Bult et al (Science 273(5278): 1058-1073, Aug. 1996.* |
Bult, et al., Science, 273:1043-1045 and1067-1072 (1996). |
Belay, N., et al., “Dinitrogen fixation by a thermophilic methanogenic bacterium,” Nature 312:286-288 (1984). |
Bernad, A., et al., “Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases,” EMBO J. 6(13):4219-4225 (1987). |
Blaut, M., “Metabolism of methanogens,” Antonie van Leewenhoek 66:187-208 (1994). |
Brown, J.R., and Doolittle, W.F., “Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications,” Proc. Natl. Acad. Sci. USA 92:2441-2445 (Mar. 1995). |
Cooper, A.A., et al., “Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision,” EMBO J. 12(6):2575-2583 (1993). |
Cooper, A.A., and Stevens, T.H., “Protein splicing: self-splicing of genetically mobile elements at the protein level,” TIBS 20:351-356 (Sep. 1995). |
Cul lmann, G., et al., “Characterization of the Five Replication Factor C Genes of Saccharomyces cerevisiae,” Mol. Cell. Biol. 15(9):4661-4671 (Sep. 1995). |
Delarue, M., et al., “An attempt to unify the structure of polymerases,” Protein Engineering 3(6):461-467 (1990). |
DiMarco, A.A., et al., “Unusual Coenzymes of Methanogenesis,” Annu. Rev. Biochem. 59:355-394 (1990). |
Eberhart, C.G., and Wasserman, S.A., “The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogenesis,” Development 121:3477-3486 (Oct. 1995). |
Faguy, D.M., et al, “Molecular analysis of archaeal flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria,” Can. J. Microbiol. 40:67-71 (1994). |
Gavin, K.A., et al., “Conserved Initiator Proteins in Eukaryotes,” Science 270:1667-1671 (Dec. 1995). |
Gogarten, J.P., et al., “Evaluation of the vacuolar H+-ATPase: Implications for the origin of eukaryotes,” Proc. Natl. Acad. Sci. USA 86:6661-6665 (1989). |
Hamilton, P.T., and Reeve, J.N., “Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii,” Mol. Gen. Genet. 200:47-59 (1985). |
Hartmann, E., and König, H., “Uridine and dolichyl diphosphate oligosaccharides are intermediates in the biosythesis of the S-layer glycoprotein of Methanothermus fervidus,” Arch. Microbiol. 151:274-282 (1989). |
Hirta, R., et al., “Molecular Structure of a Gene, VMA1, Encoding the Catalytic Subunit of H+-Translocating Adenosine Triphosphate from Vacuolar Membranes of Saccharomyces cerevisiae,” J. Biol. Chem. 265(12):6726-6733 (1990). |
Iwabe, N., et al., “Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes,” Proc. Natl. Acad. Sci. USA 86:9355-9359 (1989). |
Jiang, X.-M., et al., “Structure and sequence of the rfb (0 antigen) gene cluster of Salmonella serovar typhimurium (strain LT2),” Molec. Microbiol. 5(3):695-713 (1991). |
Jones, W.J., et al., “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent,” Arch. Microbiol. 136:254-261 (1983). |
Kaine, B.P., and Merkel, V.L., “Isolation and Characterization of the 7S RNA Gene from Methanococcus voltae,” J. Bacteriol. 171(8):4261-4266 (1989). |
Kalmokoff, M.L., et a., “Relatedness of the flagellins from methanogens,” Arch. Microbiol. 157:481-487 (1992). |
Kane, P.M., et al., “Protein Splicing Converts the Yeast TFP1 Gene to the 69-kD Subunit of the Vacuolar H+-Adenosine Triphosphase,” Science 250:651-657 (1990). |
Klenk, H.-P., and Doolittle, W.F., “Archaea and eukaryotes versus bacteria?,” Current Biology 4(10):920-922 (1994). |
Köpke, A.K.E., and Wittman-Liebold, B., “Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms,” Can. J. Microbiol. 35:11-20 (1989). |
Langer, D., et al., “Transcription in Archaea: Similarity to that in Eucarya,” Proc. Natl. Acad. Sci. USA 92:5768-5772 (Jun. 1995). |
Lanzendörfer, M., et al., “Structure and function of the DNA-Dependent RNA Polymerases of Sulfolobus,” System Appl. Microbiol. 16:656-664 (1994). |
Lechner, K., et al., “Organization and Nucleotide Sequence of a Transcriptional Unit of Methanococcus vannielii Comprising Genes for Protein Synthesis Elongation Factors and Ribosomal Proteins,” J. Mol. Evol. 29:20-27 (1989). |
Logan, D.T., et al., “Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus,” EMBO J. 14(17):4156-4167 (Sep. 1995). |
Lutkenhaus, J., “Escherichia coli cell division,” Curr. Opin. Genet. Devel. 3:783-788 (1993). |
Michel, F., et al., “Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure,” Biochimie 64:867-881 (1982). |
Mojica, F.J.M., et al., “Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Halofax volcanii and could be involved in replicon partitioning,” Molec. Microbiol. 17(1):85-93 (Jul. 1995). |
Perler, F.B., et al, “Intervening sequences in an Archaea DNA polymerase gene,” Proc. Natl. Acad. Sci. USA 89:5577-5581 (1992). |
Pietrokovski, S., “Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins,” Protein Science 3:2340-2350 (1994). |
Poritz, M.A., et al., “Human SRP RNA and E. coli 4.5S Contain a Highly Homologous Structural Domain,” Cell 55:4-6 (1988). |
de Pouplana, L.R., et al., “Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria,” Proc. Natl. Acad. Sci. USA 93:166-170 (Jan. 1996). |
Riley, M., “Functions of the Gene Products of Escherichia coli,” Microbiol. Rev. 57(4):862-952 (1993). |
Rothfield, L.I., and Zhao, C.-R., “How Do Bacteria Decide Where to Divide?,” Cell 84:183-186 (Jan. 1996). |
Sandman, K., et al., “HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones,” Proc. Natl. Acad. Sci. USA 87:5788-5791 (1990). |
Schön, A., et al., “Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus,” Biochimie 70:391-394 (1988). |
Uemori, T., et al., “The Hyperthermophilic Archaeon Pyrodictium occultum Has Two α-Like DNA Polymerases,” J. Bacteriol. 177(8):2164-2177 (Apr. 1995). |
Wagar, E.A., et al., “The Glycyl-tRNA Synthetase of Chlamydia trachomatis,” J. Bacteriol. 177(17):5179-5185 (Sep. 1995). |
Whitbread, L.A., and Dalton, S., “Cdc54 belongs to the Cdc46/Mcm3 family of proteins which are essential for initiation of eukaryotic DNA replication,” Gene 155:113-117 (Mar. 1995). |
Woese, C.R., et al., “Towards a natural system of organisms: Proposal for the domain Archaea, Bacteria, and Eucarya,” Proc. Natl. Acad. Sci. USA 87:4576-4579 (1990). |
Wood, H.G., et al., “The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth,” TIBS 11:14-18 (1986). |
Xu, M.-Q., et al., “In vitro Protein Splicing of Purified Precursor and the Identification of a Branched Intermediate,” Cell 75:1371-1377 (1993). |
Zhao, H., et al., “An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid,” Arch. Microbiol. 150:178-183 (1988). |
Genbank report, “B. thuringiensis insertion element 1S240-B protein gene, complete cds,” Locus BACIS2402, Accession No. M23741 J03315 (1989), with associated report for Locus BACIS2401, Accession No. M23740 J03315 (1989). |
Genbank report, “Insertion sequence IS982 (from Lactococcus lactus) transposase gene, complete cds,” Locus INSTRANB, Accession No. L34754 (May 1996). |
Almond, E.L., et al., “Complementation of a thr-1 mutation of Escherichia coli by DNA from the extremely thermophilic archaebacterium Methanococcus jannaschii,” Appl. Microbiol. Biotechnol. 30:148-152 (1989). |
Fleischmann, R.D., et al., “Whole-Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd,” Science 269:496-512 (Jul. 1995). |
Sevier, E.D., et al,. “Monoclonal Antibodies in Clinical Immunology,” Clin. Chem. 27(11):1979-1806 (1981). |
International Search Report for International Application No. PCT/US97/14900. |