Various sod placement machines are known. U.S. Pat. Nos. 9,028,199 and 10,368,500 describe sod positioning machines configured to laterally push a sod strip toward and against an adjacent strip to close a gap or seam between strips. The embodiment described in this patent includes posts for supporting the positioning machine from a vehicle. In the illustrated embodiment the posts are located on one side of the vehicle.
The present inventor has recognized that it may be desirable in some circumstances to move the positioning machine to an opposite side of the vehicle.
An apparatus for positioning sod strips includes a structure for mounting on a vehicle and a pushing plate slidably mounted to the structure. The pushing plate is arranged to be abuttable to an edge of a sod strip. At least one actuator is operatively mounted between the structure and the pushing plate to slide the pushing plate away from the vehicle to position a sod strip. The structure comprises a base frame for supporting the pushing plate and the actuator, and a pair of upstanding posts that are configured to be mounted to the vehicle, the posts supporting the base frame. The structure can comprise post mounting bases on opposite sides of the vehicle such that the posts can be selectively mounted on opposite sides of the vehicle.
The exemplary device of the invention provides a pushing apparatus for pushing a sod strip that is already placed on the ground, tightly against an adjacent sod strip that is already placed on the ground. This action tightens up the seams between sod strips. The pushing apparatus can be installed on either side of the vehicle. The pushing apparatus includes a stationary frame carried by the vehicle and a laterally sliding frame carried by the stationary frame. A pair of hydraulic or pneumatic cylinders are arranged to pivot the frames up or down between a deployed position and a stand-by or traveling position. The device includes a pair of hydraulic or pneumatic cylinders that are operable to slide the laterally sliding frame in a direction away from the stationary frame to push a sod strip, or toward the stationary frame to retract the laterally sliding frame closer to the vehicle for transport to a subsequent sod strip to be pushed. The laterally sliding frame includes a pair of sliding box beams that telescopically retract into box beams of the stationary frame. The sliding beams mount a pushing plate that abuts the sod strip during a pushing operation.
Numerous other advantages and features of the present invention will be become readily apparent from the following detailed description of the invention and the embodiments thereof, and from the accompanying drawings.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
This application incorporates by reference U.S. Pat. Nos. 9,028,199, 10,368,500, and U.S. provisional application 63/459,424, filed Apr. 14, 2023, in their entireties.
A future strip to be laid is shown dashed as 20c. In order for the vehicle 30 to be positioned against the strip 20c to push in the lateral direction P, in practical terms, the vehicle must turned, driven and reoriented. This also can cause ruts or other irregularities in the bed which must be smoothed before a subsequent strip 20b (shown dashed) is placed on the bed 26.
The vehicle can be driven by a plurality of hydraulic motors, such as one per each wheel, or other known traction drive. The vehicle can include a hydraulic oil system that drives the traction motors, controls steering, and raises and lowers the fork frame and spindle that holds a sod roll, all controlled at an operator's station 77.
Also mounted on the chassis frame 68 is a hydraulic oil pump 79 and a fuel tank 81 (
The apparatus 60 comprises two posts 78, 80 that are fixedly mounted to the frame 68 at a rear and front respectively of the near side of the vehicle, such as by fasteners or welding. A substantially U-shaped base frame 90 comprises rear and front base tubes 94, 96 respectively. The base tubes 94, 96 can have a square cross section and are hollow. A longitudinal brace tube 100 connects the rear and front tubes 78, 80. The rear and front base tubes 94, 96 have open ends 94a, 96a, respectively. The front tube 96 is connected at a low position to the post 80 by a pin connection 106 to a pair of lugs 80a to allow pivoting of the tube 96 with respect to the post 80. The rear tube 94 is connected at a low position to the post 78 by a pin connection to a pair of lugs 78a (not visible in
The frame 90 is supported from the posts 78, 80 by a pair of actuators, such as hydraulic or pneumatic cylinders, a rear cylinder 110 and a front cylinder 112. The rear cylinder is pivotally connected to an upper position on the post 78 by a pin connection 110a to a lug 78b. The cylinder 110 is also connected to a lug 94b on the tube 94 by a pin connection 110b. The front cylinder is pivotally connected to an upper position on the post 80 by a pin connection 112a to a lug 80b. The cylinder 112 is also connected to a lug 96b on the tube 96 by a pin connection 112b.
By hydraulic or pneumatic pressure control of the working fluid into select ports of the cylinders 110, 112, the cylinders can be made to work in unison to contract or elongate which will either pivot the frame 90 up or pivot the frame 90 down with respect to the posts 78, 80. In the case of using hydraulic cylinders, the flow of pressurized fluid to the cylinders is maintained uniform through pressure regulating valves, enhancing performance.
A pushing frame 150 is carried by the base frame 90. The pushing frame 150 comprises rear and front arm tubes 156, 158. The arm tubes 156, 158 are shaped and sized to slidably and telescopically fit into the open ends 94a, 96a of the base tubes 94, 96 and to slide into the base tubes 94, 96, respectively. A front of each of the arm tubes 156, 158 is connected to a pusher plate 170 via lugs 172, 174 by pin connections 156a and 158a. The plate 170 has a bottom wall 178 and an upturned front wall 180.
A rear hydraulic or pneumatic cylinder 202 is mounted between the arm tube 156 and the base tube 94. A front hydraulic or pneumatic cylinder 206 is mounted between the arm tube 158 and the base tube 96. Since the rear hydraulic tube is less visible in
One end of the cylinder 206 is connected by a pin connection 206a to the arm tube 158 via a lug 158b extending on a bottom side of the arm 158 and an opposite end of the cylinder 206 is connected by a pin connection 206b to the base tube 96 via a lug 96b extending on a bottom side of the base tube 96.
By hydraulic or pneumatic pressure control of the working fluid into select ports of the cylinders 202, 206, the cylinders can be made to work in unison to contract or elongate, which will either slide the tube arms 156, 158 in a direction out of the base tubes 94, 96 or retract the tube arms 156, 158 into the base tubes 94, 96. In the case of using hydraulic cylinders, the flow of pressurized fluid to the cylinders is maintained uniform through pressure regulating valves, enhancing performance.
Sliding the tube arms 156, 158 in a direction out of the base tubes 94, 96 pushed the frame 150 away from the vehicle to force the plate 170 to laterally push a sod strip in the direction P by forcing the upturned front wall 180 against a vertical lateral side of the sod strip 20. Retracting the cylinders 202, 206 will retract the frame away from sod strip and ready the frame for pushing against a subsequent strip. Thus, the movement of the pushing plate is in the lateral direction P that is perpendicular to a straight ahead driving direction V of the vehicle, i.e., the direction wherein the wheels are not turned but directed straight ahead. This allows the vehicle 66 to only travel in the straight ahead driving direction V parallel to the longitudinal direction L to move from strip to strip and still undertake lateral positioning adjustment of the sod strips to tighten up seams between adjacent strips in the direction P. A reorientation of the vehicle on the bed 26 to align a vehicle straight ahead driving direction in the direction P is avoided.
A plurality of “suitcase weights” or removable weights 220 are shown in
Although hydraulic or pneumatic cylinders 110, 112, 202, 206 are mentioned, it is within the scope of the invention that other actuators can be used, such as electrically driven actuators.
By retracting the cylinders 110, 112, 202, 206, the apparatus 60 can be folded up and the vehicle used for another purpose.
The upturned front wall 180 of the pusher plate 170 can be pushed against the sod edge for positioning. As applicable, a selectable removable strip or plate can be provided that is fastened or otherwise secured to the bottom wall 178 or to the upturned front wall 180 to accommodate pushing sod of varying thickness, such as 1 inches to 5 inches, that best matches the thickness of the sod being installed. The removable strip or plate can attach to the plate 170 and run the length of the plate 170. In some circumstances, the plate 170 works best when the bottom wall 178 lays flat against the bare ground for ease of operation and visibility for the operator, causing little or no disruption the existing grade or ground. Different plates 170 can be attached to the arms 156, 158 to accommodate different situations. For example, a 4 inch thick sod requires a wider upturned front wall 180, or an attached strip, as well as a wider bottom wall 178, wider in the direction P, providing a larger flat area to use the ground as leverage while pushing. Other plates can also be used.
Also, the plate 170 pivots at pin connections 156a and 158a which is effective for ground pressure control and allowing for angle positioning of the plate 170, depending on the terrain. Also a side edge upturned wall 181 is sloped or curved up, like a ski or sled to accommodate pushing or sliding along the ground when the machine moves in the direction V, with minimal disruption to the ground and reduces the need to lift the apparatus 60 for repositioning.
Also, the apparatus 60 can be folded up more completely by detaching the connections 110b and 112b and folding the frames 90, 150 up to the posts 78, 80 and securing thereto.
The connections 106, 156a, 158a and similar pivotal connections or joints can comprise a through pin 280 and two engageable hairpin-shaped retainer wires 282 which insert into end pin holes through the through pin, for quick disconnect of the connection, as shown for connection 106 in
Also, for example, as shown in
The embodiment of
Each post 578, 580 comprises a post bottom region 578d, 580d having a cross section slightly smaller than the cross section of the post bases 578a, 580a, 588a, 590a such that the post bottom regions 578d, 580d fit into the respective post base. Each post includes a square collar 578g, 580g spaced from the post bottom and welded with welds 579 along all four vertical faces of the respective post. Each bottom region 578d, 580d includes left and right holes 604, 608, which are in registry (
Additionally, or alternately, the posts 578, 580 can be welded into position into the respective square post bases 578a, 580a, 588a, 590a. If the selection between location of the positioning apparatus 60 is semi-permanent, the welds can be easily cut to relocate the positioning apparatus to the opposite side of the vehicle as needed.
In operation, the posts 578, 580 can be located on the right side of the vehicle by being fit into square post bases 578a, 580a, or can be located on the left side of the vehicle by being fit into square post bases 588a, 590a. notwithstanding which square post bases are used, the lugs 80a, 80b face outwardly, away from the vehicle.
As described in the embodiment of
Comparing the posts 78, 80 to the posts 578, 580 the lugs 78a, 80a are at a higher elevation from ground (the resting surface of the wheels 70) in order to increase the downward pushing angle on the pushing plate 170 from the cylinders 204, 206.
Furthermore, the alternate plate described in
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein, to the extent that the references are not inconsistent with the present disclosure.
This application claims the benefit of U.S. provisional application 63/459,424, filed Apr. 14, 2023.
Number | Date | Country | |
---|---|---|---|
63459424 | Apr 2023 | US |