B2
7520634 Ducharme et al. Apr 2009 B2
7883239 Rains, Jr. et al. Feb 2011 B2
8172415 Wegh et al. May 2012 B2
8203260 Li et al. Jun 2012 B2
8228002 Newman, Jr. et al. Jul 2012 B2
RE43606 Bruwer Aug 2012 E
8317362 Ku et al. Nov 2012 B2
8373362 Chemel et al. Feb 2013 B2
8436549 Hasnain May 2013 B2
8598809 Negley et al. Dec 2013 B2
8633650 Sauerlaender Jan 2014 B2
8638045 Kunst et al. Jan 2014 B2
8669722 Yeh et al. Mar 2014 B2
8710754 Baddela et al. Apr 2014 B2
8791642 van de Ven et al. Jul 2014 B2
8823289 Linz et al. Sep 2014 B2
8872438 Zhou et al. Oct 2014 B2
8878443 Luo et al. Nov 2014 B2
8890419 Stack Nov 2014 B2
8890436 Chou Nov 2014 B2
8914312 McLaughlin et al. Dec 2014 B2
8941312 McRae Jan 2015 B2
8975823 Yang et al. Mar 2015 B2
9055647 Sutardja et al. Jun 2015 B2
9072149 Wu et al. Jun 2015 B2
9125271 Martins et al. Sep 2015 B2
9144131 Wray Sep 2015 B2
9210760 Sanders et al. Dec 2015 B2
9277607 Ramer et al. Mar 2016 B2
9289269 Valteau et al. Mar 2016 B2
9301359 Wray Mar 2016 B2
9374876 Alpert et al. Jun 2016 B2
9386653 Kuo et al. Jul 2016 B2
9414457 Fukuda et al. Aug 2016 B2
9485826 Bohler et al. Nov 2016 B2
9538603 Shearer et al. Jan 2017 B2
9538604 Yadav et al. Jan 2017 B2
9544951 O'Neil et al. Jan 2017 B1
9544969 Baddela et al. Jan 2017 B2
9554441 Sutardja et al. Jan 2017 B2
9560710 Beijer et al. Jan 2017 B2
9603213 Suttles et al. Mar 2017 B1
9665262 Hole May 2017 B2
9719642 Macias Aug 2017 B1
9730291 Janik et al. Aug 2017 B1
9801250 Halliwell Oct 2017 B1
9820350 Pyshos et al. Nov 2017 B2
9892693 Kumar et al. Feb 2018 B1
9900945 Janik et al. Feb 2018 B1
10091855 Van Winkle Oct 2018 B2
10117300 Doheny et al. Oct 2018 B2
10163405 Kumar et al. Dec 2018 B2
10290265 Kumar et al. May 2019 B2
10292233 Udavant et al. May 2019 B1
10299335 Pyshos et al. May 2019 B2
10299336 Bowen et al. May 2019 B2
10299337 Chen et al. May 2019 B1
10448471 Chowdhury et al. Oct 2019 B1
10575380 Udavant et al. Feb 2020 B2
10660174 Huang et al. May 2020 B2
10674579 Bruckner et al. Jun 2020 B2
10681784 Bruckner et al. Jun 2020 B2
10856384 Chen et al. Dec 2020 B2
10874006 Davis et al. Dec 2020 B1
10904970 Udavant et al. Jan 2021 B2
10952292 Chowdhury et al. Mar 2021 B2
10966306 Recker Mar 2021 B1
11026307 Rodriguez Jun 2021 B2
20050162851 Kazar et al. Jul 2005 A1
20050243022 Negru Nov 2005 A1
20060220586 Latham Oct 2006 A1
20060226795 Walter et al. Oct 2006 A1
20060238136 Johnson, III et al. Oct 2006 A1
20060285310 Shyu Dec 2006 A1
20070159750 Peker et al. Jul 2007 A1
20070262724 Mednik et al. Nov 2007 A1
20080130298 Negley et al. Jun 2008 A1
20090026913 Mrakovich Jan 2009 A1
20090218960 Lyons et al. Sep 2009 A1
20090256483 Gehman et al. Oct 2009 A1
20100097406 Zulch Apr 2010 A1
20100141175 Hasnain et al. Jun 2010 A1
20100171633 Baker et al. Jul 2010 A1
20100207534 Dowling et al. Aug 2010 A1
20100214764 Chaves et al. Aug 2010 A1
20100283322 Wibben Nov 2010 A1
20100308738 Shteynberg et al. Dec 2010 A1
20110058372 Lerman et al. Mar 2011 A1
20110062872 Jin et al. Mar 2011 A1
20110068702 van de Ven et al. Mar 2011 A1
20110084615 Welten Apr 2011 A1
20110115407 Wibben et al. May 2011 A1
20110210678 Grajcar Sep 2011 A1
20110273495 Ward et al. Nov 2011 A1
20110316441 Huynh Dec 2011 A1
20120080944 Recker et al. Apr 2012 A1
20120081005 Lin Apr 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120098460 Miyasaka et al. Apr 2012 A1
20120242247 Hartmann et al. Sep 2012 A1
20120253542 Nurmi et al. Oct 2012 A1
20120286753 Zhong et al. Nov 2012 A1
20130002167 Van de Ven Jan 2013 A1
20130021580 Morgan et al. Jan 2013 A1
20130038222 Yeh et al. Feb 2013 A1
20130043795 Burayez Feb 2013 A1
20130049610 Chen Feb 2013 A1
20130082616 Bradford et al. Apr 2013 A1
20130140988 Maxik et al. Jun 2013 A1
20130141013 Kodama et al. Jun 2013 A1
20130169158 He et al. Jul 2013 A1
20130200806 Chobot Aug 2013 A1
20130229125 Yan et al. Sep 2013 A1
20130249422 Kerstens et al. Sep 2013 A1
20130249440 Doshi et al. Sep 2013 A1
20130343052 Yen Dec 2013 A1
20140001959 Motley et al. Jan 2014 A1
20140035472 Raj et al. Feb 2014 A1
20140042920 Chou Feb 2014 A1
20140184076 Murphy Jul 2014 A1
20140197750 Cash Jul 2014 A1
20140210357 Yan et al. Jul 2014 A1
20140210364 Cash et al. Jul 2014 A1
20140252967 Van de Ven et al. Sep 2014 A1
20140312777 Shearer et al. Oct 2014 A1
20150009666 Keng et al. Jan 2015 A1
20150097489 Wu et al. Apr 2015 A1
20150245441 McCune, Jr. Aug 2015 A1
20150256760 Ju et al. Sep 2015 A1
20150351169 Pope et al. Dec 2015 A1
20150359061 Adler Dec 2015 A1
20160007420 Gong et al. Jan 2016 A1
20160098950 Nicholson Apr 2016 A1
20160128155 Petluri et al. May 2016 A1
20160323949 Lee Nov 2016 A1
20160352975 Kervec et al. Dec 2016 A1
20160363308 Shum Dec 2016 A1
20160366746 Van de Ven et al. Dec 2016 A1
20160374177 Chen Dec 2016 A1
20170019973 Beck et al. Jan 2017 A1
20170027033 Chobot et al. Jan 2017 A1
20170086265 Akiyama et al. Mar 2017 A1
20170086280 Boomgaarden et al. Mar 2017 A1
20170135186 O'Neil et al. May 2017 A1
20170164440 Hu et al. Jun 2017 A1
20170238392 Shearer et al. Aug 2017 A1
20170354013 DeMayo et al. Dec 2017 A1
20180035510 Doheny et al. Feb 2018 A1
20180103523 Yan et al. Apr 2018 A1
20180116029 Pyshos et al. Apr 2018 A1
20180166026 Kumar et al. Jun 2018 A1
20180242422 Choi et al. Aug 2018 A1
20180249547 Wang et al. Aug 2018 A1
20180310381 Bowen et al. Oct 2018 A1
20180368218 Petluri et al. Dec 2018 A1
20180368232 Doheny et al. Dec 2018 A1
20190027099 Kumar et al. Jan 2019 A1
20190037663 Van Winkle Jan 2019 A1
20190088213 Kumar et al. Mar 2019 A1
20190090327 Zolotykh Mar 2019 A1
20190141812 Chen May 2019 A1
20190191512 Zeng et al. Jun 2019 A1
20190268984 Song et al. Aug 2019 A1
20190268991 Li Aug 2019 A1
20190394851 Sinphay Dec 2019 A1
Foreign Referenced Citations (5)
Number Date Country
106555981 Apr 2017 CN
2768283 Aug 2014 EP
2728972 Aug 2015 EP
2011258517 Dec 2011 JP
2011084135 Jul 2011 WO
Non-Patent Literature Citations (16)
Entry
“2×4 LED Flat Panel”, Cybertech, Main Place Lighting, Available Online At: https://shopmainplacelighting.com/collections/commercial-lighting/products/2-x-4-led-flat-panel-1, Accessed from Internet on May 14, 2019, 3 pages.
“3 Inch WarmDim/Tunable White”, Aculux, Accessed from Internet on May 15, 2020, 3 pages.
“38W Led Panel—Color Selectable”, Venture Lighting, Available Online At: https://www.venturelighting.com/led-lighting/indoor-lighting-fixtures/panels-and-troffers/color-selectable-panels/standard-product/pn38592.html, Accessed from Internet on May 14, 2019, 6 pages.
“Easy Lighting Control”, Application Guide, OSRAM, Available Online At: www.osram.com/easy, Apr. 2015, 25 pages.
“Human Centric Lighting”, Helvar, Intelligent Colour Product Series, Available Online At: helvar.com/second-sun, Dec. 4, 2017, 4 pages.
“IW Cove MX Powercore-Premium Interior Linear LED Cove and Accent Luminaire with Intelligent White Light”, Philips Lighting, Product Family Leafelet, Jan. 21, 2019, 3 pages.
“LED Panel 1230 40W Colour Changeable”, Fuzion Lighting, Information sheet, Available online At: http://www.fuzionlighting.com.au/product/led-panel-40-cct, Accessed from Internet on Mar. 19, 2019, 6 pages.
“LED Universal Ceiling Fan Light Kit”, Hampton Bay, Use and Care Guide, Nov. 7, 2019, 22 pages.
“LLP LED Light Panel”, Main Place Lighting, Specification Sheet, Available Online At: https://cdn.shopify.com/s/files/1/2048/2207/files/LLP-Specification-Sheet-1.pdf, Accessed from Internet on Mar. 19, 2019, 4 pages.
“Noble Pro LED Line Voltage Task Lighting NLLP Series”, AFX, Available Online At: www.AFXinc.com, Accessed from Internet at May 13, 2019, 1 page.
“Par Lite Led”, VariWhite, Coemar, User Manual Version 1.0, Jun. 2011, 19 pages.
“ViaCon LED-Products”, Trilux Simplify your Light, Available Online At: https://www.trilux.com/en/products/viacon-led/, Accessed from Internet on May 13, 2019, 11 pages.
“Warmdim® & Tunable White Adjustable/downlight/wall Wash 1000 Lumen Led 3” Baffle Down Light Trim AX3 WDTW with 3DBAF Trim, Aculux Luminaire, Mar. 20, 2019, 3 pages.
6″ IC LED Retrofit Warmdim (TM) Downlight Trim, Juno, Oct. 2012, 2 pages.
Biery et al., Controlling LEDs, Lutron Electronics Corporation Incorporated, May 2014, 20 pages.
Sun, Challenges and Opportunities for High Power White LED Development, DOE SSL R&D Workshop, Feb. 1, 2012, pp. 1-12.
Related Publications (1)
Number Date Country
20210116102 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62916422 Oct 2019 US